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  Background : Drug discovery is a complex and unpredictable endeavor with a 
high failure rate. Current trends in the pharmaceutical industry have exacer-
bated these challenges and are contributing to the dramatic decline in 
productivity observed over the last decade. The industrialization of science 
by forcing the drug discovery process to adhere to assembly-line protocols 
is imposing unnecessary restrictions, such as short project timelines. Recent 
advances in NMR are responding to these self-imposed limitations and are 
providing opportunities to increase the success rate of drug discovery. 
 Objective/method : A review of recent advancements in NMR technology 
that have the potential of significantly impacting and benefiting the drug 
discovery process is presented. These include fast NMR data collection protocols 
and high-throughput protein structure determination, rapid protein–ligand 
co-structure determination, lead discovery using fragment-based NMR affin-
ity screens, NMR metabolomics to monitor  in vivo  efficacy and toxicity for 
lead compounds, and the identification of new therapeutic targets through 
the functional annotation of proteins by functional annotation screening 
technology using NMR.  Conclusion : NMR is a critical component of the drug 
discovery process, where the versatility of the technique enables it to con-
tinually expand and evolve its role. NMR is expected to maintain this 
growth over the next decade with advancements in automation, speed of 
structure calculation, in-cell imaging techniques and the expansion of NMR 
amenable targets.  
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  1.   Introduction 

 A troubling decline ( Figure 1 ) has been observed in the productivity and creativity 
of the pharmaceutical industry over the last decade  [1-5] . This is a complex issue 
and a number of factors are contributing to the observed reduction in new drugs 
approved by the FDA. One primary cause is the fact that the drug discovery 
process is a fundamentally challenging endeavor with a high failure rate and price 
tag. Estimates indicate that only 1 new chemical entity (NCE) out of 25 NCEs 
identified from active research projects will become a marketable drug. The cor-
responding success rate of clinical trials is only 11%  [6,7] . The development of the 
average drug costs > $800 million dollars  [8] , where current industrial trends to 
minimize these costs are contributing to the decline in new drugs  [5] . 

 Because of these high costs, pharmaceutical companies tend to focus their 
research efforts in therapeutic areas with potential profits exceeding a billion dol-
lars a year  [9] . These tend to be chronic diseases that require potentially life-time 
treatments for a significant percentage of the population, such as cardiovascular, 
oncology and CNS disorders. The end result is a concentrated effort in a very few 
research areas  [10]  leading to a high-level of competition, a limited number of new 
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therapies and a number of redundant drugs  [11]  serving the 
same market  [12] . Similar efforts to minimize costs also 
results in a negative impact on the discovery of new drugs. 

 The expanding trend of applying traditional business 
practices to the drug discovery process is misguided and has 
the unintended consequence of diminishing output and 
eliminating originality  [2,3,13,14] . Current methods being 
applied to reduce cost and increase efficiency include out-
sourcing  [15,16] , metrics  [17,18]  and limiting the duration of a 
research project  [19] . This is despite the obvious fact that 
drug discovery is a complex, highly interdisciplinary process  [20]  
and inherently unpredictable  [21,22] . Treating each component 
as simply an independent step in an assembly line protocol  [23]  
clearly undermines the need for routine interactions and the 
exchange of ideas between each essential discipline  [24] . In 
drug discovery, the whole is clearly greater than the sum of 
the parts where critical breakthroughs and insights come 
from the cross-fertilization of ideas and information between 
separate research groups. Outsourcing and metrics isolate 
these groups and place a high priority on inconsequential 
book-keeping: the number of compounds synthesized, assays 
run, spectra collected and structures solved that creates the 
illusion of accomplishments  [2] . Furthermore, placing artificial 
time-limits on research projects simply creates an endless 
cycle of identifying new therapeutic targets, generating 
chemical leads and rapidly abandoning a project when the 
typical challenges with bioavailability, stability, toxicity and 
efficacy are encountered. This focus on project lifetime 
evolves from the current drug discovery process that is based 
on high-throughput screening (HTS) and structure-based 
drug design  [25,26] . 

 HTS is an efficient and effective approach for identifying 
high-affinity binders to protein targets, but as recent reports 
have indicated it has not increased the number of successful 
drugs  [27] . HTS chemical leads are not routinely translated 
into new drugs because a preponderance of inhibitors have 
undesirable modes of action  [28,29] . Misleading compounds 
that lack a confirmed correlation between functional activity 
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Figure 1. The number of new drugs approved by the FDA on 
a yearly basis. The straight line highlights the negative trend in 
drug approval rates.

and a direct binding interaction with the protein target routinely 
emerge from HTS  [30] . These false leads are a significant factor 
in the delay or derailment of drug discovery projects and 
may contribute to clinical failures as well  [28-32] . At the onset 
of a drug discovery program, it is clearly desirable to identify 
lead compounds that interact with the therapeutic target in 
a biologically relevant mechanism. In this manner, promising 
chemical leads can be quickly prioritized for more detailed 
evaluations, with an anticipated increase in the development 
of new drugs. 

 In an era where time is a critical consideration in the success 
of a drug discovery project, NMR has become an integral 
component of the process  [33-35] . The diversity of NMR 
enables the technique to be applied at multiple stages along 
the drug discovery pathway and addresses some of these self-
imposed challenges that are hindering progress in discovering 
new therapeutics  [36] . NMR is being used for lead discovery 
and optimization, evaluating  in vivo  selectivity and efficacy, 
analyzing drug toxicity profiles and identifying new drug 
discovery targets. Recent advances in NMR technology 
enable NMR to rapidly determine protein and protein–ligand 
structures, to efficiently screen fragment-based libraries for 
identifying biological relevant ligand interactions and new 
therapeutic targets, and to monitor changes in the metabolome 
from biofluids and cell lysates for exploring  in vivo  drug 
activity. This review discusses these recent advancements of 
NMR for drug discovery.  

  2.   Rapid protein structures 

 A high-resolution protein structure is a key requirement to 
evaluate the biological relevance of potential chemical leads 
identified from HTS. Validating that a compound binds 
specifically to a functional region of the protein structure 
dramatically increases the likelihood of the compound being 
evolved into a drug. Due to the increasingly limited time 
available for a research project to produce an NCE, obtaining 
a rapid protein structure during the early stages of the drug 
discovery project is essential. Despite the prevalent use of 
X-ray crystallography in the pharmaceutical industry for 
determining protein structures, NMR and X-ray should be 
viewed as complimentary techniques with limited redundan-
cies  [37,38] . Recent statistical analysis indicates that  ∼  20 – 40% 
of protein structures determined from structural genomics 
may be amenable to analysis by NMR, where a preponderance 
of protein structures were determined by NMR only or 
X-ray only. More importantly, NMR had an equal success 
rate for both prokaryote and eukaryote proteins  [39] , which 
is an important consideration for drug discovery. 

