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During growth under conditions of glucose and oxygen excess, Staphylococcus aureus predominantly accumulates acetate in the
culture medium, suggesting that the phosphotransacetylase-acetate kinase (Pta-AckA) pathway plays a crucial role in bacterial
fitness. Previous studies demonstrated that these conditions also induce the S. aureus CidR regulon involved in the control of
cell death. Interestingly, the CidR regulon is comprised of only two operons, both encoding pyruvate catabolic enzymes, suggest-
ing an intimate relationship between pyruvate metabolism and cell death. To examine this relationship, we introduced ackA and
pta mutations in S. aureus and tested their effects on bacterial growth, carbon and energy metabolism, cid expression, and cell
death. Inactivation of the Pta-AckA pathway showed a drastic inhibitory effect on growth and caused accumulation of dead cells
in both pta and ackA mutants. Surprisingly, inactivation of the Pta-AckA pathway did not lead to a decrease in the energy status
of bacteria, as the intracellular concentrations of ATP, NAD�, and NADH were higher in the mutants. However, inactivation of
this pathway increased the rate of glucose consumption, led to a metabolic block at the pyruvate node, and enhanced carbon flux
through both glycolysis and the tricarboxylic acid (TCA) cycle. Intriguingly, disruption of the Pta-AckA pathway also induced
the CidR regulon, suggesting that activation of alternative pyruvate catabolic pathways could be an important survival strategy
for the mutants. Collectively, the results of this study demonstrate the indispensable role of the Pta-AckA pathway in S. aureus
for maintaining energy and metabolic homeostasis during overflow metabolism.

Staphylococcus aureus is a dangerous human pathogen, asymptom-
atically colonizing over 30% of healthy individuals worldwide yet

capable of causing invasive opportunistic infections (1). It is a leading
cause of both nosocomial and community-associated infections,
ranging from mild skin infections to life-threatening diseases, such as
severe sepsis, necrotizing pneumonia, endocarditis, and bacteremia
(2, 3). S. aureus infections represent an enormous challenge to phy-
sicians, due to the ability of the bacterial pathogen to survive in di-
verse host environments and the emergence of multidrug-resistant
strains (1, 3). The versatility of the bacterium is dependent on its
proficiency in sensing and utilizing nutrients from different sources
and responding appropriately to rapid environmental changes. This
is achieved by maximizing virulence factor and energy production via
modulation of the expression of genes involved in different metabolic
pathways (4–9).

During growth, staphylococci catabolize glucose and other
carbohydrates primarily through glycolysis (the Embden-Meyer-
hof-Parnas pathway) and the pentose phosphate pathway (10).
Carbon flux through glycolysis produces two molecules of pyru-
vate per molecule of glucose consumed, generates two molecules
of ATP, and reduces two molecules of NAD� to NADH (8). Dur-
ing anaerobic growth, pyruvate undergoes mixed-acid fermenta-
tion, leading to excretion of lactate, formate, acetate, and ethanol,
with the concomitant oxidation of reducing equivalents during
lactate and ethanol fermentation (10–12). Under aerobic condi-
tions, however, pyruvate is decarboxylated to acetyl-coenzyme A
(Ac-CoA) and CO2 by the pyruvate dehydrogenase complex
(PDHC), with reduction of one molecule of NAD� to NADH (8,
13). Depending on the growth conditions, acetyl-CoA is then oxi-
dized by the tricarboxylic acid (TCA) cycle and/or is hydrolyzed to
acetate by the phosphotransacetylase-acetate kinase (Pta-AckA)
pathway, which generates one molecule of ATP through substrate

level phosphorylation. For example, it was shown that, under condi-
tions of excess glucose and oxygen (overflow metabolism), when car-
bon flow into the TCA cycle is limited by carbon catabolite repression
(6, 14–16), S. aureus predominantly excreted acetate into the culture
medium (10, 17). This implies a critical role for the Pta-AckA path-
way during overflow metabolism, and its activity may be essential for
the growth and fitness of S. aureus, as has been reported for other
bacteria (18–22). To date, however, the Pta-AckA pathway in staph-
ylococci has not been characterized.

Interestingly, the LysR-type transcriptional regulator CidR,
which is involved in control of the molecular components me-
diating cell death in S. aureus, exerts its control during aerobic
growth under carbon excess (23). Inactivation of the cidR gene
reduces transcription of the cid operon, encoding a putative
holin that affects murein hydrolase activity and cell viability
(23). Intriguingly, CidR function during overflow metabolism
also affects the transcription of genes involved in diverse path-
ways of pyruvate catabolism (i.e., cidC and alsSD operons),
leading to the generation of acetate and acetoin (24). It has
been speculated that activation of the CidR regulon during
overflow metabolism may result from the accumulation of in-
tracellular pyruvate (25, 26).
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In the present study, we highlight the contribution of the Pta-
AckA pathway to staphylococcal metabolism. We demonstrate
that disruption of either pta or ackA in S. aureus has a drastic
inhibitory effect on growth during overflow metabolism and leads
to significant accumulation of dead cells during the exponential
phase of growth. Our results show that the detrimental effects on
growth were not caused by the decrease in the energy status of
bacteria, as intracellular concentrations of ATP, NAD�, and
NADH were found to be higher in the mutants but appear to be
associated with a metabolic block at the pyruvate node that glob-
ally alters the intracellular metabolic status and activates CidR-
dependent pathways.

MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. The bacterial strains
and plasmids used in this study are listed in Table 1. Escherichia coli strains
were grown in LB broth (Novagen, EMD) or on LB agar. S. aureus strains
were grown in tryptic soy broth (TSB) without dextrose (BD Biosciences)
supplemented with 0.25% glucose (Sigma-Aldrich) or on TSB containing
agar. S. aureus cultures were inoculated to 0.06 optical density at 600 nm
(OD600) units from overnight cultures, incubated at 37°C, and aerated at
250 rpm with a flask-to-medium ratio of 10:1. Bacterial growth was as-
sessed by measuring the optical density at 600 nm or by determining the
number of CFU ml�1. Antibiotics were purchased from Fisher Scientific
and were used at the following concentrations: ampicillin, 100 �g/ml;
chloramphenicol, 10 �g/ml; and erythromycin, 10 �g/ml.

Construction of the ackA and pta mutants in S. aureus. All primers
(see Table S1 in the supplemental material) used for construction and
confirmation of the ackA and pta mutations were generated based on the
sequence of S. aureus strain MRSA252 (NC_002952.2). The ackA mutant
was constructed by replacing a 1.2-kb region, which included the ackA
gene, with an erythromycin resistance gene (ermB), using the gene splic-

ing by overlap extension (SOE) technique (27). The ermB antibiotic resis-
tance cassette was amplified from pEC4 (28), using ackA-ermB-f and
ackA-ermB-r primers, which contain sequences homologous to the ackA
gene. The primers SAR1790-f and ermB-ackA-r were used for amplifica-
tion of a 1.4-kb region upstream of the ackA gene, while a 1.3-kb region
downstream of the ackA gene was amplified using ermB-ackA-f and SacI-
ald1-r primers. All three amplified fragments were mixed in equimolar
ratios (1:1:1) and amplified using SAR1790-f and SacI-ald1-r primers.
The resulting 3.7-kb PCR product consisted of the 1-kb ermB gene flanked
by sequences upstream and downstream of the ackA gene. Following di-
gestion with the restriction endonucleases SacI and SmaI, the 3.7-kb prod-
uct was cloned into pTS1-d (29). The resulting plasmid (pMRS78) was used
to construct the UAMS-1-ackA::ermB mutant through standard allelic-ex-
change methodology described in an earlier study (30). Replacement of the
internal region of the ackA gene by the ermB cassette was verified by PCR
using the primers ermB-f, ermB-r, ald1-r, and SAR1790-f1.

The pta mutant was constructed by in-frame deletion of the pta gene,
using the gene SOE technique (27). Primers SacI-SAR0593-r and lplA-
eutD-r were used for amplification of a 0.9-kb region upstream of the pta
gene. Primers eutD-lplA-f and lplA-r were used to amplify a 1.1-kb region
downstream of the pta gene containing the lplA gene. Importantly, prim-
ers lplA-eutD-r and eutD-lplA-f contain a ribosome binding site (RBS) of
the pta (eutD) gene combined with the start codon (ATG) of the lplA gene.
The amplified fragments were mixed in equimolar ratios (1:1) and ampli-
fied using SacI-SAR0593-r and lplA-r primers. The resulting 2.0-kb PCR
product containing a single SacI site was cloned into pTS1-d (29) digested
with SacI and SmaI to generate the plasmid pWS2. Plasmid pWS2 was
used to construct the UAMS-1-�pta mutant by allelic-exchange method-
ology (30), and the in-frame deletion of the pta gene in the KB8001 strain
was verified by PCR and DNA sequencing, using primers SAR0592-f,
SAR0596-r, lplA-r1, and SalI-P-eutD-f.

The pta-cidC double mutant was generated by bacteriophage �11-
mediated transduction (31) of the cidC::ermC allele from KB1058 and
confirmed by PCR using sets of primers, SAR0592-f and SAR0596-r, and
cidA-f and cidC DN. The UAMS-1 background in all mutants was con-
firmed by pulsed-field gel electrophoresis (PFGE) and PCR using primers
cna-f and cna-r.

Complementation of the ackA and pta mutants. For complementa-
tion of the ackA mutation, a 1.2-kb PCR product containing the promot-
erless wild-type ackA gene was amplified using primers SalI-RBS-ackA-f
and SacI-ackA-r (see Table S1 in the supplemental material). Following
digestion with the restriction endonucleases SalI and SacI, the PCR prod-
uct was ligated into the plasmid pBK123 under the control of the cadmi-
um-inducible promoter from the cadC gene (32). The resulting recombi-
nant plasmid was designated pWS5. For complementation of the pta
mutation, a 1.2-kb PCR product containing the wild-type pta allele with
its promoter region was amplified using primers SalI-P-eutD-f and SacI-
eutD-r (see Table S1 in the supplemental material). The PCR product
containing SalI and SacI sites was cloned into pLI50 (33) digested with SalI
and SacI to generate the plasmid pMRS102. The plasmids pWS5 and
pMRS102 were transformed into strain RN4220 by electroporation and
then introduced into UAMS-1-ackA::ermB and UAMS-1-�pta strains, re-
spectively, by phage �11-mediated transduction (31).

Measurement of glucose, acetic acid, lactate, pyruvate, and acetoin
concentrations in the culture medium. Aliquots of bacterial cultures (1
ml) were centrifuged for 3 min at 14,000 rpm at 4°C. The supernatants
were removed and stored at �20°C until use. Acetate, glucose, and D- and
L-lactate concentrations were determined using kits purchased from R-
Biopharm, according to the manufacturer’s protocol. Pyruvate concen-
trations were determined using the Pyruvate Assay Kit (MBL) according
to the manufacturer’s protocol. Acetoin concentrations were determined
at 560 nm as described previously (34).

