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NMR metabolomics and drug discovery

Robert Powers*

NMR is an integral component of the drug discovery process with applications in lead discovery, validation, and optimization.
NMR is routinely used for fragment-based ligand affinity screens, high-resolution protein structure determination, and rapid
protein-ligand co-structure modeling. Because of this inherent versatility, NMR is currently making significant contributions
in the burgeoning area of metabolomics, where NMR is successfully being used to identify biomarkers for various diseases, to
analyze drug toxicity and to determine a drug’s in vivo efficacy and selectivity. This review describes advances in NMR-based
metabolomics and discusses some recent applications. Copyright (©) 2009 John Wiley & Sons, Ltd.
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Introduction

NMR spectroscopyis playing anintegral and continually expanding
role in the pharmaceutical industry, especially since high-
throughput screening!’ -l and structure-based drug discovery!© -8
have evolved to be the driving forces behind the discovery
process for new therapeutics.”) This process can be divided
into three major steps: lead discovery, drug optimization, and
clinical validation, and NMR makes invaluable contributions at all
stages.l'~ 15 NMRis the primary analytical tool used to confirm the
chemical structure and composition of both synthetic and natural
product chemical leads.'®'”? NMR high-throughput ligand affinity
screens high-throughput ligand affinity screens (HTS), especially
given the growing popularity of fragment-based libraries, are
a well-established component of the discovery process.'81
NMR HTS are routinely used to both validate and identify novel
chemical leads.?>2" The universal adoption of the fragment-
based approach means that the rapid screening of small chemical
libraries by NMR enables an exponential growth in the exploration
of structural space, well beyond traditional HTS methods.22-24 |n
addition to the validation and identification of chemical leads, NMR
continues to contribute to lead optimization by determining high-
resolution protein solution structures and rapid protein-ligand
co-structures.[2>2!

The recent expansion into the analysis of the metabolome
has also enabled NMR to contribute to the clinical validation
step.'32728 By far, this stage is the most challenging and
expensive component of the drug discovery process, where a
significant number of failures occur.?>3% From the analysis of
biofluids, tissues, and cell extracts, NMR can measure changes in
the metabolome resulting from the biological activity of the drug
lead.® 33! The relative concentration and flux of the hundreds to
thousands of small-molecular-weight compounds that comprise
the metabolome reflect the state of the system.34-37) As an
illustration, a compound designed to inhibit a specific enzyme
will result in changes in the concentration of substrates and
products associated with the enzyme’s activity. Thus, perturbations
in the metabolome result from drug efficacy, selectivity, and
toxicity. Additionally, the comparative analysis of the metabolome
between healthy and diseased individuals identifies metabolites
that can be used as biomarkers for the disease.l38~43

A major advantage of NMR-based metabolomic studies is the
general ease and simplicity of the methodology.”*¥ In general,
biofluids or cell lysates are simply added to a deuterated aqueous
buffer to maintain pH and provide a lock signal before transferring
to an NMR sample tube to collect a one dimensional (1D)
"H NMR spectrum.[*>=47] Because of the inherent variability in
biological samples, it is necessary to obtain 10-20 replicates and
collect a similar number of NMR spectra so that any observed
trends are statistically relevant. This collection of NMR spectra
is typically analyzed using an unsupervised statistical technique,
such as principal component analysis (PCA).[*84%1 PCA reduces
the multivariable NMR spectra into the lower dimensional PCA
space. Specifically, an NMR spectrum is reduced to a single
point in a standard two dimensional (2D) or three dimensional
(3D) scores plot. The clustering of NMR spectra in a scores plot
determines the relative similarity between the data, where spectra
that cluster together indicate a similar metabolome. Accurately
interpreting the PCA analysis of NMR spectra requires consistency
of sample preparation, data collection, and data processing.>® It
is essential that the observed clustering pattern in the PCA scores
plot reflects the anticipated perturbations in the metabolome
due to drug activity instead of an artifact from data handling
or processing.’’=>3! Thus, an additional benefit of NMR-based
metabolomics is the minimal sample manipulation, which reduces
errors in PCA clustering patterns.

