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Abstract. Drug discovery is a challenging endeavor with a high failure rate. This
is further complicated by the fact that each disease has its own unique set of
obstacles to developing a safe and effective therapy. Flexible and robust analytical
methods are critical for efficiently solving these issues, where nuclear magnetic
resonance (NMR) plays an important role in nearly every stage of the drug
discovery process. This review will highlight recent developments in the
application of NMR as a screening tool for drug discovery that includes: library
design, various ligand-affinity screening techniques, rapid determination of
protein-ligand co-structures, and the functional annotation of proteins to the
discovery of new therapeutic targets.
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Introduction

Drug discovery is a uniquely complex problem in science and medicine [1, 2]. This is
further complicated by the fact that each disease is distinct and requires its own
efficient strategy to successfully develop novel drugs [3]. Additionally, drugs primarily
act through a binding interaction to a therapeutic target that either modulates or alters
its biological activity [4], changes the dynamics of a protein and disrupts its normal
function, [5] or interferes with critical protein-protein interactions in important
signaling pathways [6]. Identifying compounds that exhibit any of these desirable
activities while simultaneously demonstrating in vivo efficacy in the absence of toxic
side-effects is an extremely challenging endeavor. Thus, an important component of the
drug discovery process is the verification that a small molecule actually binds the
protein target in a selective and biologically relevant fashion. This is an especially
critical issue given that the vast majority of chemical leads are typically identified by a
high-throughput (HTS) [7-11] or in silico structure-based [12-14] screens.

Compounds that lack a confirmed correlation between functional activity and a
direct binding interaction with the protein target routinely emerge from HTS [15].
These “false-positives” generate an HTS response through a number of undesirable
mechanisms, such as: protein aggregation, protein denaturation, protein precipitation,
micelle formation, chemical modification of the protein, non-specific binding,
promiscuous binding or interference with other reagents of the assay [15-19]. In effect,

! Corresponding Author. Robert Powers, Department of Chemistry, University of Nebraska-Lincoln, 722
Hamilton Hall, Lincoln, NE 68588-0304, USA. E-mail: rpowers3@unl.edu



an HTS assay does not generally provide any information on the mechanism of
inhibition. Similarly, in silico screens only increase the likelihood that the resulting list
of predicted high-affinity binders actually contains compounds that bind the protein
target. In general, an in silico screen enriches the number of active compounds by
approximately 10 to 1000 fold [20-22] relative to the 0.1 to 0.5% typical hit-rate
observed in an HTS assay using a random chemical library [23]. Obviously, HTS and
structure-based in silico screens require a follow-up experimental assay to confirm the
observed or predicted biological activity of a chemical lead. It is also essential that the
observed inhibition occurs through a productive interaction in the protein’s active-site.
Clearly, obtaining a rapid experimental structure for the predicted protein-ligand
complex is a valuable means to confirm a relevant biological activity for the ligand
[24]. While not guaranteeing success, this requirement increases the likelihood that a
chemical lead can be evolved into an effective drug.

From target selection to pre-clinical trials, nuclear magnetic resonance (NMR) has
established itself as an invaluable tool for the chemist working in the drug discovery
industry [25, 26]. The flexibility provided by NMR comes from various molecular
probes that include chemical shift changes, relaxation parameters (T, T,), through
space interactions (nuclear Overhauser effects, NOE), and diffusion rates. Each
parameter is sensitive to the local chemical and physical environment and provides
structural information at atomic resolution for both small (<1000 Da) and large (> 1000
Da) biological molecules. The utility of NMR for drug discovery is continually
expanding as evident by the recent development of various novel NMR methods that
include the identification of new therapeutic targets [27, 28], the efficient measurement
of binding affinities [29], fragment-based approaches to ligand affinity screens [30],
and the rapid determination of protein [31] and protein-ligand co-structures [24, 32].
NMR is also an invaluable technique for monitoring changes in cellular metabolism
caused by a disease state or due to drug treatments [33].

The ongoing implementation of these NMR technologies is significantly enhancing
the likelihood of drug discovery successes [30]. Since NMR is an inherently flexible
technique with a diverse array of experimental methods, NMR is not restricted to a
particular target or system. Thus, NMR is routinely used for the identification of drug
leads to treat various ailments that range from cardiovascular disorders to infectious
diseases. A number of recent drug discovery efforts utilizing NMR techniques have
reported the identification of high affinity inhibitors (< uM) against a variety of
potential therapeutic targets. For example, Ekonomiuk et al. identified [4-
(carbamimidoylsulfanylmethyl)-2,5-dimethylphenyl]-methylsulfanylmethanimidamide
as an inhibitor (Kp~ 40 uM) of the non-structural 3 protease (NS3pro) from the West
Nile virus using in silico screening coupled with NMR validation [34]. Similar results
have been reported using other NMR screening techniques that include: saturation
transfer difference (STD)-NMR spectroscopy to identify a bivalent ligand MLM that
inhibits (Kp ~ 3.3 uM) cholera toxin B pentamer CTBs [35], a diffusion-edited NMR
screen to identify (glucosamine-aminoethoxy)triphenyltin that inhibits (K, ~ 2.5 uM)
immune response target human vaccinia H1-related phosphatase (VHR) [36], 2D 'H-
>N HSQC screen to identify isoquinolinone inhibitors (Kp~ 5 uM) of the MDM2-p53
interaction [37], a fragment based NMR screen to identify an indole-analog inhibitor
(Kp ~ 500 uM) of the ZipA/FtsZ complex [38] and an in silico screen with NMR
validation to identify a N-(2-acetylphenyl)benzamide analog inhibitor (Kp~ 11 uM) of
the Wnt signaling pathway [39].



Despite these NMR screening successes, HTS is still the primary component of the
early-phase drug discovery process for all major pharmaceutical companies [1]. The
obvious appeal of HTS is the routine and rapid ability to screen hundreds of thousands
to millions of compounds against a therapeutic protein target. The throughput of HTS-
NMR clearly pales in comparison to HTS. However, fragment-based chemical
libraries, a small collection (hundreds to thousands) of low molecular-weight (< 200-
300 Da) compounds with drug-like characteristics [40], are being used to address this
discrepancy. Fragment-based chemical libraries maximize ligand efficiency [41], have
a 10-1,000 times higher hit rate [42], more efficiently cover structural space [43], and
generate better quality leads with a higher success rate [44]. Simply increasing the size
of the library screened by HTS doesn’t necessarily correlate with an increase in
validated chemical leads that make it through the clinic to become drugs [45-48]. Thus,
an important element of NMR ligand-affinity screens is the incorporation of fragment-
based chemical libraries.