 The application of NMR has also been unnecessarily 
curtailed because of the general upper weight limitation of 
 ≤  25 kDa. Nevertheless, the average domain size for eukaryotic 
proteins is  ∼  150 residues or  ∼  17 kDa, which is within the 
molecular weight (MW) range for NMR. Additionally, 
advancements in NMR methodology has significantly 
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expanded this upper limit, where the NMR analysis of large 
MW complexes are becoming common place: 900 kDa 
GroEL–GroES complex, 300 kDa cylindrical protease 
ClpP  [40] , 95 kDa homotrimeric complex of the acyltrans-
ferase protein  [41] , 82.4 kDa malate synthase  [42,43] , 69 kDa 
 α 1-proteinase inhibitor Pittsburgh-trypsin covalent complex  [44] , 
45.3 kDa catalytic domain of human BACE-1  [45] , 44 kDa 
nucleotide-binding domain  [46] , 486 kDa TET2 aminopep-
tidase protein  [47]  and 441 residue  τ  protein  [48] , among 
others. Obtaining these results requires advanced labeling 
and NMR techniques that includes deuterium labeling  [49] , 
selective residue labeling  [50] , selective methyl labeling  [51]  
and TROSY-based experiments  [52] . This requires a robust 
expression system (e.g.,  Escherichia coli  or a cell-free system) 
to obtain milligram quantities of various labeled protein for 
multiple NMR samples  [53-56] . Also, it is important to note 
that these studies did not yield high-resolution solution 
structures of the indicated large MW proteins. Generally, 
specific insights regarding the structure and dynamics of the 
proteins or complexes related to its biological function were 
obtained. This requires using existing X-ray structures. 
Chemical shift perturbations, residual dipolar coupling con-
stants (RDCs)  [57]  and/or  13 C-labeled methyl probes are 
typically used to model protein–protein complexes (from 
existing NMR or X-ray structures of each monomer), identify 
protein–ligand interactions or monitor the dynamics of domain 
or ligand interactions. Low-resolution structures may also be 
obtained from a minimal nuclear Overhauser effect (NOE) 
data set  [58,59]  combined with other structural constraints 
such as RDCs  [57]  and pseudocontact shifts  [60] . 

 Similarly, significant improvements have been made to 
increase the throughput of NMR structure determination. 
This has occurred, in part, due to the NIH Protein Struc-
ture Initiative that has provided the incentive to develop the 
infrastructure and technology for high-throughput structure 
determination  [61] . First, robotic systems have been devel-
oped for the automated production of protein samples for 
both NMR and X-ray  [62] . Second, advancements in NMR 
pulse sequences and protocols for rapid data collection have 
shortened the time required to collect a complete set of 
NMR spectra for a protein structure. These methods include 
automated projection spectroscopy  [63] , G-matrix Fourier 
transform NMR  [64,65] , high-resolution iterative frequency 
identification  [66] , projection-reconstruction NMR  [67]  and 
reduced-dimensionality NMR  [68,69] . The primary goal of 
these methods is to reduce the dimensionality of traditional 
multi-dimensional triple resonance experiments, and thus 
shorten the acquisition time, by joint sampling of multiple 
chemical shifts in a single indirect dimension. Generally, a 
series of low-dimensional NMR spectra are collected that are 
either linearly combined or used to reconstruct the desired 
higher-dimensionality spectrum. A general concern with 
reduced dimensionality experiments is the potential loss of 
information or resolution by projecting  n  indirect dimensions 
into a 2D spectrum. The encoding of multiple chemical 

shifts within a single resonance results in peak multiplicity 
with distinct phasing. As the size of the protein increases, 
peak overlap and the canceling of anti-phase peaks becomes 
an issue. Of course, reduced dimensionality experiments 
have been successfully applied to proteins with an MW up 
to 20 kDa  [64] . 

 An alternative approach to reduce the acquisition time of 
multidimensional NMR experiments for protein structure 
determination is the application of sparse data collection or 
non-uniform sampling  [70-72] . The major factor that contributes 
to the long ( ∼  1 – 3 days) acquisition times for typical triple 
resonance experiments is the requirement of collecting a 
uniform series of data points to properly represent the free 
induction decay (FID) along each indirect dimension of the 
multidimensional experiment. Even for a 3D experiment 
with modest resolution (512  ×  128  ×  32 complex points), 
the complete matrix of FIDs expands exponentially. The 
uniform sampling of each FID is necessary for the discrete 
fast Fourier transformation algorithm to correctly convert 
the NMR data from the time-domain to the frequency 
domain for further analysis. But, acquiring the complete 
FID matrix overly defines the system and unnecessarily 
wastes instrument time and prolongs data collection. A 
simple solution is to randomly sample the FID matrix, usu-
ally at a > 30% sampling rate, with a bias towards the early 
time points that have a higher signal-to-noise  [72] . This gen-
erally results in a two to threefold reduction in acquisition 
time along each indirect dimension. The incomplete FID 
matrix is then processed using non-fast Fourier transformation 
methods: filter diagonalization  [73] , maximum entropy tech-
niques  [70,74] , multidimensional decomposition  [75,76]  or 
nonlinear FT techniques  [77-79] . The use of non-uniform 
sampling does introduce artifacts in the NMR spectra  [71,80] , 
which includes ridges, aliasing artifacts, baseline artifacts and 
folding artifacts that may make it difficult to detect weak 
signals. The signal:artifact ratio increases as the square-root 
of the number of data points and artifacts are minimized 
using a random sampling scheme  [72] . 

 In addition to reducing the absolute number of FIDs that 
are collected, the overall experimental time can also be 
shortened by decreasing the time required to collect each 
individual FID  [81] . The SOFAST-heteronuclear multiple 
quantum coherence (HMQC)  [82]  pulse scheme permits 
the collection of a 2D  1 H- 15 N HMQC spectrum in a few 
seconds by dramatically reducing the recycle time and 
allowing for high repetition rates. Band-selective excitation 
short-transient-NMR applies the same general concept 
within standard triple-resonance pulse sequences  [81] . Rapid 
repetition rates are obtained by ensuring efficient T 1  
relaxation during the significantly shortened recycle delay 
(50 – 150 ms) relative to typical recycle delays of 0.75 – 1 s. 
A further decrease in experimental times could be gained by 
combining the band-selective excitation short-transient-
NMR technique with non-uniform sampling or reduced 
dimensionality methods. 
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 Third, the development of software for the semi-automated 
assignment of NMR spectra and the calculation of protein 
structures has greatly reduced the time required to generate 
an NMR protein structure. A number of software packages 
exist for the semi-automated assignment of protein NMR spectra 
(readers are referred to  [83]  for a detailed review). These include: 
AutoAssign  [84] , BATCH  [85] , GARANT  [86] , DYNASSIGN  [87] , 
GANA  [88] , MATCH  [89]  and PISTACHIO  [90] , among others. 
Basically, theses programs implement a set of rules that mimic 
an expert’s approach to the analysis of spin-systems from 
a standard set of triple-resonance experiments  [91] . The 
spin-systems are then joined by two or more overlapping 
C α  i , C α H i , C ′  i , C β  i  and C α  i-1 , C α H i-1 , C ′  i-1  and C β  i-1  
chemical shifts. The primary challenge to the approach is 
due to incomplete data sets (missing peaks), noisy spectra 
(false peaks) and degeneracy (overlapping peaks). An expert 
deals with these problems through an iterative visual inspection 
of the NMR spectra. Conversely, an automated approach is 
either limited to peak lists or attempts to differentiate 
between a real peak and noise in the original spectra. Thus, 
the various software packages apply distinct approaches 
including exhaustive search algorithms, genetic algorithm, 
graph theory, heuristic algorithms neural networks, simulated 
annealing, system energy function or Monte Carlo algorithms 
in an attempt to overcome incomplete and noisy data. In 
general, these approaches tend to correctly assign backbone 
residues 70 – 100% of the time. 