In addition to monitoring global perturbations in the
metabolome based on the statistical analysis of NMR spectra,
the identity and concentration of the major metabolites affected
by the drug are also explored by NMR.>#>3! This enables specific
metabolites to be identified as potential disease biomarkers,38-43!
to determine if the drug therapy has toxic side effects,*®7! and to
identify metabolic pathways affected by the drug.>®>% The ability
to rapidly and easily monitor the in vivo activity of potential drug
candidates at the early stage of drug discovery has significant
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benefits for the effective treatment of human diseases.[°”! Clearly,
identifying compounds that exhibit diminished invivo activity,
poor specificity, or toxicity prior to conducting clinical trials is
highly desirable and extremely cost effective.l®” Similarly, using
NMR to develop accurate and non-invasive protocols for early
disease diagnostics by identifying biomarkers is tremendously
beneficial to human health. This review will discuss recent devel-
opments and applications of NMR metabolomics that are striving
to achieve these goals.

Methodology

Processing of NMR spectra

The obvious appeal of NMR-based metabolomics is the relative
ease of the methodology,?® but the success of the approach
requires judicious attention to the uniform preparation of
samples and consistent data analysis.P? Specifically, issues
such as long-term storage,'®2%3 protein removal,*®’ selection
of extraction solvent,*>! and tissue preparation®”! can all affect
the quality and reliability of the analysis. The advantage of
PCA is the extreme sensitivity of the method to subtle spectral
differences. This sensitivity may be problematic if the variability
in clustering patterns within 2D scores plot result from changes
in experimental conditions instead of monitoring perturbations
in the metabolome. One such example is the unexpected
contribution of NMR spectral noise to PCA clustering.®" The
principal component (PC) analysis of ideal metabolomics data
consisting of two NMR samples containing either adenosine
5" triphosphate (ATP) or an ATP-glucose mixture is shown in

Fig. 1. The 10 duplicate spectra were obtained by repeatedly
collecting an NMR spectrum utilizing a single sample. Surprisingly,
a significant amount of dispersion was observed along the PC2
axis despite the essentially identical data. Even more disturbing
was the observation that a single spectrum fell outside the
95% confidence level for the PCA model. Eliminating the noise
from the NMR spectra resulted in a ~5x tighter clustering
pattern and, more importantly, removed the erroneous data
point.

Given the inherent sensitivity of PCA to spectral noise, changes
in NMR chemical shifts and peak widths due to pH, temperature,
or instrument fluctuation may result in undesirable changes in
clustering patterns in 2D scores plots!® A common approach
to minimize these problems is the use of binning, where NMR
spectra are divided into regions or ‘buckets’ with widths of
0.01-0.04 ppm.[6>6] The total peak intensity within these buckets
is summed, which results in reduced resolution, but variations
between spectra are smoothed out. The binning process itself
may also induce errors that are caused by the definition of the bin
edge. Ideally, the bin edge should correspond to a baseline region,
but variations between spectra may cause a bin edge to occur
at a peak. This occurs if a simple and constant bin definition is
used for each spectrum. Recent techniques use intelligent binning
to optimize the bin edge definition, which does not require a
constant bin width. De Meyer etal.’”} describe an automated
binning protocol that uses variable bin widths and a bin quality
factor but does not require reference spectra or user-defined
parameters (Fig. 2a). The bin quality factor strives to maximize the
peak intensity within the bin while minimizing the peak intensity
at the bin edges. Noise bins are discarded.
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Figure 1. PCA scoring plots of the set of 10 ATP ((J) and ATP-glucose (®) NMR spectra (a) with noise and (b) removal of the spectral noise by only binning
NMR resonances. The results clearly demonstrate the increased variability and dispersion in the scores plot due to noise (Reprinted with permission from

Ref. [51], Copyright 2006 by Elesvier).
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Figure 2. (a) Adaptive Intelligent (Al)-binning clearly isolates the two large R-1 acid glycoprotein peaks (AAG1 and AAG2) in separate bins (solid lines), in
large contrast to the bins obtained after standard, equidistant binning (dashed lines), where only equidistant bin 3 is not a mixture of different peaks.
(Reprinted with permission from Ref. [67], Copyright 2008 by American Chemical Society). (b) Left: the spectral region of interest in nine spectra from
the hydrazine dataset, one doublet from the AB type spectrum of citrate, a triplet from 2-oxoglutarate, and the singlet from succinate. Center: the first
three PCs and their corresponding normalized eigenvalues of the spectral region of interest. Right: the spectral region of interest after application of the
procedure for the individual peak alignment. (Reprinted with permission from Ref. [68], Copyright 2008 by Elesvier).