Determination of intracellular ATP, NAD�, NADH, Ac-CoA, and
pyruvate concentrations. Intracellular ATP concentrations were deter-
mined using the BacTiter-Glo kit (Promega) according to the manufac-

TABLE 1 Strains and plasmids used in this study

Bacterial strain or
plasmid Relevant properties Source

Strains
DH5� E. coli cloning host Invitrogen
RN4220 S. aureus restriction-deficient mutant of

strain 8325-4
31

UAMS-1 S. aureus clinical isolate 61
KB1058 UAMS-1-cidC::ermC 62
KB8000 UAMS-1-�ackA::ermB; Emr This study
KB8001 UAMS-1-�pta This study
KB8005 UAMS-1-�pta; cidC::ermC; Emr This study
SA564 S. aureus clinical isolate 63
KB8006 SA564-�ackA::ermB; Emr This study
JE2 Derivative of USA300 LAC 64
KB8007 JE2-�ackA::ermB; Emr This study

Plasmids
pTS1-d Shuttle vector; pE194orits; ColE1; Apr Cmr 29
pMRS78 Derivative of pTS1-d containing 3.7-kb

ackA::ermB fragment
This study

pWS2 Derivative of pTS1-d containing 2-kb
�pta fragment

This study

pBK123 Shuttle vector; Apr Cmr 32
pWS5 Derivative of pBK123 containing wild-

type allele of ackA
This study

pLI50 Shuttle vector; Apr Cmr 33
pMRS102 Derivative of pLI50 containing wild-type

allele of pta
This study
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turer’s protocol and normalized to the corresponding viable-cell counts at
the time of harvest.

Intracellular NAD� and NADH concentrations were determined us-
ing a Fluoro NAD/NADH kit (Cell Technology). Aliquots of bacterial
cultures (10 ml) were harvested by centrifugation at 4°C for 10 min at
4,000 rpm. The bacterial pellets were washed twice with 1 ml of phos-
phate-buffered saline, pH 7.4 (PBS). Then, the bacterial pellets were re-
suspended in 0.2 ml of the NAD/NADH extraction buffer and 0.2 ml of
the lysis buffer. The cells were lysed using lysing matrix B tubes in a
FastPrep instrument (Qbiogene), and then the lysates were incubated at
60°C for 15 min. The lysates were centrifuged at 4°C for 3 min at 14,000
rpm. NAD� and NADH concentrations in the lysates were determined
according to the manufacturer’s protocol and normalized to the corre-
sponding viable-cell counts determined at the time of harvest.

Intracellular Ac-CoA concentrations were determined using a Pico-
Probe Acetyl-CoA Assay Kit (BioVision). Aliquots of bacterial cultures
(25 ml) were harvested by centrifugation at 4°C for 10 min at 4,000 rpm.
The bacterial pellets were washed twice with 1 ml of PBS and resuspended
in 0.5 ml of PBS, followed by the addition of 0.1 ml of ice-cold 3 M
perchloric acid. The cells were lysed using lysing matrix B tubes in a Fast-
Prep instrument (Qbiogene). The lysates were centrifuged at 4°C for 3
min at 14,000 rpm. Subsequently, 300 �l of supernatants was neutralized
with 75 �l of saturated solution of potassium bicarbonate and centrifuged
at 4°C for 3 min at 14,000 rpm. Ac-CoA concentrations were determined
according to the manufacturer’s protocol and normalized to the corre-
sponding colony counts.

Intracellular pyruvate concentrations were determined using the Py-
ruvate Assay Kit (MBL). Aliquots of bacterial cultures (10 ml) were har-
vested by centrifugation at 4°C for 10 min at 4,000 rpm. The bacterial
pellets were washed twice with 1 ml of PBS and then resuspended in 0.35
ml of pyruvate assay buffer, incubated for 20 min at 80°C, and lysed using
lysing matrix B tubes in a FastPrep instrument (Qbiogene). The lysates
were centrifuged at 4°C for 5 min at 14,000 rpm. Pyruvate concentrations
were determined according to the manufacturer’s protocol and normal-
ized to the corresponding viable-cell counts at the time of harvest. All
assays were performed in duplicate for three independent experiments.

Measurement of oxygen consumption. Cells were cultured at 37°C in
TSB supplemented with 0.25% glucose and aerated at 250 rpm with a
flask-to-medium ratio of 10:1. After 3 h of growth, samples were collected
and diluted in air-saturated TSB supplemented with 0.25% glucose to an
OD600 of 0.1 to 0.8. Relative oxygen consumption rates were determined
for up to 120 min at 37°C by using a MitoXpress oxygen-sensitive probe
(Luxcel Biosciences) according to the manufacturer’s instructions. The
data were normalized to the corresponding viable-cell counts at the time
of harvest. The results were recorded in duplicate for three independent
experiments.