 There is also a variety of software packages used to automate 
the calculation of a protein structure from NMR data 
(see  [92]  for a detailed review). This includes: AutoStruc-
ture  [61,93] , ARIA  [94] , CLOUDS  [95] , CYANA  [96] , PASD  [97] , 
FLYA  [98]  and Rosetta  [99] , to name a few. One primary 
difference between these programs is the choice of the 
molecular mechanics/dynamics engine, XPLOR/CNS  [100]  
or DYANA  [101] . XPLOR/CNS refines the protein structure 
in distance space and tends to be significantly slower, but 
more accurate than DYANA that refines in torsion angle 
space. Again, the automated approach to refining a protein 
structure is basically achieved by incorporating rules to simulate 
the manual analysis of NMR structural data by an expert 
along with well-defined structural characteristics. For example, 
secondary structure elements  α -helices,  β -strands and turns 
have expected patterns of NOEs. Similarly, there are distinct 
regions of allowable backbone and side-chain dihedral angles. 
Additionally, long-range contact or distance maps are generally 
self-consistent. The unambiguous assignment of a long-range 
NOE between non-sequential residues increases the likelihood 
that other NOEs between the same two residues or sequential 
neighbors of the two residues are observed. 

 Again, a primary challenge to the automated analysis of 
NMR spectra to generate a protein structure is incomplete 
and noisy data. Furthermore, the success of a structure 
determination is predicated on the completeness of the 
chemical shift assignments, because these assignments are 
required to correctly annotate the structural NOEs. It has 

been estimated that 90% completeness of chemical shift 
assignments are required for an accurate protein struc-
ture  [102,103] . Structure determination is an iterative process, 
where an initial structure is calculated based on a subset of 
unambiguous NOEs and other readily available structural 
constraints (torsion angles, chemical shifts, coupling constants, 
RDC constants and so on). A consistency with the initial 
protein structure is then used to filter ambiguous NOEs. 
The success of the protocol is thus highly dependent on 
obtaining a correct fold for the initial structure, where either 
a significant lack of chemical shift assignments or unambiguous 
NOEs will result in failure  [104] . To address these problems, 
ambiguous NOE methods  [94,96,97] , assignment-free meth-
ods  [95] , RDC-based methods  [105,106]  and chemical shift-
based methods (CS-ROSETTA)  [107]  are actively being 
developed. Protein structures determined solely by chemical 
shift information is particularly promising and exciting, 
because the chemical shift information is rapidly obtained 
and eliminates the need for additional NMR experiments to 
measure NOEs, coupling constants and RDCs. Protein 
structures calculated using CS-ROSETTA tend to yield a 
backbone root-mean squared deviation (rmsd)  ≤  2Å relative 
to original NMR structures using complete NOE data sets. 
CS-ROSETTA is currently limited to proteins < 130 residues. 
Importantly, assessments of protein structures emerging from 
structural genomics centers, which primarily utilize automated 
techniques, indicate a higher structure quality relative to 
NMR structures solved by traditional techniques  [39,108] . 

 The availability of automated software and rapid NMR 
data collection schemes have resulted in a significant improve-
ment in the throughput of NMR structure determination. 
This is illustrated by the > 300 protein NMR structures 
generated as part of the NIH Protein Structure Initiative and 
by a recent example ( Figure 2 ) of eight NMR structures that 
required, on average, 1 – 2 weeks for completing each struc-
ture. The high-throughput generation of protein NMR 
structures is still generally restricted to proteins with an 
MW < 30 kDa. But, expanding this limit beyond 50 kDa in 
the near future appears promising, especially because obtaining 
backbone chemical shift assignments have been demon-
strated for a number of large MW proteins  [42,45,46] . Obtaining 
a structure for high MW proteins may be achieved by 
expanding the CS-ROSETTA methodology to include addi-
tional structural constraints such as RDCs, pseudocontact 
shifts  [60] , minimal NOE constraints  [59]  and chemical 
crosslinking data  [109] .  

  3.   Rapid protein–ligand complex structures 

 Obtaining a rapid protein structure provides an important 
foundation for a drug discovery project. It enables the vali-
dation of chemical leads through the determination of a 
protein–ligand co-structure. Confirmation that the com-
pound binds in a biologically relevant region of the protein 
or induces a conformational change that affects the biological 
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activity of the protein infers a viable lead compound. Again, 
obtaining this information rapidly is critical to the success 
of the drug discovery program especially because an iterative 
series of structures is required to optimize the chemical lead 
and a limited amount of time is available before the project 
is terminated. A number of recent techniques have been 
developed that enable NMR to rapidly determine a structure 
for a protein–ligand complex. 

 NMR chemical shift perturbations (CSPs) are routinely 
used to identify ligand bindings sites based on a clustering of 
residues on the proteins surface that incur CSPs. Generally, 
2D  1 H- 15 N heteronuclear single quantum coherence (HSQC), 
2D  1 H- 15 N heteronuclear multiple quantum coherence (HMQC), 
or 2D  1 H- 13 N HSQC/HMQC spectra are rapidly acquired in 
minutes (FHSQC  [110]  or SOFAST-HMQC  [82] ) for both the 
free protein and the protein–ligand complex. An overlay of 
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Figure 2. High-quality NMR solution structures of Northeast Structural Genomics consortium target proteins. A methodology 
for semiautomated data analysis was used to solve the eight NMR protein structures. NMR data collection was accomplished in 
∼ 1 – 9 days per structure and ∼ 1 – 2 weeks of an expert’s time was required for semiautomated data analysis and structure calculation. 
For each structure, a ribbon drawing is shown on the left and a ‘sausage’ representation of the backbone is shown on the right where 
the thickness refl ects the precision achieved for the determination of the polypeptide backbone conformation.
Reprinted with permission from [64], Copyright 2005 by the National Academy of Sciences of the United States of America.