Peak alignments between spectra are an alternative approach
to binning and assist in the identification and quantification of
metabolites present in the metabolome sample.>>%° A number
of approaches have been described to align 1D and 2D "H NMR
spectra collected on metabolomic samples.°87°9-721 Stoyanova
etal®® describe a protocol using PCA to identify regions of a
spectrum that experience frequency or phase shift. Specifically,
the second PC (P,) is sensitive to frequency shifts and will display
a derivative shape when frequency shifts are a dominate factor.
Subsections of the spectra shown to correlate with P, are then
aligned by shifting the frequencies of the peaks to an average
frequency. The procedure is repeated until all subsections of
the spectrum that correlate with P, are aligned. The analysis of
57600 "H NMR spectra of rat urine for a hydrazine toxicity study
demonstrates the frequency shift observable in a metabolomics
study (Fig. 2b). The PC analysis of the NMR spectra without peak
alignment indicates the derivative shape 7’2 to dominate, and
frequency shifts contributes ~15% to the total variance. Aligning
the NMR spectra and adjusting for the frequency shifts results in
a loss of the derivative shape and a drop in contribution to the
total variance to ~2%. Thus, the PC analysis is reflecting changes
in the metabolome composition (desired outcome) instead of
subtle chemical shift changes due to minor changes in pH, salt
concentration, and temperature, or instrument stability.

Assigning NMR metabolome spectra

PC analysis of NMR metabolomics data provides a rapid ap-
proach to identify global trends and relationships. Alternatively,
detailed analysis of the identity and concentration flux of
metabolites provides specific comparisons that enable the deter-
mination of disease biomarkers and the identification of affected
metabolic pathways. This is a relatively challenging endeavor
due to the complexity of the metabolome and the lack of ref-
erence NMR spectra. First, the metabolome is not completely
defined, may contain an infinite number of compounds, and is
species dependent,”3! where the number of plant metabolites
has been estimated to be 200 000.7% The Kyoto encyclopaedia of
genes and genomes (KEGG) (http://www.genome.ad.jp/kegg/),”>!
MetaCyc (http://metacyc.org/),"®! and the Human Metabolomel®”!
databases contain the extent of what is known regarding
metabolic pathways. Similarly, the Madison Metabolomics Con-
sortium database (http://mmcd.nmrfam.wisc.edu/),?® Human
Metabolome database (http://www.hmdb.ca/),?”! and COLMAR
Metabolomics Web Server (http://spinportal.magnet.fsu.edu/)3!
are recent efforts to accumulate both 'H and '>C NMR spectra
assignments for known metabolites.

These resources are enabling reliable assignments of NMR
spectra to determine both the identity and concentration for
the majority of metabolites in an NMR sample.”* Nevertheless,
assigning 1D "H NMR spectra for metabolomic samples is still
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Figure 3. (a) One-dimensional 'H NMR spectrum of an equimolar mixture of the 26 small-molecule standards. (b) Two-dimensional 'H-"3C HSQC NMR
spectra of the same synthetic mixture (red) overlaid onto a spectrum of aqueous whole-plant extract from A. thaliana (blue). (Reprinted with permission

from Ref. [69], Copyright 2008 by American Chemical Society).

considerably challenging because of significant peak overlap and
the presence of uncharacterized metabolites.”” Instead, the use of
2D NMR techniques is commonly used to analyze the composition
of metabolomic samples. The fast metabolite quantification (FMQ)
by NMR method described by Lewis et al.®”) uses a series of 2D
TH-13C heteronuclear single quantum coherence (HSQC) spectra
collected for mixtures of standard metabolites over a range of
concentrations.[” An experimental biological sample is then used
to collect a 2D "H-"3C HSQC spectrum, where peak intensity and
chemical shifts are compared against the reference set to identify
the metabolites and their corresponding concentration (Fig. 3).
Fifty metabolites were identified in the biological extracts from
Arabidopsis, alfalfa sprouts, and yeast with concentrations ranging
from 230 mM to 40 uM.