Flow cytometry. Bacterial cell viability was measured by using a LIVE/
DEAD BacLight Viability kit (Invitrogen), according to the manufactur-
er’s protocol, on a FACSAria flow cytometer (BD Biosciences). Aliquots of
bacterial cultures (1 ml) were harvested by centrifugation at 4°C for 10
min at 4,000 rpm. The bacterial pellets were washed twice with 1 ml of
PBS. The bacteria (1 � 107 to 5 � 107 cells per ml) were then stained for 15
min with SYTO 9 and a propidium iodide dye mixture. Bacteria were
distinguished from the background using a combination of forward-scat-
ter and side-scatter parameters. In total, 50,000 events were collected for
each sample, and fluorescent signals were measured using logarithmic
amplifications. Flow cytometric measurements were performed with
488-nm excitation from a blue solid-state laser at 50 mW, and fluorescent
emissions in the green and red spectra were detected using 530- and
610-nm band-pass filters, respectively. Data were analyzed with FlowJo
software (Tree Star, Inc.). The results are representative of duplicates for
three independent experiments.

NMR sample preparation. Samples for two-dimensional (2D) 1H-13C
heteronuclear single quantum coherence (HSQC) spectra were prepared
from three independent 50-ml cultures of S. aureus strains UAMS-1,

UAMS-1-ackA, and UAMS-1-pta at the exponential growth phase (3 h)
on TSB containing 0.25% [13C6]glucose (Sigma-Aldrich). Bacteria (10
OD600 units) were harvested by centrifugation, suspended in 700 �l of
quenching solution (60% ethanol, 40% D2O [Isotec], 50 mM phosphate
buffer, pH 7.1), and lysed using lysing matrix B tubes in a FastPrep instru-
ment (Qbiogene). To remove the cell debris, the lysates were centrifuged
at 4°C for 5 min at 14,000 rpm. The samples were then lyophilized and
suspended in a 99.8% D2O (Isotec), 50 mM phosphate buffer and used for
nuclear magnetic resonance (NMR) analysis.

NMR data collection and analysis. All cell lysates were stored in a
�80°C freezer until the samples were utilized for NMR experiments. Each
sample was thawed completely and allowed to equilibrate at 298.15 K for
approximately 1 h. Then, 600 �l of deuterated 50 mM potassium phos-
phate buffer at pH 7.4 (uncorrected) with 500 �M 3(trimethylsilyl)pro-
pionic-2,2,3,3-d4 acid sodium salt (TMSP) was added to the cell lysates
and transferred to an NMR tube. A Bruker Avance DRX 500-MHz spec-
trometer equipped with a 5-mm triple-resonance cryoprobe (1H, 13C, and
15N) with a z-axis gradient was utilized for all 2D 1H-13C HSQC NMR
experiments. NMR spectra were acquired in random order, which in-
cluded alternating between the three S. aureus strains. Also, a BACS-120
sample changer with Bruker Icon software was used to automate the NMR
data collection and minimize instrument variations. The 2D 1H-13C
HSQC spectra were collected at 298.15 K with 128 scans, 16 dummy scans,
and a relaxation delay of 1.5 s. The spectra were acquired with a spectrum
width of 5,000 Hz and 2,048 data points in the direct dimension and a
spectrum width of 17,605.6 Hz and 64 data points in the indirect dimen-
sion. The NMR spectra were processed and analyzed using NMRPipe (35)
and NMRViewJ (36) and following the protocol described previously
(37). Briefly, peaks were assigned to a metabolite by matching 1H and 13C
chemical shifts from the Human Metabolome Database (HMDB) (38),
using error tolerances of 0.08 ppm and 0.25 ppm, respectively. The pres-
ence of metabolites and metabolic pathways within S. aureus was verified
with the KEGG (39) and Metacyc (40) databases.

Peak intensities were normalized by setting the maximal peak intensity
to 100. Peak intensities for a specific metabolite were then averaged for
each individual 2D 1H-13C HSQC spectrum and subsequently across the
set of triplicate spectra. To account for differences in the numbers of
viable cells between the S. aureus strains, the peak intensities were scaled
by 2.5 for the UAMS-1-ackA and UAMS-1-pta strains. This corresponds
to the ratio of CFU to that of the UAMS-1 wild-type strain. The peak
intensities from the S. aureus UAMS-1-ackA and UAMS-1-pta mutant
strains were then compared to the peak intensities from the UAMS-1
wild-type strain, where metabolite concentration changes were reported
as a percentage change relative to the wild type.

Quantification of the mRNA transcripts. RNA isolation was carried
out as described previously (29). Quantitative real-time PCR was per-
formed using the sigA-, pfkA-, citZ-, cidA-, ldh1-, ddh-, and alsS-specific
primers listed in Table S1 in the supplemental material. Total RNA (500
ng) was converted to cDNA using the Quantitect Reverse Transcription
Kit (Qiagen). The samples were then diluted 1:50, and the cDNA products
were amplified using the LightCycler DNA Master SYBR green I kit
(Roche Applied Science) following the manufacturer’s protocol. The rel-
ative transcript levels were calculated using the comparative threshold
cycle (CT) method (41) with normalization to the amount of sigA tran-
scripts present in the RNA samples. The results were recorded in duplicate
and are representative of three independent experiments. The statistical
significance of changes between wild-type and mutant strains was assessed
using several statistical tests. The Shapiro-Wilk test was used to check the
normality of the data. Levene’s test was used to test the equality of vari-
ances among groups in comparison. Since the values were normally dis-
tributed, based on the Shapiro-Wilk test, and some groups in comparison
have unequal variances, analysis of variance (ANOVA) with heteroge-
neous variance was used to compare the values between the ackA or pta
mutants and the wild-type strain for experiments with certain primers,
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separately. Dunnett’s method was used to account for multiple compari-
sons. A P value of �0.05 was considered statistically significant.