Advances in nuclear magnetic resonance for drug discovery

1082 Expert Opin. Drug Discov. (2009) 4(10)

the two spectra readily identifies the residues that incur CSPs, 
which are then simply mapped onto the protein’s surface. 
Thus, a ligand-binding site is obtained extremely rapidly 
and the process is automatable with the addition of robotic 
sample-changers or flow-probes to an NMR spectrometer  [111] . 
It was recently demonstrated that a high-quality protein–
ligand complex model can be obtained rapidly by combining 
traditional  in situ  ligand docking software with experimental 
NMR CSPs  [112] . Specifically, the CSP identified ligand-binding 
site is used to define a 3D search-grid for AutoDock 4, which 
is the highest-cited ligand docking software package  [113,114] . 
AutoDock searches the 3D grid using a Lamarckian genetic 
algorithm to explore different translational, rotational and 
torsional orientations for the ligand and estimates a free energy 
of binding. AutoDock is optimized for ligand-binding ener-
getics and includes numerous terms related to dispersion/
repulsion, directional hydrogen bonding, electrostatics, des-
olvation and conformational energy. Typically, 120 different 
ligand conformations are calculated within the 3D search-
grid, where the program AutoDockFilter (ADF) is used to 
select the best conformers based on a consistency with the 
experimental CSPs. ADF uses an NMR energy function 
based on the magnitude of the CSPs and the proximity of 
the ligand to amino-acid residues with a CSP. Simply, the 
ligand is expected to be closer to amino-acid residues that 
incurred large CSPs. On average, the approach takes  ∼  40 min 
to obtain a protein–ligand co-structure, where the resulting 
structure exhibits an average rmsd of 1.17  ±  0.74 Å relative 
to the original X-ray structure.  Figure 3A  illustrates the high 
similarity between the CSP-guided docking of thymidine 3 ′ ,5 ′ -
bisphosphate to  Staphylococcus aureus  nuclease relative to the 
original X-ray structure (Protein database-ID: 1SNC)  [115] . 

 Similarly, the program HADDOCK takes advantage of 
this relationship between CSPs and ligand binding to generate 
biomolecular complexes (protein–protein, protein–DNA, 
protein–RNA)  [116] . HADDOCK utilizes ambiguous interac-
tion constraints  [117]  to refine a biomolecular complex using 
a three stage refinement: i) a rigid body docking and energy 
minimization; ii) a semirigid simulated annealing in torsional 
angle space; and iii) a final refinement with explicit solvent. 
Basically, HADDOCK defines an ambiguous intermolecular 
distance ( ≤  3Å) between all sets of residues that incur a CSP 
from molecule A to molecule B in the complex. HADDOCK 
has recently been applied to the docking of low MW com-
pounds to proteins  [64] . A clear advantage of the HADDOCK 
approach is the fact that the resulting co-structure is a result 
of a direct refinement against the experimental CSPs. But, 
HADDOCK uses XPLOR/CNS  [100] , which is optimized 
for protein refinement and dynamics, making it challenging 
to properly parameterize each new compound that is docked. 
Also, HADDOCK applies a more robust, multistage mini-
mization and dynamics protocol resulting in a significantly 
longer computational time ( ∼  2 days) compared to AutoDock/
ADF.  Figure 3B  illustrates the application of HADDOCK 
for the determination of the structure of human arylamine 

N-acetyltransferase (NAT) complexed with  p -aminobenzoic 
acid (PABA)  [118] . The clear advantages of the CSP approaches 
to determining a protein–ligand model is the speed, ease 
and relative simplicity of the techniques. But, these modeled 
structures should not be viewed as a replacement for tradi-
tional high-resolution protein–ligand complexes obtained by 
either NMR or X-ray crystallography for drug discovery. 
Instead, these CSP modeled structures provide a rapid 
approach to evaluate potential drug discovery targets before 
pursuing the more time-consuming and resource intensive 
experimental structures. Importantly, the CSP methods are 
restricted to proteins that do not undergo significant confor-
mational changes upon ligand-binding. This is especially 
valid if only the apo-structure of the protein is available for 
modeling, because either a static version of the protein 
structure or a structure with limited side-chain mobility is 
used for ligand docking. 

 In addition to AutoDock/ADF and HADDOCK, other 
NMR approaches have been described to shorten the time-
frame to determine a protein–ligand co-structure. These 
methods are, in general, significantly slower, more complex 
to execute (requiring a variety of experiments and/or labeled 
samples) or limited in scope (requiring multiple known 
binders or unique site-specific labeling). But, the relative 
resolutions of some of these structures are increased compared 
to CSP-based structures. Again, these techniques are typically 
limited to protein structures that do not undergo significant 
conformational changes upon ligand binding because a 
static protein structure is used to model the protein–ligand 
complex. These alternative methods include NOE-based 
protein–ligand models  [119,120] , paramagnetic shifts  [121] , dif-
ferential CSPs  [122] , SOS-NMR  [123] , NMR-SOLVE  [124]  and 
NMR-DOC  [125] . The NOE-based protein–ligand model 
utilizes a refined NMR apo-protein structure and a minimal 
NMR data set to assign intermolecular NOEs. Recent tech-
niques minimize the need to re-assign the protein NMR 
spectra in the complex  [126] . These NOEs are simply added 
to the complete set of structural constraints used to solve 
the apo-structure in order to solve the complex structure. 
The differential chemical shift approach uses a series of 
structurally similar ligands known to bind the protein. The 
differences in structure and CSPs are expected to correlate, 
which then identifies each ligand’s orientation within the 
similar binding pocket. The NMR-DOC approach is essen-
tially identical, but simplifies the protein NMR spectra by 
using a series of residue-specific  13 C-methly labeled protein 
samples. The NMR-SOLVE method is also very similar; it 
uses a reference ligand (natural cofactor) to identify 
chemical shifts associated with the ligand-binding site. This 
information is then used to map the location and orientation 
of novel compounds. 

 The paramagnetic shifts and SOS-NMR methods also 
utilize selective labeling to identify the structure of the 
protein–ligand complex. The SOS-NMR method uses a 
series of residue specific labeling to identify which residues 
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are proximal to the ligand similar in concept to CSPs. Every 
residue type except one is deuterium labeled. If a saturation 
transfer difference is still observed, the unlabeled residue is 
proximal to the ligand. The process is repeated for each rele-
vant amino acid. The paramagnetic shifts approach requires a 
site-specific lanthanide label proximal to the ligand-binding 
site. The lanthanide-binding site is identified from an X-ray 
crystal structure and  ∆  χ  tensors are determined from chemical 
shift changes in 2D  1 H- 15 N HSQC spectra for the protein 
complexed to paramagnetic and diamagnetic lanthanides. 
Pseudocontact shifts are then measured for the ligand in the 
presence of the protein–lanthanide complex from 1D  1 H 
and  13 C NMR spectra. The pseudocontact shifts are used to 
position the  1 H and  13 C nuclei from the ligand relative to 
the  ∆  χ  tensors to dock the ligand.  

  4.   Fragment-based ligand screens 

 Traditional HTS is routinely used in the pharmaceutical 
industry to screen hundreds of thousands to millions of 
compounds against a therapeutic protein target  [26] . But, 
HTS has an extremely high failure rate. Only 0.1 – 0.5% of 
the compounds in the screening library will be ‘active’ in a 
particular screen  [127] . A significant percentage of the best ‘hits’, 
with the highest observed inhibition, are false positives  [30] . 