This review will highlight the various NMR ligand affinity screening methods that
have been successfully used in drug discovery programs to identify drug-like chemical
leads. Additionally, high throughput methods for generating accurate ligand bound co-
structures from screening data and the benefits of applying NMR screening techniques
to functionally annotate novel proteins will be discussed.

1. NMR Methods to Detect Ligand Binding

NMR ligand-affinity screening methods complement structural biology efforts by
validating chemical leads prior to initiating a structure-based drug design program [49-
54]. NMR screening techniques, such as SAR by NMR [55], RAMPED-UP NMR [56],
STD-NMR [57], and NMR-SOLVE [58] (Table 1), were developed to identify ligands
that bind a therapeutic target in a biologically relevant manner by observing chemical
shift changes in two-dimensional (2D) *H-""N HSQC spectra. Other techniques have
been developed that utilize saturation transfer differences (STD) [57, 59], line-
broadening changes [60-63], diffusion rate changes [64], *°F NMR [62, 65], spin labels
[63], and transfer NOEs [66]. More recently, multi-step approaches to NMR screening
join complementary techniques to increase throughput and minimize resource usage
[67]. Methods such as Multi-Step NMR [67] , MS/NMR [68] and FAST-NMR [27, 28]
combine one-dimensional (1D) 'H NMR line-broadening experiments, mass
spectroscopy or 2D H-®N HSQC chemical shift perturbations to identify and
qualitatively rank binding interactions from small molecule libraries.

Screening chemical libraries by NMR can be divided into two general categories,
ligand based and target based. Ligand based NMR experiments benefit from lower
protein and compound concentrations, higher throughput and simplicity of data
analysis [54]. Target based methods primarily benefit from binding site information
and accessibility to a wider range of binding affinities [54]. The two methods
complement each other for rapid drug discovery, lead optimization and functional
annotation. In this section, the various chemical libraries and NMR screening methods
currently used to detect small molecule binding to identify chemical leads will be
discussed.



Table 1. Comparison of various NMR screening methods [26].

Protein- Limited
Screening Method of Detecting Ligand Labeled Ligand by Ref
Technique Binding Protein? Co- Protein '
structure? MwW?
3-FABS Chemlcal sh_lft changes, requires No No No [65]
fluorinated ligands
Affinity NMR | Change in translational diffusion No No No [64]
Line-broadening change (T) due
AIDA-NMR | L0 protein-protein complex YesiNo | Yes/iNo Yes | [60, 61]
formation, labeled protein or Trp
reporter in ligand binding site
Line-broadening change (T,) &
FAST-NMR chemical shift changes Yes Yes Yes [27, 28]
Line-broadening change (T) due
FAXS to ligand competition, requires No No No [62]
fluorinated ligands
Transfer nuclear Overhauser
INPHARMA | e (NOE) No Yes No [69]
Retention on size-exclusion
MS/NMR column & chemical shift changes Yes Yes Yes [68]
Multi-Step Line-broadening change (T,) &
NMR chemical shift changes Yes Yes Yes [67]
. Transfer nuclear Overhauser
NOE pumping effect (NOE) No No No [66]
RAMPED-UP | Chemical shift changes, screening
NMR multiple proteins Yes No Yes [56]
SALMON Saturation transfer difference No No No [70]
from solvent
SAR by NMR | Chemical shift changes Yes Yes Yes [55]
SLAPSTIC Lme-brc_:ademng change (T,) due Yes No No [63]
to protein spin label
SMILI-NMR In-cell chemical shift changes Yes Yes Yes [71]
Saturation transfer difference
STD NMR from protein No No No [57]
STINT-NMR In-cell chemical shift changes Yes No Yes [72,73]
Line-broadening change (T>) due
TINS to binding to an immobilized No No Yes [74]
protein target
WaterLOGSY Saturation transfer difference No No No [59]

from solvent

1.1 Library Design for High-Throughput NMR Screening

Chemical space of biomedical compounds is vast, and while estimates on the exact size
varies greatly, the likely number of drug-like compounds is > 10® and exceeds the total
number of known compounds [75-77]. Obviously, screening the entirety of chemical
space of drug-like molecules by experimental methods is not feasible. Additionally, in
silico screening methods are prone to high false hit rates (~49%) [78] and only enrich
the hit-rates in focused libraries [12-14]. An in silico screen is still an invaluable
resource since it can increase the hit-rate by 10 to 1000 fold [20-22] over a random
search that typically yields only a 0.1 to 0.5% hit-rate [23]. But, false-positive and false
negative rates are still very significant problems. Therefore, an efficient library design
is critical to generating active drug-like leads through an effective sampling of



chemical space. Often this requires a chemical library that maximizes structural
diversity [79-84], filtering compounds with drug-like properties [85-87], and screening
with appropriate mixtures sizes [88, 89]. The use of mixtures creates additional issues
that include: solubility and stability problems, chemical reactivity, and ligand
competition. A number of reviews have discussed in detail the design of chemical
libraries [42, 90-93] and these approaches will only be briefly summarized here.

HTS-NMR screening methods typically rely on a chemical library of low
molecular weight (< 1000 Da) compounds or chemical fragments to screen against a
therapeutic protein target. An essential consideration in the design of an NMR
screening library is efficiently sampling the diversity of chemical space to ensure the
identification of chemical leads that can be evolved into a drug. Methods to define
chemical diversity incorporate ~ 1,600 molecular descriptors [94] that includes, among
many examples, molecular weight (MW), number of rings, rotatable bonds,
heteroatoms, electronegativity, number of hydrogen bond donors and acceptors, pKa
values, ClogP (lipophilicity), ClogS (aqueous solubility), polar surface area, functional
group counts, geometrical, connectivity, and topology descriptors [95], information
indices [96], eigenvalue-based indices [97], and molecular fingerprints [98]. The
molecular fingerprinting methods represent chemical structures as a bit string that
attempts to encode all structural and chemical elements of the compound [99]. It has
been shown that a compound with greater than 85% fingerprint similarity to an active
compound will exhibit similar biological activity [100]. Molecular fingerprinting
methods define a neighborhood of compounds with similar biological activity (Figure
1). Therefore it is often redundant to have multiple compounds from the same
fingerprint defined neighborhood within a single library. In essence, designing a
screening library that maximizes chemical diversity simply requires adding compounds
that have unique molecular descriptors relative to other members of the library, such as
distinct molecular fingerprints.