RESULTS
Inactivation of the Pta-AckA pathway inhibits growth of S. au-
reus. To examine the impact of the Pta-AckA pathway on S. aureus
growth and carbon and energy metabolism, as well as CidR-me-
diated regulation, we constructed �ackA::ermB and �pta muta-
tions in the S. aureus strain UAMS-1 (see Materials and Methods).
Inactivation of the Pta-AckA pathway by disrupting either the
ackA or pta gene had a drastic inhibitory effect on growth rates
during the exponential phase in both mutants compared to the
isogenic wild-type strain (Fig. 1A). The observed growth defects
were accompanied by lower acidification of the culture media
(Fig. 1A) and a marked decrease in the rate and concentrations of
acetic acid accumulation in both mutants (Fig. 1B). Additionally,
the decreased growth rates of the ackA and pta mutants were also
reflected in the reduced temporal depletion of glucose (Fig. 1C).
However, when the concentrations of glucose in the culture media
were plotted as a function of growth, the rates of glucose consump-
tion during the exponential growth phase were found to be higher in
the ackA and pta mutants (Fig. 1D; see Fig. S1 in the supplemental
material), suggesting carbon is redirected from cell growth to other
metabolic pathways and cellular processes. To exclude second-site
mutations as the cause of these phenotypes, we performed a comple-
mentation study using plasmids pWS5 and pMRS102, containing the
wild-type alleles of the ackA and pta genes, respectively, and observed
restoration of the growth characteristics in the mutants to wild-type
levels (see Fig. S2 in the supplemental material).

Disruption of the Pta-AckA pathway causes cell death. Dur-
ing growth experiments, we noticed that the viable-cell count dif-
ferences observed for the wild-type and mutant strains seemed to
be disproportionately high (unpublished data) compared to the
differences observed for their optical densities (Fig. 1A). As the
optical-density values reflect the total number of cells, including
both live and dead cells, we reasoned that during growth the mu-
tant strains may undergo increased cell death. Indeed, the number
of viable cells (CFU) per OD600 unit for the wild-type strain at the
exponential phase of growth was approximately 2.5 times higher
than that for the mutants (Fig. 2A). The observed accumulation of
dead cells was not specific to the UAMS-1 strain, as inactivation of
the ackA gene in strains JE2 and SA564 caused a similar decrease in
the number of viable cells per OD600 unit (see Fig. S3 in the sup-
plemental material). To estimate the number of dead cells in the
wild-type and mutant strains during exponential growth, we per-
formed flow cytometry analysis of cells treated with the LIVE/
DEAD staining dyes. As anticipated, the numbers of accumulated
dead cells in the mutants were nearly 2 orders of magnitude higher
than in the wild-type strain (Fig. 2B). These results indicate that
the activity of the Pta-AckA pathway in S. aureus is critical for cell
viability during overflow metabolism.

Pta-AckA pathway inactivation does not decrease intracellu-
lar ATP pools. During aerobic growth in the presence of excess
glucose or other rapidly metabolizable carbon sources, the TCA
cycle in staphylococci is subject to carbon catabolite repression (6,
10, 14–16). To support growth under these conditions, ATP is
generated through substrate level phosphorylation via glycolysis

FIG 1 Inactivation of the Pta-AckA pathway has drastic effects on the growth characteristics of S. aureus. (A) Growth curves of the wild-type (wt) strain UAMS-1
and mutant strains UAMS-1-ackA and UAMS-1-pta grown aerobically in TSB containing 0.25% glucose. The OD600 and the pH of the culture medium were
determined at the indicated times. (B) Temporal accumulation and depletion of acetic acid in the culture media of strains UAMS-1, UAMS-1-ackA, and
UAMS-1-pta. (C) Temporal depletion of glucose from the culture media of strains UAMS-1, UAMS-1-ackA, and UAMS-1-pta. (D) Concentrations of glucose
in the culture media of UAMS-1, UAMS-1-ackA, and UAMS-1-pta plotted as a function of growth. The results are presented as the means � standard errors of
the mean for at least three independent experiments.

Sadykov et al.

3038 jb.asm.org Journal of Bacteriology

http://jb.asm.org


and the Pta-AckA pathway (8, 17). The net yield of ATP directly
generated by these pathways is four molecules per molecule of
glucose consumed, where two molecules of ATP are produced by
the Pta-AckA pathway. Hence, we speculated that the observed
negative effect on bacterial growth and viability following inacti-
vation of the Pta-AckA pathway may potentially result from a
depleted energy status of the cell. To test this hypothesis, we de-
termined the intracellular ATP concentrations in the ackA and pta
mutants at the exponential phase of growth. Surprisingly, the in-
tracellular concentrations of ATP were significantly higher in the
mutants than in the wild-type strain (Fig. 3A), suggesting that the
bacteria efficiently meet their cellular energy requirements by re-
lying on other metabolic pathways.

