1D NMR Processing in Linux and Windows Example Script
From Powers Wiki
%Load MVAPACK addpath('/opt/mvapack/'); %%This could also be used as 'pkg load mvapack' on systems where mvapack is installed
%Load Data F.dirs = glob('???'); [F.data, F.parms, F.t] = loadnmr(F.dirs);
%Add Classes and Labels cls.Y = classes([7,8,6,8,8,8,7,8,7,8,8,8,8,8,8]); cls.labels = {'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15'};
%Zerofills F.data = zerofill(F.data, F.parms, 2); #number of zerofills can be adjusted
%Build the Spectra/FT [S.data, S.ppm] = nmrft(F.data, F.parms); %Note: Check out the Quality (spit out a couple plots) plot(S.ppm,S.data(1,:)) %% <-- Change 1 to a different number to inspect that spectrum.
%Autophase the Spectra %Note, some users run this ~2-3 times for convergence [S.data, S.phc0, S.phc1] = autophase(S.data, F.parms); [S.data, S.phc0, S.phc1] = autophase(S.data, F.parms); [S.data, S.phc0, S.phc1] = autophase(S.data, F.parms);
%Extract the Real Spectral Components XF.data = realnmr(S.data, F.parms); XF.ppm = S.ppm;
%Check Plot to Find Reference Standard plot(XF.ppm, XF.data)
%Reference Adjustment XF.ppm = refadj(XF.ppm, -0.160, 0.0);
%Icoshift XF.data = icoshift(XF.data, XF.ppm);
%Remove Undesired Regions %Note:Removes all values between r0 and r1, r2 and r3, etc. r0= findnearest(XF.ppm, min(XF.ppm)); r1=findnearest(XF.ppm, 0.4); r2=findnearest(XF.ppm, 0.97); r3=findnearest(XF.ppm, 1.33); r4=findnearest(XF.ppm, 4.5); r5=findnearest(XF.ppm, 5.2); r6=findnearest(XF.ppm, 8.5); r7=findnearest(XF.ppm, max(XF.ppm)); X.rm.var = [r7:r6,r5:r4,r3:r2,r1:r0]; [XF.data, XF.ppm] = rmvar(XF.data, XF.ppm, X.rm.var);
%Normalize Data X1.data= pqnorm(XF.data); X1.ppm=XF.ppm
%Binning [B.data, B.ppm, B.widths]=binadapt(XF.data,XF.ppm,F.parms);
Build Models
% Principle Component Analysis mdlpca= pca(X1.data); mdlpca = addclasses(mdlpca, cls.Z);
% Plot Scores scoresplot(mdlpca, 2, [], true); print -deps -color 'FB-2-mdlPCA.eps' print -dpdf -color 'Fb-2-mdlPCA.pdf' %RQ Plot rqplot(mdlpca) print -deps -color 'FB-2-rqmdlPCA.eps' print -dpdf -color 'Fb-2-rqmdlPCA.pdf' %Save Scores savescores (mdlpca,FB-2-scoresPCA,3,cls.Y,cls.labels)
% Orthogonal Projection to Latent Squares (OPLS) %Note: no seperation with binned data mdlopls = opls(X1.data, cls.Y); mdlopls = addlabels(mdlopls, cls.labels); print -deps -color 'FB-2-mdlOPLS.eps' print -dpdf -color 'Fb-2-mdlOPLS.pdf'
%Validation Stages for OPLS Models
%RQ Plot rqplot(mdlopls);
%Permutation Test mdl.cv.perm = permtest(mdlopls); permscatter(mdl.cv.perm)
%CV Anova mdl.cv.anova = cvanova(mdlopls); mdl.cv.anova