A major source of failure in clinical trials is the observation of toxic side-effects
[101, 102]. Thus, compounds that comprise a screening library should exhibit drug-like
characteristics [85-87]. Essentially, compounds that share similar physiochemical
features with known drugs are predicted to have a reduced likelihood of exhibiting
toxic side effects. Fundamentally, there is a greater chance of converting an HTS
chemical lead with known drug-like properties into a successful drug than a completely
novel chemical class [88]. Three main classifications corresponding to physiochemical
properties, common functional groups and common chemical structures are often used
to define drug-likeness. Lipinski’s “rule of five” [86, 87] is the most widely used
approach to identify drug likeness by describing the common characteristics of known
drugs. These features include a molecular weight less than 500 Da, less than 5
hydrogen bond donors, less or equal to 10 hydrogen bond acceptors, and a logP of less
than or equal to 5. Lipinski’s “rule of five” is a general predictor for compound
solubility and permeability that is related to bioactivity and bioavailability [103].
Recently, machine learning programs have been developed to predict the Absorption,
Distribution, Metabolism, and Excretion (ADME) properties of chemical leads to
determine drug-likeness [104-106]. Similar approaches have been applied to predict
likely reactive compounds that lead to false positives in HTS assays [107]. Thus, a
chemically diverse library is further filtered to select compounds with drug-like
characteristics.

A fragment-based approach to library design incorporates chemical diversity
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Figure 1. Neighborhood behavior of compound similarity for two arbitrary molecular descriptors (x,y) can
be an efficient way of developing a chemical library to increase diversity and drug-like properties. A test
compound (hexagon, star) can have a cluster of similar compounds (open circles) with similar biological
activity. For typical random libraries (top) it is inefficient to screen compounds with overlapping
neighborhood similarities because one compound has already probed that search space. However, exploiting
ligand similarity can be an efficient way to sample and explore the activity island of a particular target
(bottom) (Reprinted with permission from reference [100], Copyright 1996 by the American Chemical
Society).

and drug-like characteristics to create an efficient chemical library optimized for HTS-
NMR. The fragment based approach has been extensively reviewed [108-111], but
essentially uses the perspective that a chemical lead can be broken down into the sum
of its parts or fragments. Basically, a fragment-based library contains small molecular-
weight compounds (< 200-300 Da) that correspond to fragments of known drugs,
exhibit drug-like characteristics and have high aqueous solubility. A comparable
approach is using a fragment-based library composed of small biologically active
compounds [112]. Drug-like fragments identified as hits from an HTS-NMR assay are
chemically linked and further optimized to generate leads. Both the linking of the
fragments and their relatively small size significantly improves the coverage of
chemical space compared to large, random chemical libraries. The number of low MW
drug-like compounds is significantly reduced from the estimate of > 10° total
biomedical compounds [43]. Correspondingly, a higher-percentage of the possible low
MW drug-like compounds is represented by a practical-sized library. Also, the linking
of fragments indicates that a combinatorial combination of the screened compounds are



actually examined [44]. The application of fragment-based libraries has resulted in an
increased success rate and higher quality drug-like chemical leads [30].

To increase throughput, chemical libraries are commonly screened as mixtures of
compounds. Simply, as the mixture size increases, the number of NMR experiments
required to screen the entire library decreases proportionally. The end result is a
dramatic increase in the efficiency (> 3-5 fold) of the HTS-NMR screen. The binding
ligand(s) are expected to be identified through a second deconvolution experiment.
Unfortunately, the number of compounds per screening mixture increases the number
of necessary deconvolution experiments and significantly reduces the screening
efficiency. This is an important issue because the deconvolution step might overwhelm
and eventually eliminate any efficiency benefits of screening with mixtures.
Quantitative measures of the optimal mixture size (OMS) for an NMR screen have
been described [88, 89].

A major factor in determining the optimal mixture size is the overall hit rate of the
HTS-NMR assay. For large random chemical libraries, an average hit rate is on the
order of 0.1 to 0.5% [23], while focused libraries have hit rates ranging from 0.7 to
20% [113]. For focused libraries with large hit rates, multiple active compounds or
“hits” within a mixture becomes a significant problem [112, 114, 115]. The probability
of getting x hits within a mixture of n compounds can be approximated with a binomial
distribution with p representing the probability or hit-rate [88].
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Based on egn. 1, a 10% hit rate would result in 26% of mixtures containing ten
compounds having more than one hit per mixture. Obviously, this is a significant
problem because the deconvolution of each hit requires collecting ten additional NMR
spectra. Thus, the total number of NMR experiments needed to confirm binding would
significantly increase, negating the initial decrease in total experiments needed to
screen the entire library. For a library of 1,000 compounds divided into 100 mixtures of
10 compounds and a 10% hit rate would initially require 100 NMR experiments to
identify 26 mixtures with active compounds. An additional 260 NMR spectra would
then be required to deconvolute the 26 mixtures. A total of 360 NMR spectra are
required to screen the entire library and identify the 100 active compounds. Clearly this
is an improvement over screening the entire library as singletons (1,000 NMR spectra),
but is it the optimal approach?

A hypergeometric distribution was proposed as an alternative method to identify
the optimal mixture size by minimizing the total number of deconvolution steps [89].
The process involves creating a set of mixtures (N) from a compound library by
selecting n compounds from the library until all compounds have been used with a total
of N/n mixtures:
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where M is the total number of hits present in a mixture, P is the probability of a
mixture containing at least one hit and x is the number of hits present within the
mixture. The problem is analogous to the classic urn problem, where an urn contains a
fixed number of two differently colored balls and the above equation describes the
probability of pulling out one color for a given sample size. In an NMR screen absent
of deconvolution, the total number of experiments needed would simply scale by (N/n).
However, taking deconvolution into account, the total number of NMR experiments (T)
needed to screen the entire library and confirm binding scales by:

T =(§j+ (N)P) @

The results of these statistical analyses draw three important conclusions. It is
always more efficient to screen a library with mixtures that avoid deconvolution. If the
screening library is a traditional random library with a low hit-rate, the optimal mixture
size with deconvolution is approximately 20 compounds. Conversely, for focused
libraries with high hit rates (> 5%), the optimal mixture size is small enough (< 5) that
it is preferable to screen with mixtures that avoid deconvolution.

1.2 Ligand Based HTS-NMR Screening Methods

Ligand focused high-throughput NMR screening (HTS-NMR) methods monitor
changes in the ligand’s NMR spectrum as a result of complex formation. Generally, 1D
'H NMR techniques that compare the ligand in the free-state relative to the bound state
are employed. The chemical libraries are typically screened once in the free-state with
the data stored for later comparisons. These reference NMR spectra are also used to
verify the purity, solubility and stability for each compound in the library. Ligand
detection methods require significantly less of the protein target (< 5 uM), which is
typically the limiting factor for HTS-NMR; do not require the protein to be isotopically
enriched; and can be completed relatively fast (a few minutes per NMR spectrum).
These advantages make ligand detected screening methods highly desirable for HTS-
NMR drug discovery. The only major drawback is the lack of binding site information.
Does the ligand bind specifically to the protein’s known active-site or functional
epitope? Is the interaction biologically relevant?