Inactivation of the Pta-AckA pathway alters the metabolic
status of S. aureus. We considered two main possibilities that
might explain the increased ATP pools in the ackA and pta mu-
tants: (i) the mutants have increased glucose uptake and carbon
flow through the glycolytic machinery and (ii) the mutants have a
partial redirection of carbon into the TCA cycle. Enhanced carbon
flow through these pathways could potentially compensate for the
cellular ATP requirements of the mutants, as it increases the flow
of electrons through the electron transport chain (ETC), resulting
in increased oxidative phosphorylation. To determine whether
inactivation of the ackA and pta genes altered the transcription of
genes involved in the control of glycolysis and the TCA cycle, we
performed a quantitative real-time reverse transcriptase PCR
(RT-PCR) analysis using primers specific for pfkA, encoding the
key glycolytic enzyme phosphofructokinase, and citZ, encoding
the TCA cycle enzyme citrate synthase. Using this approach, we
found that inactivation of the pta and ackA genes led to more than
a 2-fold increase in the levels of pfkA transcripts and more than a
4-fold increase in the levels of citZ transcripts (Fig. 3B), indicating
enhanced carbon flow through both glycolysis and the TCA cycle.
In support of the RT-PCR results and consistent with the data for
intracellular ATP levels, determination of the concentrations of
intracellular NAD� and NADH revealed a significant increase in
the pools of these metabolites in the mutants (Fig. 3C). Addition-
ally, enhanced respiration and carbon flow through the TCA cycle
and glycolysis was also supported by higher oxygen consumption
rates in the mutants (Fig. 3D).

As a direct measure of the effect that disruption of the Pta-
AckA pathway has on carbon flow through glycolysis and the TCA
cycle, we performed an NMR-based metabolomic analysis of the
wild-type and mutant strains at the exponential growth phase.
Consistent with previous studies of the Pta-AckA pathway in
other organisms (42, 43), this analysis revealed decreased and in-
creased levels of acetyl phosphate in the pta and ackA mutants,
respectively. In agreement with the results obtained by RT-PCR,
indicating enhanced carbon flow through glycolysis in the mu-
tants, the NMR metabolomics revealed increased levels of fructose
6-phosphate, dihydroxyacetone phosphate, and amino acids
whose biosynthesis is linked to glycolysis (i.e., serine and cysteine)
(Fig. 4A and B). In support of the RT-PCR results suggesting re-
direction of carbon into the TCA cycle, we observed an increase in
the relative concentrations of the TCA cycle intermediates, as well
as metabolites associated with its activity (succinate, �-ketogluta-
rate, and glutamate concentrations were higher in the mutants)
(Fig. 4A and B). In addition, evidence for carbon overflow into the
pentose phosphate pathway (PPP) and various biosynthetic path-
ways, including amino acid, nucleotide, peptidoglycan, and poly-
saccharide biosynthesis (Fig. 4A and B), was detected. Overall,
these results showed that the metabolic block caused by inactiva-

FIG 2 Inactivation of the Pta-AckA pathway causes cell death. (A) Number of
viable cells per OD600 unit determined for strains UAMS-1, UAMS-1-ackA,
and UAMS-1-pta after 3 h of growth. (B) Quantitation of dead cells in the
strains UAMS-1, UAMS-1-ackA, and UAMS-1-pta after 3 h of growth by flow
cytometry using the LIVE/DEAD BacLight viability kit. The results are pre-
sented as the means plus standard errors of the mean of duplicate determina-
tions for at least three independent experiments.

FIG 3 Impact of Pta-AckA pathway inactivation on the energy status of bac-
teria. (A) Intracellular ATP concentrations determined for strains UAMS-1,
UAMS-1-ackA, and UAMS-1-pta after 3 h of growth. (B) Relative transcript
levels of pfkA and citZ genes in strains UAMS-1, UAMS-1-ackA, and UAMS-
1-pta determined by quantitative RT-PCR after 3 h of growth. (C) Intracellular
NAD� and NADH concentrations determined for strains UAMS-1, UAMS-1-
ackA, and UAMS-1-pta after 3 h of growth. (D) Relative oxygen consumption
rates in strains UAMS-1, UAMS-1-ackA, and UAMS-1-pta were determined
using an oxygen-sensitive probe after 3 h of growth. The results are presented
as the means plus standard errors of the mean of duplicate determinations for
at least two independent experiments. Statistical significance between the
wild-type strain and pta and ackA mutants was determined by Student’s t test
(*, P � 0.001) and by ANOVA with heterogeneous variances (**, P 	 0.005)
(see Materials and Methods).
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tion of the Pta-AckA pathway leads to redirection of carbon flux
into diverse metabolic pathways and thus alters the metabolic sta-
tus of bacteria.

Disruption of the Pta-AckA pathway causes a metabolic
block at the pyruvate node and activates the CidR regulon. As
described above, we observed significant perturbations in the cat-
abolic fate of glucose in the mutants relative to the wild-type
strain. In addition to the increased concentrations of glycolytic
and TCA cycle intermediates in the mutants, NMR-based
metabolomics revealed an abundance of metabolites linked to the
pyruvate node. Specifically, intracellular concentrations of ace-
toin and alanine were higher in the mutants (Fig. 4A and B). In-
creased concentrations of these intermediates may result from an
overflow of acetyl-CoA and pyruvate in the mutants. Since these
metabolites were not detected in our NMR assays, we determined
the intracellular acetyl-CoA and pyruvate concentrations in the

wild-type and mutant strains during the exponential phase of
growth using a spectrophotometric assay. As anticipated, inacti-
vation of the Pta-AckA pathway led to accumulation of intracel-
lular acetyl-CoA and pyruvate in the mutants (Fig. 5A and B).
Moreover, similar to the results reported previously for Esche-
richia coli (19, 20, 44), measurements of the concentrations of
extracellular pyruvate revealed a significant increase in the culture
media for ackA and pta mutants (Fig. 5C). Pyruvate is an unusual
by-product not normally excreted by S. aureus during overflow
metabolism. Thus, its accumulation in the media may indicate
that the surge in the levels of intracellular pyruvate exerts a nega-
tive effect on cell viability and the bacteria may need to redirect
accumulated pyruvate into other metabolic pathways, or excrete
it, in order to survive.