Integrating NMR and MS metabolomic data

Mass spectroscopy (MS) has traditionally been used to detect
perturbations in the metabolome,”87% where NMR and MS
provide complimentary approaches to the analysis of metabolomic
data.®? An advantage of MS is its relatively high sensitivity and
ability to monitor concentration fluxes for minor components
that are typically undetected by NMR.7879 Conversely, MS

typically requires a hybrid approach because of the low-molecular-
weight distribution of metabolites (Fig. 4a). Including gas or liquid
chromatography to separate compounds with similar molecular
weight (MW) may remove or perturb the relative concentration of
metabolites. Also, MS is limited to detecting metabolites that are
able to ionize well. NMR has similar limitations and is generally
restricted to observing metabolites of high concentration. As a
result, a number of techniques have been proposed that combine
NMR and MS data for the analysis of metabolomic samples.[8-85!
A PCA approach that combines 1D "H NMR data with desorption
electrospray ionization mass spectrometry (DESI-MS) data was
described by Chen et al.®"! The approach was applied to urine
samples collected from mice to differentiate between healthy
mice and mice with lung cancer (Fig.4b). Simply, 2D scores
plot are calculated separately for the NMR and DESI-MS datasets
using a reduced compound dataset. The reduced compound
dataset is simply subregions from both the NMR and MS spectra
that corresponds to peaks associated with six compounds that
distinguish the biological samples. Since the PCs from the NMR 2D
scores plots are independent of the DESI-MS data, the NMR PC1
values are simply added to the DESI-MS PC values and become
the third dimension in a 3D scores plot. The result is a higher
separation of the biological samples in the PC space.

www.interscience.wiley.com/journal/mrc

Copyright (© 2009 John Wiley & Sons, Ltd.

Magn. Reson. Chem. (2009)



NMR metabolomics and drug discovery

0xZ

(a) 04
] B E coli
034 [] S cerevisiae
= ]
2
S 021
r
&
= ]
0.1 1
0-
o o o o o o o o 2
o © o © g & © v o 8 o
23232332 ;:¢
l g g S 28 g & 3
- & & F b O ~ & F
MW range

Current Opinion in Microbiclogy

Figure 4. (a) Histogram of molecular weights of typical microbial metabo-
lites (Reprinted with permission from Ref. [73], Copyright 2004 by Elsevier).
(b) 3-D score plot combining PCA of NMR and DESI-MS data comparing
healthy mice (C1 and C3) with mice with lung cancer (T2 and T4) (Reprinted
with permission from Ref. [81], Copyright 2006 by John Wiley & Sons).

Applications
Disease biomarkers

One major promise of NMR metabolomics is the identification
of biomarkers from biofluids for early disease diagnosis.l’8! The
approach is straightforward in concept: compare biofluids from
healthy and diseased individuals to identify metabolites uniquely
correlated with the disease state. Furthermore, it has the added
advantage of being rapid and non-invasive, requiring the simple
collection of urine, blood, or saliva samples from patients. Of
course, there are inherent challenges and limitations in the
use of biomarkers.®® Fundamental variabilities in an individual’s
metabolome resulting from age, gender, genetics, environmental
exposure, behavior, or diet differences may mask the impact of a
disease orincorrectlyimply the presence of adisease. Other factors,
such as the collection, storage, and handling of the biological
samples®263] or measurement errors,®"%4 may also compromise
the correct identification and utility of biomarkers.