There are various ligand detected methods that exploit a variety of NMR
parameters to probe ligand binding activity. These include chemical shift changes (**F
NMR), T; and T, relaxation times, diffusion rates, saturation transfer differences
(STD), transfer NOEs, as well as spin-labels and competition experiments. The variety
of ligand detected methods allow for the selection of a technique that is optimal for
screening a specific protein target or chemical library. A compilation of ligand detected
NMR screening methods is highlighted in Table 1. In this section, two of the most
commonly used screening methods, line broadening experiments and STD experiments
will be discussed in detail.

One of the simplest ligand based screening methods is the line broadening
experiments originally described by Jaradzey et al. [116, 117], where a decrease in
ligand peak intensity was observed for penicillin in the presence of serum albumin.
Specific binding of penicillin to serum albumin was determined to be the only
mechanism causing the observed decrease in ligand signal after an increase in
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Figure 2. A) The increase in ligand line width (arrows) between free (top) and bound (bottom) is due to the
bound ligand adopting the correlation time of the protein. B) Measurement of single point binding constants
by NMR can qualitatively rank ligands based on binding affinity. C) A comparison of 27 experimental
protein correlation times (tc) (ms) determined using NMR dynamics data with correlation times predicted
from protein MW using eq 17 and a shape constant of 1.32. A best-fit line is shown with a slope of 1 and an
R? of 0.81. D) A plot of line-width versus protein molecular-weight based on eq 17 for spherical proteins
with p of 1 (solid line) and elliptical proteins with p of 1.32 (dashed) (B-D Reprinted with permission from
reference [29], Copyright 2008 by the American Chemical Society).

viscosity, ligand-ligand interactions and non-specific binding were all ruled out. The
results presented by Jadarzky et al. [116, 117] were critical in demonstrating the utility
of NMR for monitoring specific binding interactions between proteins and small
molecular-weight ligands. A binding interaction is simply identified by a decrease in
the ligand’s NMR signal (Figure 2A) in the presence of a protein relative to the
ligand’s free NMR spectrum due to peak broadening. The ligand signal line broadening
is attributed to a difference in transverse relaxation rates (T,) between the free and
bound states of the ligand in the fast-exchange limit.

1/T2 = (1/T2)free = B((1/T2)bound - (1/T2)free) “4)



Assuming no other ligand or receptor dynamics, the decrease in ligand signal is
due to the ligand adopting the larger rotational correlation time 7. of the protein in the
bound form. The primary relaxation mechanism in this type of ligand affinity screen is
the dipole-dipole relaxation with the constant T, described by

T, = 2_?(’) b2{3)(0) +5J(w, ) + 22, )} ®)
where
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Here, J(®) is the normalized spectral density function, p, is the vacuum
permeability, y is the magnetogyric ratio, ®is frequency (rad s@), # is Plank’s
constant, By is the static magnetic field strength and r is the hydrodynamic radius of the
protein. As shown, an increase in 1. due to the ligand binding a protein has a dramatic
effect on increasing the overall T,* for the ligand. This makes the simple line
broadening experiments exquisitely sensitive to binding events. Uniquely, the
technique actually increases in sensitivity as the molecular-weight of the protein
increases making the approach amenable to the vast majority of therapeutically
interesting protein targets.

1D *H NMR line-broadening is a beneficial method for HTS-NMR because it is
easy to interpret, experiment times are on the order of a few minutes, the NMR samples
require minimal amounts of proteins, and relative binding constants can be rapidly
identified [29, 118]. Cryoprobes coupled with high quality water suppression
techniques [119] enable 1D *H line-broadening experiments to be acquired within 1-2
minutes with excellent signal-to-noise (S/N > 15000) for a 100 uM ligand sample.
Also, the inclusion of sample changers with compound mixtures allows a chemical
library composed of upwards of a 1000 compounds to be screened and analyzed in
hours. An additional benefit to the line broadening experiment is the ability to measure
qualitative binding affinities in a high-throughput manner [29]. Similar to traditional
Kp measurements NMR methods traditionally rely on the collection of multiple data
points to accurately determine a dissociation equilibrium constant or binding affinity.
This approach is usually impractical in a high—-throughput mode that requires a rapid
method for characterizing and ranking binding affinities. 1D *H line-broadening
experiments are an integral component of the AIDA-NMR [60, 61], FAST-NMR [27,
28] FAXS [62], Multi-Step NMR [67], and TINS [74] assays. 1D *H line-broadening
experiments have been used to identify a series of antagonists to estrogen receptor o
[120], two (4- and 5-(2,5 dimethyl-pyrrol-1-yl)-2-hydroxybenzoic acid) antagonists of
EphA4 ligand-binding domain [121], inhibitors of Nurrl [122], and inhibitors of
creatine kinase [123].

The saturation transfer difference (STD) experiment is also a popular means for
detecting ligand binding that includes the SALMON [70] screening method. As an
illustration, over 200 papers have been published within the last five years that utilizes
STD-NMR. Recent examples include using STD-NMR to identify inhibitors for the
innate immune system protein CD14 [124], carnitine acetyltransferase [125], B-



Ketoacyl-acyl carrier protein synthase Il [126], MurD ligase [127], and yeast
hexokinase [128]. In addition to identifying potential inhibitors, STD-NMR
experiments have been used to understand the binding mode of a-conotoxins to
acetylcholine binding protein (AChBP) from Lymnea stagnalis [129] and to determine
the binding site for substrates for galactofuranosyltransferase GIfT2 [130].

Similar to the 1D 'H line-broadening experiments, STD-NMR benefits from a low
protein concentration, relative ease of implementation and data analysis, and the
increase in sensitivity with large MW proteins [57, 131]. Additionally, STD-NMR
generally doesn’t require mixture deconvolution because only bound ligands produce
an NMR signal (Figure 3). In the STD experiment, a binding interaction is identified by
a transfer of magnetization from the protein target to the bound ligand. The transfer of
magnetization within the protein occurs via *H-'H cross relaxation and ligands that
bind to the protein will experience a magnetization transfer through the binding
interface. The ligand is usually in 20 to 30-fold excess relative to the protein. So for
fast-exchange, a buildup of transferred magnetization occurs through multiple
interactions between ligands and the protein target during the selective protein
saturation pulse.