These compounds generate an HTS response through a 
number of undesirable mechanisms, such as: protein aggre-
gation, protein denaturation, protein precipitation, micelle 
formation, chemical modification of the protein, nonspecific 
binding, promiscuous binders or interfering with other 
reagents of the assay  [28-31,128] . These problematic chemical 
leads inevitably result in a significant amount of wasted 
resources and time. 

 Intrinsically linked to the success of HTS is the composition 
of the screening library. Obviously, the quality of ‘hits’ identified 
from an HTS assay is dependent on the quality of com-
pounds present in the library  [32] . The accumulation of corporate 
chemical libraries occurs over years if not decades where the 
composition of the library is inherently biased to previous 
drug discovery projects. The analysis of typical large, random 
chemical libraries compared to the collection of known 
drugs identified a number of problems associated with cor-
porate libraries while identifying a set of structural properties 
or Lipinski’s ‘rule of 5’ that are exhibited by known 
drugs  [129,130] . Lipinski’s ‘rule of 5’ is a general predictor for 
compound solubility and permeability that is related to 
bioactivity and bioavailability  [131] . In contrast, compounds 
in chemical libraries have a tendency to trend toward higher 
MW, higher lipophilicity and/or higher H-bond properties 
resulting in either poor solubility or permeability. 
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 An outcome of these studies has been an extensive effort to 
design or reconfigure chemical libraries based on the Lipinski’s 
‘rule of 5’ or similar predictors of ‘drugability’  [32,132-135] . Con-
current with drug-like features are additional approaches 
to build in structural diversity in the design of chemical 
libraries  [134,136-140] . But, estimates indicate that  ∼  10 10  – 10 50  
compounds would be needed to properly cover structural 
space  [141] . Regardless of the size of the chemical library, the 
number of compounds that can be practically screened rep-
resents an infinitesimally small fraction of the total number 
of potential compounds (10 60 )  [142] . Concurrent with any 
effort to increase the size of the library will be a propor-
tional increase in the total number of troublesome false 
leads. From a practical perspective, it is not possible to 
follow-up all the hits identified from an HTS assay. Because 
false positives tend to over-populate the best inhibitors iden-
tified from an HTS assay, more effort is spent chasing after 
false leads  [143] . Another practical consideration is that the 
integrity of individual compounds used in the HTS screen 
may be suspect because of issues associated with long-term 
storage of compounds in conditions amenable to HTS  [144,145] . 
Given these challenges, the decline in the productivity of 
the pharmaceutical industry has been attributed, in part, to 
the heavy reliance of HTS in the drug discovery process  [146] . 
Fragment-based ligand screens provide an alternative to 
HTS and address a number of these problems  [147] . NMR is 
the primary method being used to screen fragment-based 
libraries  [148] . 

  4.1   Library design 
 Chemical libraries used for fragment-based screening are 
significantly different from the typical library used in a 
traditional HTS assay. This is because the goals are funda-
mentally different. In an HTS assay, the aim is to identify 
3 – 5 chemical classes with the best binding affinity ( K  d   ≤  µM) 
to the therapeutic target. These compounds go through an 
iterative series of chemical modifications to maximize binding 
affinity. Unfortunately, this process generally results in an 
increase in hydrophobicity and MW and a decrease in solu-
bility  [149] . Both factors are detrimental for evolving the lead 
compound into a drug. Critical absorption, distribution, 
metabolism and excretion (ADME) and pharmacokinetic  [150,151]  
issues are typically dealt with at a later point in the 
drug discovery process  [152,153] . Conversely, the goal of a 
fragment-based screen is to identify a number of weak 
binders ( K  d   ∼  µM to mM) that bind in separate but proximal 
sub-regions of a functionally relevant ligand-binding site. In 
effect, the ligand-binding site is chemically mapped with 
low MW compound fragments ( ≤  200 – 300 Da)  [154,155] . 
Chemical linking and optimization of the individual frag-
ments generally results in a substantial improvement in 
binding affinity, where  K  d  in the nM range are commonly 
observed  [156] . Importantly, an additional goal of the 
fragment-based approach is to maintain drug-like ADME 
and pharmacokinetic characteristics. This is a fundamental 

consideration in the design of the fragment-based 
screening library. 

 A number of reviews have discussed in detail the underlying 
theory in the construction of a fragment-based chemical 
library  [154,155,157-159] . Basically, the objective is to identify 
low MW compounds ( ≤  200 – 300 Da) that correspond to 
fragments of known drugs, adhere to the Lipinski ‘rule of 5’ 
and exhibit high aqueous solubility. A comparable approach 
is using a fragment-based library composed of biologically 
active compounds  [160] . The relatively small libraries are usually 
composed of hundreds to thousands of compounds. Main-
taining a chemical library of low MW compounds has a 
number of advantages that address common problems associated 
with HTS. First, it maximizes ligand efficiency, the number 
of nonhydrogen atoms relative to free energy of binding  [161] . 
The estimated maximum affinity per atom is  ∼  1.5 kcal mol -1 , 
which is approached by known drugs and fragments. 
Conversely, typical HTS leads exhibit a ligand efficiency of 
 ∼  0.3 kcal mol -1   [159] . Second, fragment-based libraries have 
a 10 – 1000 times higher hit rate relative to traditional HTS 
corporate libraries  [154] . Third, fragment-based libraries more 
efficiently cover structural space. This occurs because the 
number of low MW compounds is significantly reduced. 
Instead of a potential 10 60  compounds that a HTS library is 
compared against, there are only  ∼  14 million compounds 
with MWs below 160 Da  [162] . Thus, even a few thousand 
compounds represent a significant percentage of the possible 
number of compounds for a fragment-based library, which 
cannot be reasonably approached with higher MW HTS 
libraries. Additionally, because fragments are commonly 
linked to generate chemical leads, a fragment-based screen is 
actually examining a combinatorial number of compounds 
relative to the actual size of the library that is experimentally 
tested  [163] . Fourth, smaller chemical libraries are signifi-
cantly easier to handle, store, replenish and maintain quality 
control. Finally and most importantly, fragment-based libraries 
generate better-quality leads with a higher success rate  [164] . 
This results from the smaller size of the fragments and the 
associated ‘drug-like’ features. The smaller structures permit 
a greater flexibility to ‘grow’ the fragments to improve bind-
ing affinities before inducing detrimental physiochemical 
characteristics that is common with HTS leads.  