NMR-based metabolomics have been used to identify bio-
markers associated with a variety of diseases including asthma,®”!
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Figure 5. (a) Results of supervised principal component discriminant
analysis (PC-DA) of plasma samples from run-in visits (visits 1 and 2).
A good distinction between diabetic patients and healthy volunteers as
well as separation by gender is observed (Reprinted with permission from
Ref. [95], Copyright 2006 by Blackwell Publishing Ltd). (b) 3D PCA scores
plot based on covariances of the five NMR bin intensities used in the
cancer models. Pancreatic control samples are shown as open circles,
while pancreatic cancer samples are shown as solid black circles (Reprinted
with permission from Ref. [89], Copyright 2006 by Springer Science).

arthritis, 88 cancer,®°-°1  cardiovascular,®?  diabetes,[93-%!

neurodegenerative,®®”) and pathogen infections.®®! As an
illustration, a clinical study described by van Doorn et al.®> demon-
strates the use of 1D "H NMR analysis of blood serum samples to
distinguish between healthy volunteers and type 2 diabetes melli-
tus (T2DM) patients. Eight healthy male and female volunteers and
eight male and female patients diagnosed with T2DM had blood
serum drawn twice a week over a 6-week period. A PCA of the
NMR spectra (Fig. 5a) shows a large differentiation based on both
the disease state and gender of the participants in the study. The
discrimination is maintained even if the glucose resonances are
removed from the NMR spectra. The T2DM biomarkers permitted a
further study to determine the effect of thiazolidinedione therapy
to treat T2DM. A similar clinical study described by Beger et al.’®”’
was conducted to identify biomarkers for pancreatic cancer, a
disease with a high mortality rate (1-year survival rate of 20%) be-
cause of difficulties related to early diagnosis. Lipid extracts from
plasma samples were collected from 90 healthy volunteers and
100 patients with pancreatic cancer. A subset of only four or five
bins from the complete NMR spectra was used to create a partial
least squares-discriminant function (PLS-DF) model that statisti-
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cally discriminated between healthy individuals and patients with
pancreatic cancer (Fig. 5b).

Drug toxicity

Drug toxicity is a very challenging, costly, and pervasive problem
in drug discovery,[?%3099-1011 which is primarily caused by
the inherent variability in a patient’s response to a specific
therapy.['92-194 Even in some recent high-profile cases that
resulted in the removal of drugs from the market,'%! the vast
number of individuals administered the drug did not suffer
serious side effects.!'®! Generally, only a small percentage of
the population suffers serious complications caused by a drug.
Ideally, it would be best to identify these individuals prior to
starting a drug therapy."'%71%8! This would permit general access
to the drug and its corresponding benefits to the majority of the
population. It is also highly desirable to identify potential drug

toxicity events prior to a treatment progressing to serious injury
or death.