2

'H (ppm)
Figure 3. A comparison of line broadening and saturation transfer difference experiments performed on an
inhibitor of the innate immune response protein CD14. The compound methyl 6-deoxy-6-amino-2,3-di-O-
tetradecyl-a-d-glucopyranosidew was screened with sCD14. (A—C) 1D *H NMR spectra of (A) 19 uM free
ligand, (B) 19 puM ligand with 0.5 uM sCDI14, and (C) 0.5 uM sCD14 alone. (D) STD NMR spectrum
obtained for sample B only. (E) STD NMR spectrum collected for control sample C. Comparison between D
and E shows that the ligand binds to the sCD14. The stars denote *H peaks derived from solvents (e.g.,
DMSO at 2.66 ppm, methanol at 3.29 ppm) and/or buffer components (e.g., glycerol from sCD14 initial
stock at 3.5-3.8 ppm). (Reprinted with permission from reference [124], Copyright 2009 by the American
Chemical Society).



The STD experiment is collected by interleaving NMR spectra with and without
protein saturation, where the spectra are alternatively subtracted using phase cycling.
Selectively saturating the protein NMR spectrum occurs via frequency-selective radio-
frequency pulses over a narrow, compound free frequency window (~ 0.0 ppm) for a
time (T of about 1 to 3 seconds. A second off-resonance saturation experiment is
acquired by simply shifting the frequency-selective radio-frequency pulse to a
frequency distant from any protein or ligand NMR resonances. The final STD spectrum
will resemble the free ligand’s 1D *H spectrum for a compound that binds the protein
target because the intensity of the ligand’s NMR spectrum with protein saturation is
greater than without due to the saturation transfer. Conversely, a non-binding ligand
will produce a null spectrum. The protein NMR resonances are suppressed due to the
very low concentrations and relaxation filtering. Comparable to HTS-NMR screens that
use 1D *H line-broadening experiments, it is also desirable to measure dissociation
constant from the STD experiments. But, collecting a complete binding isotherm to
measure a Kp is not practical for a high-throughput screen. Additionally, STD
experiments are overly sensitive to weak, non-specific binders leading to a significant
number of false positives, further undermining the value of directly measuring Kp
values as part of an HTS screen.

1.3 Target Based HTS-NMR Screening Methods

The physiochemical environment of a protein’s surface is an extremely sensitive probe
for ligand interactions. The addition of a compound to a uniformly ®N and/or **C
labeled protein target can easily monitor a binding interaction based on chemical shift
changes in the protein’s NMR spectrum. Therefore, target based screening methods by
NMR predominately use chemical shift perturbations (CSPs) to identify ligand binding
and to characterize the ligand binding site. The CSPs are mapped to the surface of a
protein, where a cluster of CSPs provide a visual identification of the ligand binding
site. Conversely, the lack of a clear clustering pattern would suggest non-specific
binding. CSPs are typically measured by overlaying 2D *H-*N HSQC/HMQC, 2D H-
BC HSQC/HMQC or 2D 'H-"*N TROSY [132] spectra for the free protein and the
protein ligand complex.

These NMR methods are incredibly informative and beneficial for the analysis of
protein-ligand interactions, however; a major drawback to target based screening is the
increase in experimental time required for data collection. Additionally, significantly
higher protein sample concentrations are necessary to collect reliable HSQC, HMQC or
TROSY spectra. Recent advances in NMR pulse programs focusing on better water
suppression and rapid data acquisition have dramatically increased the throughput,
improving the application to HTS-NMR. Spectra can be rapidly acquired in minutes
using FHSQC [133] or SOFAST-HMQC [134]. The FHSQC and SOFAST-HMQC
pulse scheme permits the collection of the NMR spectrum in a few seconds by
dramatically reducing the recycle time and allowing for high repetition rates. The
analysis of the NMR spectra can be further improved and simplified by incorporating
deuterium labeling [135], selective residue labeling [136], or selective methyl labeling
[137]. Basically, the spectrum is reduced to only contain NMR resonances for residues
or methyl-groups associated with the protein’s ligand binding site.

The SAR by NMR [44, 55] methodology effectively established HTS-NMR and is
based on CSPs from 2D *H-N HSQC. Subsequent HTS-NMR assays like FAST-
NMR [27, 28], MS/INMR [68], Multi-Step NMR [67], RAMPED-UP NMR [56],



SHAPES [138], and SMILI-NMR [71] similarly utilize CSPs from 2D *H-*N HSQC.
HTS-NMR based on CSPs and fragment-based libraries have been an extremely
successful approach for drug discovery resulting in a number of compounds proceeding
to clinical trials that includes inhibitors to matrix metalloproteinase [139], aurora
kinase, cyclin-dependent kinase, and peroxisome proliferator-activated receptor [30,
140].

1.4 In-cell HTS NMR Methods

HTS-NMR techniques have established themselves over the past decade as invaluable
and robust in vitro screening methods for drug discovery. However, the results of in
vitro experiments may fail when transferred to the physiological constraints of a cell or
organism. This failure is not attributed to the lack of identifying promising chemical
leads from HTS-NMR, but a result of the in vitro hits being unable to pass through the
cell membrane, being rapidly metabolized by other cellular components or being
actively pumped out of the cell. To evolve a chemical lead to a drug, it is
fundamentally essential for a compound to overcome these obstacles in order to
demonstrate in vivo efficacy. Monitoring the activity of a chemical lead within the cell
is one approach to address this issue. Cell-based HTS assays are a common method of
screening compound libraries [141-143], but are prone to off-target side effects since
the mechanism of in vivo activity is unknown. These problems may occur even for high
affinity ligand-protein complexes [144]. Despite these difficulties, a humber of drug
discovery successes have been reported [145-147].

Recent advances with in-cell NMR technology provide an alternative approach to
increase in vivo drug efficacy and are a valuable HTS-NMR advancement [148-151].
Due to the complexity of the metabolome and the large number of metabolites, in-cell
NMR methods primarily use multi-dimensional data collection of uniformly labeled
proteins. However methods for 1D in vivo screening have been reported [152]. In-cell
NMR methods have been used to investigate protein conformational changes [153],
protein post-translational modifications [154], or protein-protein interactions [72, 73]
using 2D HSQC experiments. Since the structure of a protein can differ under in vitro
and in vivo conditions, the resulting changes in the HSQC spectra require the complete
re-assignment of the backbone resonances for in-cell proteins. Since traditional multi-
dimensional NMR experiments for complete backbone assignment [155, 156] can take
weeks to complete, keeping cells alive in an NMR spectrometer for that long is
challenging at best. Advancements in NMR techniques for rapid data collection have
shortened the time required to collect a complete set of NMR spectra for backbone
assignments and structure determination [149, 157] that are applicable to live cells
[158-163]. These methods include automated projection spectroscopy (APSY) [164],
G-matrix Fourier transform NMR (GFT-NMR) [31, 165], high-resolution iterative
frequency identification (HIFI-NMR) [166], projection-reconstruction NMR (PR-
NMR) [167], and reduced-dimensionality NMR (RD-NMR) [168, 169].