Unlike E. coli, where a pta mutation led to excretion of D-lactate
(20), inactivation of the Pta-AckA pathway in S. aureus has only a

FIG 4 Pta-AckA pathway inactivation alters the metabolic status of bacteria. (A) Heat map generated from the normalized mean peak intensities for each
metabolite identified from the triplicate set of 2D 1H-13C HSQC NMR experiments. The normalized mean intensities are plotted on a color scale from �1 (red)
to 1 (green). The red and blue asterisks denote statistical significance at the 90% confidence level (P 	 0.10). (B) Metabolic pathway depicting the metabolites
identified in the UAMS-1, UAMS-1-ackA, and UAMS-1-pta cellular metabolome by the 2D 1H-13C HSQC NMR experiments. The up arrows correspond to a
relative increase in the metabolite concentration, and the down arrows correspond to a relative decrease in the metabolite concentration. Statistical significance
at the 90% confidence level (P 	 0.10) is denoted by asterisks above the arrows. Acetyl-P, acetyl-phosphate; (1,3)BP-G, 1,3-bisphosphoglycerate; F6-P, fructose
6-phosphate; FB-P, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G6-P, glucose 6-phosphate; G1-P, glucose 1-phosphate; GlcN-6-P, gluco-
samine-6-phosphate; GlcN-1-P, glucosamine-1-phosphate; GA3-P, glyceraldehyde 3-phosphate; GlcNAc-1-P, N-acetyl-glucosamine-1-phosphate; 3P-G,
3-phosphoglycerate; 2P-G, 2-phosphoglycerate; PEP, phosphoenolpyruvate; Ru5P, ribulose 5-phosphate; S7-P, sedoheptulose 7-phosphate; UDP-GlcNAc,
UDP N-acetylglucosamine; X5-P, xylulose 5-phosphate.
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minor effect on the generation of L- and D-lactate (Fig. 4; see Fig.
S4A in the supplemental material). Moreover, quantitative real-
time PCR analysis revealed a decrease in the relative ldh1 and ddh
transcript levels (see Fig. S4B in the supplemental material), sug-
gesting that inactivation of the Pta-AckA pathway in S. aureus did
not redirect carbon into these fermentative pathways. An alternate
route of pyruvate redirection is through the CidR-regulated AlsSD
and CidC pathways (24). Given the observation that the S. aureus
CidR regulator responds to growth under conditions of excess
glucose, it is possible that the pta and ackA mutations affect the
expression of the cid and als operons. Thus, to determine if inac-
tivation of the Pta-AckA pathway has an effect on cidABC and
alsSD expression, we performed quantitative RT-PCR analysis,
using primers specific to cidA and alsS. Indeed inactivation of
either pta or ackA resulted in a robust increase of both cidA- and
alsS-specific transcripts (Fig. 5D). The transcriptional upregula-
tion of the alsSD and cidABC operons in the pta and ackA mutants
was also reflected by a significant increase in the levels of accumu-
lated acetoin in the medium (Fig. 5E) and by increased generation
of acetate via pyruvate oxidase, CidC (Fig. 5F).

DISCUSSION

Overflow metabolism in S. aureus occurs during aerobic growth in
the presence of rapidly metabolizable carbon sources, when gly-
colytic flux exceeds the capacity of the TCA cycle and results in the

production of acetate. It has been proposed that substrate level
phosphorylation during acetate metabolism (catalyzed by AckA)
is an important secondary energy-yielding pathway, since under
carbon overflow conditions, TCA cycle activity is limited by car-
bon catabolite repression (the Crabtree effect) (8, 22, 45–48). In-
deed, introduction of a metabolic block (mutation of either pta or
ackA) that hinders substrate level phosphorylation during over-
flow metabolism gave rise to growth defects and increased the rate
of cell death during exponential growth. However, these deleteri-
ous effects on growth and viability did not stem from depleted
energy reserves of the cell, as both of the isogenic pta and ackA
mutants had comparable or even elevated levels of ATP relative to
that of the wild-type strain. Interestingly, similar results were also
reported for E. coli, where inactivation of the pta gene resulted in a
large growth defect but did not lead to a substantial loss in the
amounts of generated ATP (90.5% of the total energy generated by
the wild-type strain) (20).

How do the S. aureus pta and ackA mutants replenish their ATP
pools during overflow metabolism? Several lines of evidence sug-
gest that the energy derived from an increased rate of glycolysis
combined with an increased flux through the TCA cycle may com-
pensate for the loss of ATP following inactivation of the Pta-AckA
pathway. First, the rate of glucose uptake was higher for both the
pta and ackA mutants than for the wild-type strain, supporting a
higher glycolytic flux in these mutants. Second, quantitative RT-