  4.2   NMR ligand screening methodologies 
 High-throughput NMR (HTS-NMR) ligand affinity screens 
cannot compete with the efficiency of traditional HTS that 
routinely assay millions of compounds in a few weeks  [165] . 
Nevertheless, HTS-NMR is perfectly amenable to screening 
a fragment-based library composed of hundreds to thou-
sands of compounds  [148,164,166] . The value of NMR for 
HTS is its unique capability of providing direct evidence for 
binding between the ligand and protein target while subse-
quently being able to identify the binding site and determin-
ing a co-structure of the protein–ligand complex  [91,167-170] . 
An important advantage of NMR is the versatility of the 
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technique to monitor protein–ligand interactions through a 
variety of physical measurements. Observation of a binding 
event may occur through changes in line-width and/or peak 
intensity (T 1  and T 2  relaxation changes)  [171,172] , change in 
the measured diffusion coefficient for the ligand  [173-175] , 
CSPs for either the ligand or protein  [176-178] , induced trans-
ferred NOE for the ligand  [179,180] , a saturation transfer dif-
ference between either the protein or bulk solvent to the 
ligand  [181,182] , or the appearance of new NOEs and/or 
intermolecular NOEs between the ligand and protein  [167,183] . 
Correspondingly, a variety of different NMR-based screens 
have been described ( Table 1 ). The various HTS-NMR meth-
ods have a range of distinct advantages that include: i) elimi-
nating a need for isotopically labeled proteins; ii) reducing the 
amount of protein required for the screen; iii) increasing 
the throughput of the assay; iv) identifying the ligand-binding 
site; v) determining a protein–ligand co-structure; and vi) elimi-
nating the protein MW limitation. NMR fragment-based 
screens have resulted in a number of chemical leads that 

have advanced to clinical studies  [164] . A recent example is 
the discovery of novel  β -secretase inhibitors  [184] . Cyclic 
amidine with an isocytosine core fragments were identified 
from an NMR screen as a lead hit. The further optimization 
of these fragments is illustrated in  Figure 4A , which led to a 
unique dihydroisocytosine inhibitor with a cellular activity 
of 470 nM ( Figure 4B ).   

  5.   Metabolomics 

 The discovery of a compound with a high-affinity to a 
therapeutic target does not necessarily lead to a marketable 
drug. Chemical leads routinely fail in preclinical and clinical 
trials because of problems with bioavailability, efficacy and 
toxicity  [6,7] . Typically,  in vivo  assays and animal studies 
attempt to identify these problems prior to proceeding with 
clinical trials. But, animal studies also have significant practical 
limitations  [185-187] . They are fundamentally low-throughput, 
requiring kilogram quantities of the lead compound and 

  Table 1     . Description of different NMR-based screens.   

 Screening 
technique 

 Method of detecting 
ligand binding 

 Labeled 
protein? 

 Protein–ligand 
co-structure? 

 Limited by 
protein MW? 

 Ref. 

3-FABS Chemical shift changes, 
requires fl uorinated ligands

No No No  [252] 

Affi nity NMR Change in translational 
diffusion

No No No  [174] 

AIDA-NMR Line-broadening change (T 2 ) 
due to protein–protein 
complex formation, labeled 
protein or Trp reporter in 
ligand binding site

Yes/No Yes/No Yes  [253,254] 

FAXS Line-broadening change (T 2 ) 
due to ligand competition, 
requires fl uorinated ligands

No No No  [255] 

MS/NMR Retention on size-exclusion 
column and chemical 
shift changes

Yes Yes Yes  [256] 

Multi-step NMR Line-broadening change (T 2 ) 
and chemical shift changes

Yes Yes Yes  [237] 

NOE pumping Transfer NOEs No No No  [183] 

RAMPED-UP NMR Chemical shift changes, 
screening multiple proteins

Yes No Yes  [257] 

SAR by NMR Chemical shift changes Yes Yes Yes  [258] 

SLAPSTIC Line-broadening change (T 2 ) 
due to protein spin label

Yes No No  [259] 

STD NMR STD from protein No No No  [181] 

WaterLOGSY STD from solvent No No No  [182] 

   MW: Molecular weight; MS: Mass spectrometry; NOE: Nuclear overhauser effect; SAR: Structure–activity relationship; STD: Saturation transfer difference.   
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weeks to months to complete a single study. Furthermore, 
there is typically little structure–activity relationship or feedback 
when a negative result is encountered, because such a small 
number of compounds are routinely evaluated. NMR-based 
metabolomics is providing drug-discovery with a filter to 
identify  in vivo  activity, selectivity and toxicity problems 
before proceeding with animal trials. Furthermore, NMR 
metabolomics techniques can be used as part of an animal 
study to identify and evaluate the mechanisms of drug 
induced toxicity. Similarly, mass spectrometry is also rou-
tinely used to monitor the metabolome  [188,189]  and is com-
plimentary to NMR  [190] . Mass spectrometry is significantly 
more sensitive than NMR, but requires the inclusion of 
separation techniques because of the low MW diversity 
of metabolites and is limited to detecting metabolites that 
readily ionize. Conversely, NMR typically only observes the 
most abundant metabolites, but requires minimal sample 
preparation and can readily identify each metabolite 
from the multiple distinct peaks in its NMR spectrum. 
Correspondingly, a number of techniques have been proposed 
that combine NMR and mass spectrometry data for the 
analysis of metabolomic samples  [190-195] . The application of 
NMR metabolomics in drug discovery has been recently 
reviewed  [196-198]  and is only briefly summarized here. 

 Basically, a 1D  1 H NMR spectrum of a lysed cell captures 
its metabolic state. The metabolome directly measures the 
biological activity of the proteome because relative concen-
trations of various metabolites are dependent on enzymatic 
activity. Peak intensities in an NMR spectrum reflect both 
the abundance and the presence of specific metabolites and 
the corresponding activity of an enzyme. Environmental 
stress and drug activity will perturb protein activity result-
ing in changes in the metabolome that can be monitored 
by NMR. Principal component analysis is a well-established 
statistical technique that is commonly used to analyze 
1D  1 H NMR spectra to monitor these perturbations in the 
metabolome  [199] . The multivariate NMR spectrum is 
converted to a single point in principal component-space 

that is usually represented by a 2D scores plot. Similar NMR 
spectra will cluster together in a 2D scores plot. The 
differential NMR metabolomics approach  [200,201]  uses com-
parative clustering patterns in a 2D scores plot to monitor 
the  in vivo  activity and selectivity of a chemical lead. Simply, 
four different cell cultures are prepared with 10 replicates 
each for a total of 40 NMR samples. The four cultures 
correspond to: i) wild-type cells; ii) wild-type cells treated 
with the chemical lead; iii) mutant cells where the protein 
target of the chemical lead has been inactivated; and 
iv) mutant cells treated with the chemical lead. The metab-
olome for the wild-type cells and mutant cells will be dif-
ferent because of the inactivated protein resulting in distinct 
clustering in a 2D scores plot. The relative clustering of the 
wild-type cells and mutant cells treated with the chemical 
lead will determine the compound’s  in vivo  activity and 
selectivity. Specifically, if the wild-type cells treated with the 
chemical lead cluster together with the mutant cells with 
and without the addition of the chemical lead, this would 
then indicate that the chemical lead is active and selective 
 in vivo . Inhibiting the cellular activity of the therapeutic 
target either chemically or genetically results in the same 
change in the metabolome. Different clustering patterns 
occur in the 2D scores plot if the chemical lead is inactive, 
inhibits multiple proteins or inhibits a different protein 
from the expected protein target  [201] . Any of these out-
comes would clearly indicate a problem, suggesting that 
other compounds with a positive response from the dif-
ferential NMR metabolomics method should be prioritized 
for follow-up animal studies. The method has been suc-
cessfully applied to demonstrate the selective activity of 
8-azaxanthine against urate oxidase in  Aspergillus nidulans  
( Figure 5A ) and the promiscuous activity of D-cycloserine in 
 Mycobacterium smegmatis  ( Figure 5B ). 