In-cell NMR studies have primarily focused on addressing specific biological
questions about proteins and related cellular processes, but the techniques are also
applicable to ligand-affinity screens. The SMILI-NMR (Small Molecule Interactor
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Figure 4. In-cell NMR methods provide a new avenue for NMR screening to help drug discovery efforts. A)
A biocomplex is formed between FKBP and FRB upon sequential expression of uniformly **N labeled FKBP
and unlabeled FRB. The biocomplex makes the FKBP visible to NMR by forming the lower molecular
weight FKBP-FRB complex. B) Screening the FKBP-FRB complex with a peptide library identified a hit
which disrupted the FKBP-FRB complex making the FKBP invisible to NMR. (Reprinted with permission
from reference [71], Copyright 2009 by the American Chemical Society).

Library by In-cell NMR) method has been reported for screening ligands in whole cells
[71]. SMILI-NMR is based on the formation of a complex between two interacting
proteins similar to the STINT-NMR method [149, 170, 171]. The biomolecular
complex contains one uniformly °N labeled protein visible by NMR, where CSPs
indicate ligand binding and complex formation or disruption. The SMILI-NMR
protocol was demonstrated using the FKBP-FRB interaction, which forms in the
presence of rapamycin. The FKBP-FRB interaction is an important regulator of the
mTOR (mammalian target of rapamycin) signaling pathway. A biomolecular complex
was formed by the over-expression of uniformly °N labeled FKBP and unlabeled FRB
in E. coli. The complex was only formed at sufficiently high concentrations of FRB,
suggesting the FKBP was involved in a large molecular weight complex and therefore
invisible to NMR. The sequential over-expression of FRB resulted in a detectable
FKBP NMR spectrum due to the significantly lower molecular weight of the FKBP-
FRB complex. Correspondingly, a ligand that disrupts the biomolecular complex
causes resonances in the FKBP 2D *H-"N HSQC spectrum to disappear (Figure 4).

1.5 Dissociation Constants from High-Throughput NMR Screening

As with any biochemical assay that detects ligand binding, NMR methods are governed
by the same equilibrium and kinetic parameters, which are, in turn, dependent on the
concentration of the free ligand [L]r, free receptor [P]r, and the receptor-ligand
complex [PL]. For single-site binding, the relative ratios of these concentrations are
governed by the on (k,n) and off (ko) rates between the free and bound forms as
described in egn 7.
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The relative strength of a ligand’s binding affinity is quantified by the dissociation
constant (Kp):
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Correspondingly, the bound receptor fraction (fractional occupancy, fg) is
described by fg = [PL]/([P]r + [L]r). When the ligand is in large excess of receptor, the
total ligand concentration ([L];y) is approximately equal to the free ligand
concentration. Combining the definition of Kp with the expression for the bound
receptor fraction leads to eq. 9.
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Typically, NMR ligand affinity screens are not conducted under conditions where
the total ligand concentration is in excess of the maximum complex concentration.
Also, the direct measurement of the free protein concentration is generally not possible.
Therefore, eq. 9 can be rearranged in terms of total protein ([P]y) and total ligand
concentration.
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The ultimate goal of HTS-NMR s to identify ligands with the highest affinity for
the protein of interest. Effectively, the NMR screen attempts to minimize Kp. Various
NMR techniques allow for the direct measurement of Ky by monitoring changes in
chemical shifts [172], line-broadening [29], diffusion rates [173], and a saturation
transfer [174]. The most routine approach for measuring dissociation constants by
NMR is the observation of protein chemical shift changes in a 2D 'H-">N HSQC
spectrum as the ligand is slowly titrated into a constant protein concentration. Some
recent examples include: suramin bound to Pseudomonas aeroginosa protein PA1324
(Kp ~ 51 uM) [175], 5'-CUCUCU-3' bound to polypyrimidine tract-binding protein
(PTB) (Kp ~ 0.93 to 3.2 uM) [176], N-phenyl-naphthylamine bound to mouse major
urinary protein (MUP) (Kp ~ 0.032 uM) [177], and indole derivatives bound to
GABA receptor associated protein (GABARAP) (Kp ~ 6-208 mM) [178].

Comparable approaches have been developed using STD experiments, but require
the introduction of an amplification factor (Astp) [179]. The STD amplification factor
is determined by normalizing each peak in the STD spectrum to the corresponding peak

(10)




in the off-resonance NMR spectrum followed by multiplying by the excess ligand
concentration relative to the protein concentration. Because only bound ligands
experience a magnetization transfer, the intensity of an STD response (Istp) is directly
proportional to the ligand-receptor complex [PL] concentration:

Istp =Coasrp[PL] (11)
where C is a constant and asp is a scaling factor based on the STD enhancement. The

reference intensity (l,) is proportional to the total ligand concentration and the ratio of
bond and free ligand signal (nstp) is:

Istp _ @stp[PL]
lo [LIt

nstp = =agsrpfp (12)

where fg is the fractional occupancy from eq. 9. A Kp can be measured by simply
fitting the STD amplification factor as a function of ligand concentration to eq. 13,
which is similar to the standard Henri-Michaelis-Menten equation.
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Nevertheless, collecting a series of STD or 2D *H-"*N HSQC spectra to obtain a
complete binding isotherm in the context of a high-throughput screen for hundreds to
thousands of compounds is clearly not practical. As a result, a number of ligand-
detected 1D 'H NMR experiments have been developed to simultaneously identify
binders and estimate dissociation constants from an HTS-NMR assay. Dalvit et al.
[180] describe a single-point measurement using a 1D *H line-broadening or selective
longitudinal relaxation (T;) competition experiment. Basically, a compound with a
known Kp and complete NMR titration curve is used as a reference or spy compound
and is included within each mixture screened by NMR. The presence of a second
compound in the mixture that competes with the reference compound will result in a
proportional change in the reference compound’s line-width or peak intensity. This
enables the determination of [PL])/[L]+ by simply reading the value off of the reference
compound’s original NMR titration curve from the observed intensity change. Given
that [L]+ and [P]+ are known, an apparent Ky, for the reference compound and a binding
constant (K,) for the new compound can be calculated:

K%pp:[P]T[L]T—[P]T[PL]+[PL]2—[L]T[PL] o Ko

I
[PL] KBP -Kp

Other HTS-NMR competition screens that also simultaneously measure Kps have
been proposed using STD [181], c-WaterLOGSY [182], line-broadening changes
[183], fluorine NMR [184], multi-selective NMR experiments [185], and spin-labels
[186]. Of course, all these methods require a known binder with a defined dissociation
constant that is not always available for a specific protein, especially a new drug



discovery target. Recently, Shortridge et al. [29] described a single-point measurement
using 1D *H-line broadening that does not require a reference or spy molecule (Figure
2B). Line broadening experiments can rapidly measure a qualitative binding
dissociation constant (Kp) of a protein-ligand complex in a single comparison between
the free and bound states of the ligand [29]:

Kp = (;[P]T —c[P]T]—[L]T as)

single

where Biingie IS the ratio of ligand intensities in the free (I¢) and bound (Ig) states and
the constant ¢ depends on the line widths of the free (vg) and bound (vg) ligand.
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The bound ligand line width can be approximated by the protein line width, which is

dependent on the molecular weight of the protein. The Stokes-Einstein equation relates

7. to molecular weight (MW) for a globular protein (Figures 2C,D):
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where T is the temperature, k is the Boltzmann constant, n is the viscosity of the
solvent, r is the radius, and p is the shape constant.