FIG 5 Disruption of the Pta-AckA pathway alters carbon flow at the pyruvate node and activates the CidR regulon. (A) Intracellular Ac-CoA concentrations
determined for strains UAMS-1, UAMS-1-ackA, and UAMS-1-pta after 3 h of growth. (B) Intracellular pyruvate concentrations determined for strains UAMS-1,
UAMS-1-ackA, and UAMS-1-pta after 3 h of growth. (C) Concentrations of pyruvate in the culture medium determined for strains UAMS-1, UAMS-1-cidC,
UAMS-1-pta, and UAMS-pta-cidC after 3 h of growth. (D) Relative transcript levels of the alsSD and cidABC operons in strains UAMS-1, UAMS-1-ackA,
and UAMS-1-pta determined by quantitative RT-PCR after 3 h of growth. (E) Concentrations of acetoin in the culture medium determined for strains UAMS-1,
UAMS-1-ackA, and UAMS-1-pta after 3 h of growth. (F) Concentrations of acetate in the culture medium determined for strains UAMS-1, UAMS-1-cidC,
UAMS-1-pta, and UAMS-pta-cidC after 5 h of growth. All results are presented as the means plus standard errors of the mean of duplicate determinations for at
least three independent experiments.
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PCR analyses confirmed the increased expression of both phos-
phofructokinase (a critical glycolytic enzyme) and citrate synthase
(the first enzyme of the TCA cycle that catalyzes the production of
citrate). Finally, metabolomic profiles of both the pta and ackA
mutants not only demonstrated an abundance of multiple glyco-
lytic and TCA cycle intermediates, but also indicated carbon over-
flow into peripheral pathways that are directly linked to central
metabolism.

Despite achieving ATP homeostasis, the observation that the
pta and ackA mutants still display a growth defect or undergo
increased cell death remains a paradox. However, based on our
analyses, several possibilities exist. Foremost among them is the
drastic increase in the expression of CidR-regulated operons, i.e.,
cidABC and alsSD. Although CidC and AlsSD represent overflow
metabolic enzymes that may redirect excess pyruvate, their tran-
scriptional coupling to the CidAB-holin-like proteins that have
been implicated in S. aureus cell death is noteworthy. Although the
effects of CidAB overexpression in the pta and ackA mutants are
yet to be characterized, their proposed role as effectors of cell
death by oligomerizing and localizing to the S. aureus cytoplasmic
membrane (49) makes this an intriguing possibility.

A second possibility that may account for the observed growth
and viability defects of pta and ackA mutants involves intracellular
metabolic toxicity that may arise from increased pyruvate and/or
acetyl-CoA levels (Fig. 5A and B). Chang et al. proposed that the
growth defect observed for the E. coli pta mutant resulted from the
unbalanced flux of acetyl-CoA (20). Accumulation of acetyl-CoA
caused inhibition of the pyruvate dehydrogenase complex, lead-
ing to increased concentrations of intracellular pyruvate and ex-
cretion of D-lactate and pyruvate into the medium (20). Recently,
it was shown that triphenylbismuthdichloride (TPBC) suppresses
growth and blocks pyruvate catabolism in S. aureus by specific
inhibition of the PDHC (50). Using exometabolome analysis,
Birkenstock et al. showed that the treatment of cells with TPBC led
to an accumulation of pyruvate, reduced temporal depletion of
glucose, and decreased acetate excretion (50). Although, the
growth defect observed after TPBC treatment may result from
decreased intracellular pools of acetyl-CoA and carbon flux into
the Pta-AckA pathway and TCA cycle or associated effects on pro-
tein acetylation (51–53), a negative impact of the high levels of
accumulated pyruvate on bacterial growth cannot be excluded
from consideration.

Finally, fluctuations in the redox status or the generation of
reactive oxygen species (ROS) as a result of enhanced oxidative
phosphorylation in the pta and ackA mutants may yet constitute
another reason for the observed deleterious growth characteris-
tics. In support of this, determination of the oxygen consumption
rates revealed increased levels of respiration in the mutants (Fig.
3D). Moreover, quantification of intracellular NAD� and NADH
demonstrated significantly higher concentrations of both species
in the mutants (Fig. 3C and 4A), suggesting enhanced de novo
biosynthesis of NAD�. Consistent with this observation, NMR-
based metabolomics detected carbon redirection toward the nu-
cleotide biosynthesis and pentose phosphate pathway that could
generate precursors for NAD� synthesis. Increased NADH levels
could potentially result in the increased respiration observed for
the mutants and generation of ROS (54–56).

Considering that inactivation of the Pta-AckA pathway alters
the metabolic status of bacteria and has deleterious effects on bac-
terial growth and cell viability, our findings provide evidence that

the activity of this pathway in S. aureus is critical under conditions
of overflow metabolism. Although the exact mechanisms leading
to cell death in the pta and ackA mutants still remain to be clari-
fied, our data suggest that perturbations in the concentration of
intracellular acetyl phosphate (Fig. 4A), which can affect two-
component signal transduction systems and other cellular pro-
cesses (22, 57–60), are not a primary cause of growth inhibition
and cell death in the mutants, as disruption of either the pta or
ackA gene had similar effects on bacterial growth and cell viability.
Furthermore, inactivation of the Pta-AckA pathway did not de-
crease the energy status of bacteria; however, it did alter the met-
abolic state by causing a metabolic block at the pyruvate node, as
well as an increase in carbon flux through both glycolysis and the
TCA cycle.

Overall, the results of this study provide important insight into
the Pta-AckA pathway in S. aureus, which is critical for acetate
dissimilation (22). This pathway could also affect biofilm devel-
opment, considering previous evidence suggesting acetyl phos-
phate functions as a global signal within a biofilm (59). Thus,
further studies of this pathway will expand our understanding of
the physiological processes that underlie the colonization and in-
vasive mechanisms critical for staphylococcal infection.
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