 The differential NMR metabolomics method is limited to 
disease states that can be modeled by a cell system. Also, the 
technique requires generating a viable mutant cell line where 
the activity of the target protein has been eliminated. This 
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may be challenging if the protein is critical or essential to 
the cell’s viability. In these cases, a number of alternate strat-
egies can be used instead of simply generating a knock-out 
mutant. These include: a mutant protein with only dimin-
ished activity, supplementing the cell media or growth con-
ditions to compensate for the inactive protein, treating the 
cells with sub-lethal dosages of siRNA or a known inhibitor 
of the target protein. The differential NMR metabolomics 
method is also predicated on the assumption that inactivat-
ing the target protein will perturb the metabolome in a 
manner that is detectable by NMR. It is plausible that 
eliminating the biological activity of a particular protein will 
not disturb the cellular metabolome or it may affect the 

relative flux of metabolites in a concentration range that is 
too low to be detectable by NMR. 

 NMR metabolomics can also be used to monitor body 
fluids (blood, urine, saliva, and so on) to identify drug 
induced toxicity in animal trials. This can be achieved by 
the identification of metabolites known to be associated 
with toxicity, such as trimethylamine N-oxide and renal 
dysfunction or lipids and phospholipidosis  [202-205] . Alterna-
tively, a comparative analysis with compounds known to 
induce toxicity with other compounds with no known side 
effect can be used to generate a predictive model for 
unknown compounds based on the correlated changes in 
the metabolome and NMR spectrum  [202,206] . Again, the 
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Figure 5. Illustration of the differential NMR metabolomics method. A. Analysis of the in vivo activity of AZA in Aspergillus nidulans 
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Figure 5A was reprinted with permission from [201], Copyright 2006 by American Chemical Society. Figure 5B was reprinted with permission from [200], 
Copyright 2006 by American Chemical Society.
AZA: 8-Azaxanthine; DCS: D-cycloserine; PCA: Principal component analysis.



Advances in nuclear magnetic resonance for drug discovery

1088 Expert Opin. Drug Discov. (2009) 4(10)

method assumes that the metabolites associated with a toxic 
event are in a concentration range observable by NMR and 
present in the body fluid being examined. Thus, a lack of a 
change in the metabolite composition and concentration in 
a body fluid would only eliminate toxicities previously dem-
onstrated to be observed by NMR for compounds with 
known toxic side effects. Additionally, the metabolome is 
not completely defined and a reference spectrum for every 
observable metabolite is not currently available. Therefore, 
identifying every metabolite that is perturbed by treatment 
with a drug candidate may not be readily obtained. Never-
theless, there is an ongoing effort to catalog the NMR 
observable metabolites and there are a number of NMR 
metabolomic databases currently available  [207-209] . 

 NMR-based metabolomics have two important contributions 
to the current drug discovery protocol. First, the differential 
NMR metabolomics method could serve as a filter before 
proceeding with  in vivo  animal trials with lead candidates. 
Only compounds that proved to be active and selective for 
the desired protein target would continue on for animal 
testing. Other compounds would be eliminated or proceed 
through further rounds of chemical optimization. Changes 
in the structure that do not affect binding affinity, but are 
correlated with preferred activity in the differential NMR 
metabolomics screen could be pursued. Second, NMR-based 
metabolomics would augment animal studies. Initially, 
 in vivo  animal models are primarily focused on efficacy. The 
efficiency of these assays would be greatly improved by 
simultaneously analyzing animal biofluids by NMR for tox-
icity. Animal-based studies are typically time intensive assays 
requiring weeks to complete and usually result in sacrificing 
the animals. Furthermore, a detailed autopsy may be required 
to analyze the efficacy of the drug and identify any potential 
toxicity issues. NMR-based metabolomics may effectively 
identify a toxicity problem early enough in the study to stop 
the test, saving valuable time and resources. Alternatively, 
the lack of any observable toxicity problem by NMR in 
combination with an overall positive outcome for a particular 
lead candidate in an animal assay would support proceeding 
with NCE and clinical trials.  

  6.   Functional annotations and new 
therapeutic targets 

 To date, 916 genomes have been completely sequenced with 
an additional 3454 in progress resulting in  ∼  6.5 million 
protein sequences  [210-214] . Sequence similarity techniques 
may provide functional information for, at most, 50% of 
these proteins  [215-217] . Valuable therapeutic targets are inevi-
tably hidden within these vast numbers of unannotated pro-
teins, providing an indispensable wealth of information for 
developing novel drugs  [218-220] . Assigning a function is an 
essential first step for determining the potential utility of an 
unannotated protein in treating human disease; but this is 
an extremely challenging and time-consuming endeavor. 

Drug discovery cannot simply focus on the crucial or essential 
proteins because non-essential proteins play important roles 
in antibiotic resistance, cancer and tumor differentiation and 
metastasis, and the long-term development of Alzheimer, 
cardiovascular disease, diabetes and Parkinson disease. NMR 
is also making a significant contribution to the functional 
assignment of these unannotated proteins to identify new 
drug discovery targets. 

 The functional annotation screening technology using 
NMR (FAST-NMR)  [221,222]  combines the NMR methodol-
ogy described above in a single assay to assign a function 
through similarities in functional epitopes or ligand-binding 
sites. This is based on the premise that amino-acid residues 
associated with active-sites are evolutionary-stable relative to 
the remainder of the protein’s sequence  [223-225] . Essential to 
this understanding is the knowledge that a protein’s active-site 
has been optimized by nature to interact with a unique and 
specific set of targets. Protein surfaces are exquisitely selective 
and only bind ligands at very specific locations  [226-229] . 
Binding promiscuity is inherently detrimental to the overall 
biological process, which is evident by the high specificity of 
interactions that have been well-documented in numerous 
metabolic and signaling pathways  [230-232] . This understanding 
is also an essential aspect of drug discovery and supports the 
observed rationale that high-affinity and selective compounds 
targeting a specific protein can be developed and used 
therapeutically  [233-236] . 

 FAST-NMR combines fragment-based ligand affinity 
screens with rapid determination of protein–ligand co-structures 
and bioinformatics. Specifically, a chemical library contain-
ing only biologically active compounds (cofactors, drugs, 
metabolites, inhibitors, substrates and so on)  [160]  are 
screened by NMR using a tiered approach  [237] . Potential 
ligands are rapidly identified by a 1D  1 H line-broadening 
experiment. These hits are then confirmed by CSPs in a 2D 
 1 H- 15 N HSQC spectrum, where the CSPs cluster together 
to identify a specific ligand-binding site. The CSPs are then 
used to quickly determine a protein–ligand co-structure  [112]  
that provides the input for the CPASS (comparison of protein 
active-site structures) software and database  [238] . CPASS com-
pares the experimentally determined ligand-defined-binding 
site against a database of  ∼  35,000 unique ligand-binding sites 
identified from the Protein database. A similarity in the sequence 
and structural characteristics of the ligand-defined-binding site 
from the unannotated protein with a ligand-binding site for 
a protein of known function is then used to leverage a 
functional assignment. 