2. Ligand Bound Co-structures from NMR Data

Knowing that a ligand binds to a particular protein target is invaluable, but not
sufficient. It is also critical to understand the structural details of the ligand protein
interaction for a successful structure-based design approach to drug discovery [187,
188]. Generating an NMR structure for a protein-ligand complex is relatively routine
with 1,466 NMR ligand bound structure deposited in the PDB as of December 9, 2009
[189]. Standard NMR methods used to generate protein-ligand co-structures are
generally limited to tightly bound ligands and require complete NMR assignments.
Applying these approaches as a component of HTS-NMR is impractical because of the
large time commitment per structure. Furthermore, ligand bound co-structures should
lead the optimization process to evolve the chemical leads into drug candidates. In this
section, methods for generating rapid protein-ligand co-structures will be discussed,
with a particular emphasis on using NMR data to drive the docking of weak binding
ligands that are typically identified by HTS-NMR.

2.1 Co-structures of Weakly Bound Protein-Ligand Complexes Using NMR

The mapping of CSPs on a protein surface, as described in the target focused HTS-



NMR section, can only approximate a ligand binding site. An NMR method that uses
CSPs to improve the description of the ligand binding site to generate a modeled co-
structures was described by Medek et al. [190]. A series of high affinity ligands are
used to generate a differential chemical shift map to dock additional chemically related
ligands to an existing NMR or x-ray protein structure. Basically, chemical alterations
(different substituents or chemical moieties) between the ligand structures are
correlated with the different CSPs observed between ligands to orient the new
compound within the protein’s active-site. Simply, an additional substituent is
positioned proximal to the amino-acid that uniquely incurred a CSP with the new
ligand. The NMR-DOC [191] approach simplifies the analysis of differential CSPs
developed by Medek et al. [190] by using a series of residue-specific *C-methly
labeled protein samples. The orientation of the ligand is then simply based on which of
these specifically-labeled residues incurs a CSP upon the addition of the ligand. The
SOS-NMR [192] technique is comparable to NMR-DOC, but differential STDs instead
of CSPs are observed between the ligand and specifically deuterated labeled residues.
Every residue type except one is deuterium labeled in a series of protein samples. If an
unlabeled residue is proximal to the ligand then an STD is still observed. The ligand’s
orientation is based on which deuterated residues are necessary to observe an STD
spectrum. The NMR-SOLVE [193] method uses a reference ligand (natural cofactor) to
identify chemical shifts and NOEs associated with a second ligand binding site. This
information is then used to map the location and orientation of novel compounds
relative to the reference ligand.

McCoy and Wyss [194] further developed the CSP approach by comparing
experimental and predicted CSPs using a three step procedure that first measures
experimental proton chemical shifts between the free and bound states of an N
labeled protein. The program SHIFTS [195] is then used to predict the protein chemical
shift for both the ligand-free and a ligand-bound structure, where the simulated CSPs
are simply the difference between these two calculated proton chemical shifts. Finally,
an iterative alignment of the ligand is performed to minimize the difference between
the experimental and predicted CSPs. The method was applied to successfully generate
a structure for the Ca®*-CaM-W-7 complex. McCoy and Wyss extended their method
by using the electron current density from the aromatic rings of the interacting ligand to
dock the compound [196, 197]. The aromatic ring current effect is approximated as a
single point dipole to estimate potential ligand locations. Thus, a dot-density plot for
each observed CSP is described by a volume of randomly distributed dots. Overlapping
dot-density maps are plotted using a GRASP surface [198] and the highest densities are
predicted to be the most likely ligand binding site (Figure 5).

To extend the utility of chemical shift mapping to generate protein-ligand co-
structures, a number of NMR-based methods have incorporated computer aided
docking. Docking programs such as AutoDock [199], FRED [200], and DOCK [201]
can rapidly generate thousands of structures in a high-throughput fashion. The selection
or ranking of the best-structures are based on an empirical energy scoring function.
These scoring functions are robust, but are also often dependent on a particular protein
target and virtual library [202], and have a high false-positive rate [78]. This can
provide misleading information about a “correct” binding site or pose for a ligand
unless a priori knowledge of a binding site is used to help assist and evaluate the
docked structures. In this manner, NMR CSP data can be used to guide and filter the
molecular docking of weakly bound ligands.

One of the first methods to use a combination of ligand induced chemical shift



Figure 5. Identification of active sites via chemical shift mapping. The changes in chemical shifts are
represented as a dot-density distribution (I x N) with overlapping dots approximating the binding site of the
ligand. The spheres (1) of ring current are centered on each perturbed HN with each sphere having (N) dots.
Surfaces created from dots with high densities localize the ligand ring position (Reprinted with permission
from reference [203], Copyright 1990 by the American Chemical Society).

mapping and computer aided docking was described by Lugovskoy et al. [204]. The
method was used to analyze BH3Is ligand bound to Bcl-xL. CSPs from backbone
amides were used to map and localize the ligand binding site. The program TreeDock
[205] was then used to derive a ligand bound co-structure. The best representative
structure was predicted to be the co-structure with the lowest Lennard-Jones potential
energy within the CSP localized binding site. While the method successfully generated
structure activity relationships for the series of Bcl-xL binding ligands, the use of the
lowest energy potential to define the ligand pose can be problematic. Newer methods
attempt to solve this limitation by using docking filtering techniques [24] or
combination of chemical shift density restraints and docking [206].