 FAST-NMR and CPASS were used to assign a function 
to hypothetical proteins SAV1430 from  S. aureus   [222]  and 
PA1324 from  Pseudomonas aeruginosa   [239] . This analysis 
suggests SAV1430 is similar to an SH2 domain and may 
function as part of a multi-protein complex within the 
[Fe-S] cluster assembly network. SAV1430 may exhibit 
activity comparable to NifU or may regulate NifU activity. 
PA1324 may be involved in the binding and transport of 
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sugars or polysaccharides as part of the peptidoglycan 
matrix required for biofilm formation. FAST-NMR has 
also been used to suggest an evolutionary relationship 
between the bacterial type III secretion system and eukary-
otic apoptosis  [240] . This is based, in part, on the similarity 
in ligand-binding sites between PrgI (forms the needle complex 
in the type III secretion system) and Bcl-xL (involved in 
eukaryotic apoptosis).  

  7.   Expert opinion 

 The quantity of new drugs emerging from the pharmaceutical 
industry has declined dramatically. A number of self-inflicted 
factors have contributed to this decrease in productivity that 
has resulted from a need to decrease cost and, ironically, 
from a need to increase efficiency. Traditional business prac-
tices that include outsourcing, metrics and short timelines 
have been implemented into the drug discovery process. 
Scientific discovery is effectively being forced to adhere to 
an assembly-line protocol  [23] , isolating disciplines, diminishing 
creativity and negatively affecting morale  [5] . This is an 
antithesis to a successful drug discovery effort, which is fun-
damentally interdisciplinary, complex and unpredictable. 
Resolving these serious problems will require a major para-
digm shift in the culture of the pharmaceutical industry; 
nevertheless, evolving drug discovery technologies are pro-
viding avenues to improve the success rate  [164]  within these 
self-imposed limitations. 

 In this context, recent developments in NMR are greatly 
expanding its value to the drug discovery process. Specifi-
cally, NMR is a valuable and complimentary technique to 
X-ray crystallography for the high-throughput structure 
determinations of protein and protein–ligand complexes. It 
has been recently demonstrated that a significant percentage 
(20 – 40%) of protein structures are only solvable by NMR. 
Also, rapid (30 – 45 min) protein–ligand co-structures are 
routinely obtainable by NMR as part of an iterative drug 
design program. This speed is essential given the short time-
lines imposed on a drug discovery project. Additionally, 
fragment-based NMR affinity screens are providing a more 
efficient and productive alternative to traditional HTS for 
lead generation. A fundamental advantage of NMR affinity 
screens is the direct knowledge of the chemical lead’s mecha-
nism of action. This occurs because an NMR affinity screen 
identifies a specific binding interaction between the ligand 
and protein target, where the ligand-binding site can be cor-
related with the functionally relevant regions of the protein. 
Furthermore, NMR-based metabolomics can assist in the 
most challenging and problematic stage of the drug discovery 
process, turning a high-affinity ligand into a drug. This 
requires verification of  in vivo  efficacy with a corresponding 
lack of toxic side effects and acceptable ADME profiles. 
Animal models are the primary source of this information, 
but are extremely costly and time consuming, significantly 
limiting the number of leads that can be practically evaluated. 

Differential NMR metabolomics provides a simple, cheap 
and fast approach to filter-out problematic compounds and 
prioritize leads that demonstrate cellular activity and speci-
ficity while confirming the  in vivo  target(s) of the com-
pound. Similarly, NMR metabolomics can be incorporated 
as part of the animal trials to monitor body fluids and ascer-
tain possible toxic side effects of chemical leads. NMR is 
also being used to functionally annotate the proteome and 
identify novel drug discovery targets. 

 Despite the obvious important contributions of NMR to 
the drug discovery process, the pharmaceutical industry has 
reduced or completely eliminated biomolecular NMR groups 
over the last number of years. Again, this short-sighted deci-
sion has been primarily driven by cost and mergers, by the 
incorrect perspective that NMR is a redundant, but costlier 
and limited version of X-ray crystallography, and by the 
large financial investment in HTS robotics along with the 
perspective that weak-binding fragments are not viable drug 
leads. The pharmaceutical industry, like other businesses, is 
cyclical and responds to short-term needs instead of long-term 
goals. Thus, I believe the reduction in biomolecular NMR 
has bottomed out and this trend will begin to reverse. This 
will be driven, in part, by the growing acceptance and suc-
cess of fragment-based ligand screens. Furthermore, the 
achievements from structural genomics and the NIH Protein 
Structure Initiative along with the new NMR metabolomics 
technologies will further stimulate a renewed interest in 
biomolecular NMR by the pharmaceutical industry. 

 Finally, our basic understanding of the mechanism for 
generating a protein–ligand complex is undergoing a dramatic 
shift from the current induced-fit model or two-state 
model  [241] . The recent application of relaxation dispersion 
NMR spectroscopy  [242,243]  and RDCs  [244]  has supported 
the selected-fit model of ligand binding, where protein 
structures exist as an ensemble of conformations that 
includes sampling a higher-energy ligand bound form in the 
apo-state. The role of both protein and ligand dynamics  [245-

247]  has been recognized as important factors in drug discov-
ery, but has been rarely utilized  [248] . Clearly, structure-focused 
drug discovery efforts will greatly benefit from the inclusion 
of a detailed NMR analysis  [249]  of the flexibility–function 
relationship. The growing recognition of the role dynamics 
plays in ligand binding is also expected to contribute to a 
revitalized interest and an improved appreciation by the 
pharmaceutical industry of the vital role for NMR in 
drug discovery. 

 A reversal in the decade-long decrease in the productivity 
of the pharmaceutical industry will obviously require more 
than the just the simple adoption of these recent advances in 
NMR. A major philosophical shift in the current approach to 
drug discovery is necessary. One potential avenue is for the 
pharmaceutical industry to move beyond the target-focused 
approach to drug discovery  [1]  and to adopt system biology 
techniques  [250] . Basically, chemical genetics  [251]  is used to 
identify desirable phenotypic responses in cell-based disease 
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models followed by the identification of the molecular target of 
the chemical probes. Once the target is identified and verified, 
traditional drug optimization techniques would be applied in 
an iterative fashion using positive feedback from the original 
cell-based assays. NMR-based metabolomics would play an 
integral component of chemical genetics as an approach to 
classifying and differentiating between different cellular pheno-
types. NMR ligand affinity screens and NMR structural biology 
techniques would continue to play important roles in the drug 
optimization stage of the process. Thus, the diversity and 
flexibility of NMR will enable the technique to continually 
expand its contribution to drug discovery as the pharmaceutical 

industry responds to business pressures and progresses beyond 
current drug discovery paradigms.     
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