The method described by Stark and Powers (Figure 6) uses a pseudo-distance
(desp) based on CSPs from 2D 'H-®N HSQC spectra [24]. The CSPs are used to
minimize the structure search space by using a significantly reduced AutoDock 3D grid
during the docking calculation that conforms to the protein’s surface defined by the
CSPs. AutoDock 4.0 is then used to generate 100 docked protein-ligand co-structures
using the Lamarckian search algorithm with a population size of 300 and 500,000
energy evaluations [207]. The AutoDockFilter (ADF) program then uses an NMR
energy function based on the magnitude of CSPs to select the best ligand conformation
or pose:

K 2 - Jdce  dee <ds
Envr =KD (Apigt) Abist =1 0 4o <d (18)
i1 s<dce

where ADF calculates a pseudo-distance (dcsp) based on the magnitude of the NH CSP,
which is then compared to the shortest distance (ds) between any atom in the residue
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Figure 6. Flow diagram illustrating the application of NMR chemical shift perturbations and computer aided
docking to rapidly generate a protein-ligand co-structure. The CSPs are used to map the ligand binding site
and guide the AutoDock 3D search grid. A total of 100 conformers are generated bound in the NMR defined
ligand binding site. The ADF program selects the best pose based on a consistency with the magnitude of
observed CSPs. (Reprinted with permission from reference [24], Copyright 2008 by the American Chemical
Society).

that incurred an NH CSP and any atom in each docked ligand conformer. Comparison
of these CSP-directed and selected ligand-docked structures with experimental x-ray
and NMR structures has yielded an overall average rmsd of 1.17 + 0.74 A [24]. The
determination of Prgl-ligand co-structures is a recent example of using CSPs to guide
and filter a protein-ligand complex [208].

The HADDOCK program [209] has also successfully used CSPs to generate
protein-ligand complexes [31]. CSPs are used to define ambiguous interaction
constraints (AIR), an intermolecular distance (< 3A) between all sets of residues that
incurred a CSP to the ligand [210]. Thus, a co-structure is directly refined against the
experimental CSPs, which requires three steps. First, the ligand is positioned in the
binding site with a rigid body docking and energy minimization, where the protein
structure remains fixed. This is followed by a semi-rigid simulated annealing in
torsional angle space to enable re-orientation of both the protein and ligand to further
optimize the interaction. A final refinement with explicit solvent removes clashes, other
structural problems and optimizes hydrogen-bond interactions.

3. NMR Screening and Functional Annotation

Over the last decade, the pharmaceutical industry has experienced an unprecedented
decline in creativity and productivity leading to a dramatic reduction in new drugs
[211-215]. Drug discovery is a complex and challenging endeavor and a number of
factors are contributing to this decline. But one key issue is the concentrated effort in a
limited number of research areas [216]. This results in multiple companies
simultaneously pursuing therapeutics against the same small set of protein targets. This
inevitably leads to a high-level of competition, a limited number of new therapies and a
number of redundant drugs [217] serving the same market [218]. Drug discovery would
benefit from new methodologies that enhance the identification of novel therapeutic
targets.
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Figure 7. FAST-NMR approach to screening with the target protein Prgl from S. typhirium. A) 1D-'H line
broadening experiments identified 5 compounds that bound Prgl from a chemical library of ~450 compounds.
B) Secondary screening using *H-*N HSQC of the Prgl protein showed that only one compound of the 5
initial hits, didecyldimethylammonium bromide, specifically bound Prgl with an approximate Kp of 553 pM.
C) A rapid ligand bound co-structures was generated and used for functional annotation by active site
similarity searching. The protein with the highest similarity to Prgl active site D(I) was the Bcl-2 family
protein, Bel-xL bound to ABT-737 D(I1). The similarity between Prgl and Bcl-xL binding sites was used to
predict the known Bcl-xL inhibitor, chelerythrine E(1), was also a binder of Prgl Bcl-xL in a similar manner
to Prgl E(lI). (Reprinted with permission from reference [208], Copyright 2009 by the Public Library of
Science).

With the rapid increase in complete genome sequences of various organisms [219-
223], there is an ever expanding data set available to identify new drug discovery
targets. Bioinformatic methods attempt to annotate function using protein sequence and
structure similarities [224, 225] or a combination of multiple experimental and
computational approaches [226]. Nevertheless, it is still challenging and error prone to
predict function using global sequence and structure similarity alone [227, 228]. A
growing trend in protein function prediction is using active-site similarity [27, 229,
230] to identify regions on a protein that interact with biologically important
compounds. Active-sites or functional epitopes with similar sequence and structure,
and that bind similar ligands are considered to be related by function. Protein active-
sites tend to be evolutionary more stable relative to the remainder of a protein structure
[231]. A major obstacle to leveraging active-site similarity to infer biological function
is the accurate identification of ligand binding sites and the corresponding ligands.

As described in detail above, NMR is uniquely capable of characterizing ligand
binding sites and screening chemical libraries to identify hits. Correspondingly, FAST -
NMR [27, 28] employs a multi-step NMR screening protocol [67] and a biologically
active ligand library to identify binding ligands and their representative binding site to



annotate proteins of unknown function. The experimentally determined ligand, ligand-
binding site and protein-ligand co-structure provide valuable resources for active site
similarity searches (CPASS) [232]. The multi-step NMR screening technique combines
a 1D H line-broadening screen to rapidly identify binding ligands, followed by a 2D
'H-N HSQC NMR screen using only the hits from the 1D 'H line-broadening screen
to map the ligand-binding site and generate a co-structure with CSPs. The multi-step
NMR approach reduces both the total time required to complete the screen along with
minimizing sample requirements. As an example, screening a library of about 450
compounds [107] using the FAST-NMR multi-step screening method takes ~11 hrs
with an average hit rate of ~20 compounds. Coupled with rapid active site similarity
search tools [232] and other bioinformatics techniques, the functional annotation of a
protein of unknown function can be reduced to just days. The FAST-NMR method has
been used to functionally annotate a number of novel proteins and build supporting
evidence for the functional similarity between the type 3 secretion system proteins Prgl
and the Bcl-2 family of apoptosis regulators [27, 28, 175, 208] (Figure 7).

4. Conclusions

The NMR has proven to be a valuable and versatile tool for the drug discovery
community. A variety of HTS-NMR techniques that include chemical shift
perturbations from HSQC experiments, 1D H line-broadening experiments and
saturation transfer difference experiments are routinely used to screen chemical
libraries to identify chemical leads. Additionally, various single-point and competition
techniques have been developed to obtain dissociation constants from NMR ligand
affinity screens. Efficient library designs coupled with fragment-based approaches have
increased the efficiency and success rate of HTS-NMR screens and the drug discovery
process. Furthermore, the CSPs, STDs and NOEs from HTS-NMR screens have been
combined with ligand-docking software to generate rapid protein-ligand co-structures
to aid in the further optimization of chemical leads. Finally, the NMR techniques
developed for drug discovery have also been used to develop the FAST-NMR
methodology for protein functional annotation. FAST-NMR further benefits drug
discovery by aiding in the identification of novel therapeutic targets.
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