Similar to its application in identifying biomarkers, NMR
metabolomics is becoming an essential tool for the identification
and evaluation of drug toxicity.?838°657) The approach is
comparable to the identification of biomarkers: biofluids from
animals or patients are analyzed before and after treatment with
a drug candidate by 1D "M NMR and PCA. Any differences
in the metabolome that have been associated with serious
toxic events, such as liver damage, would be used to identify
a toxicity problem with the drug candidate. The approach is
demonstrated by a study conducted by Robertson etal., "%
where Wistar rats were treated with two known hepatotoxicants
(CCly, @-naphthylisothiocyanate) and two known nephrotoxicants
(4-aminophenol, 2-bromoethylamine (BEA)). Urine samples were
collected daily from the rats and analyzed using 1D "H NMR
and PCA. The 3D scores plot comparing drug treated rats
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Figure 6. (a) 1D "H NMR spectra of urine from Wistar rats dosed with two known hepatotoxicants and two known nephrotoxicants. Combined PCA
analysis of all toxicant treatments (filled symbols) and all untreated samples (open circles). Toxicant data are as follows: squares = CCls, hexagons =
a-naphthylisothiocyanate (ANIT), diamonds = 4-aminophenol (PAP), and triangles = 2-bromoethylamine (BEA). The results demonstrate the clear onset
of toxicity (Reprinted with permission from Ref. [109], Copyright 2000 by the Society of Toxicology). (b) Score plots from 1D "H NMR spectra of urine
collected from 7-week-old male Han Wistar rats comparing the postdosed samples of the control group (group 1) and the groups dosed with the five
compounds (groups 2-6). The samples are colored according to group. Group 3 was determined to have an extreme excretion of choline and the two
compounds were excluded as viable drug candidates (Reprinted with permission from Ref. [110], Copyright 2006 by American Chemical Society).
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non-selective inhibition of target and secondary protein, and (d) active, non-selective preferential inhibition of secondary protein. Labels correspond to
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inactive urate oxidase mutant (uaZ14) (x), wild-type with AZA (M), uaZ14 mutant with AZA (®), and wild-type cells (¢). Results clearly demonstrate
the selective activity (see Fig.7b) of AZA (Reprinted with permission from Ref. [31], Copyright 2006 by American Chemical Society). (b) Analysis of the
in vivo activity of D-cycloserine (DCS) in mycobacteria targeting alanine racemase. PCA scores plot comparing wild-type (mc?155) (M), inactive D-alanine
racemase mutant (TAM23) (@), DCS resistant mutants (GPM14 (#), GPM16 (A)), restored D-alanine racemase activity mutant (TAM23 pTAMU3) (" )
mc?155 with DCS (M), and TAM23 with DCS (@), GPM14 with DCS (), GPM16 with DCS (), and TAM23 pTAMU3 with DCS (W). The results clearly
demonstrate the active, non-selective inhibition of DCS (see Fig. 7¢c). The secondary target of DCS is predicted to be D-alanine-D-alanine ligase (Reprinted
with permission from Ref. [32], Copyright 2006 by American Chemical Society).
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relative to control samples demonstrates a clear differentiation
between healthy rats and those with the onset of toxicity (Fig. 6a).
Dieterle etal.!''% used a similar approach to evaluate potential
drug candidates during the early stage of development. Again,
Wistar rats were dosed with five different compounds, where
urine samples were collected and analyzed by 1D "H NMR and
PCA. A 2D scores plot identified two compounds in Group 3
that were outliers (Fig.6b). Further NMR analysis determined
that the two compounds induced an extreme excretion of
choline, which eliminated the two compounds as viable drug
leads.

Differential NMR metabolomics

Establishing a drug candidate’s invivo efficacy and identifying
compounds with toxicity problems at the earliest stages of the
drug discovery process is preferable to encountering problems
during animal or clinical trials.'"""'? While multiple approaches
are being developed to address this challenging endeavor, includ-
ing in silco absorption, distribution, metabolism, and excretion
(ADME) protocols,[''3-113! the differential NMR metabolomics
methodology®'3? provides a straightforward experimental ap-
proach to rapidly ascertain the in vivo efficacy and selectivity of
drug candidates and to identify potential toxicity issues. The ap-
proach compares the metabolome of wild-type (wt) and mutant
(mut) cell lines under various environmental stress conditions in-
cluding drug treatments. In principle, the method can be applied
to any type of competent cells (bacteria, fungi, or human tissues).
Simply, 1D "H NMR spectra are collected from a series of cell
lysates followed by PCA, where different clustering patterns in the
2D scores plot determines the activity and selectivity of the drug
candidate (Fig. 7). In general, four different cell lines corresponding
to (i) wt cells, (ii) mutant cells, (iii) wt cells with the drug candi-
date, and (iv) mutant cells with the drug candidate are grown in
~10-50 ml of culture media. Typically, 10 replicates are prepared
for each cell line. The mutant cells have the drug'’s protein target
inactivated. In this manner, if the drug is active and selective, the
wt cells in the presence of the drug are expected to cluster with
the mutant cells with or without the drug (Fig. 7b). Effectively, the
target protein has been inactivated either chemically or geneti-
cally resulting in essentially identical changes in the metabolome.
Different clustering patterns in the 2D scores plot occur if the
drug is inactive, non-selective, or inhibiting an alternative protein
(Fig. 7).

Forgue etal.®! demonstrated the general application of the
differential NMR metabolomics technique by validating the in vivo
activity of 8-azaxanthine (AZA), an inhibitor of urate oxidase, in
Aspergillus nidulans. Small volumes of A. nidulans mycelia were
prepared in the presence and absence of AZA using wt and a
uaZ14 mutant coding for urate oxidase. As expected, wt cells in
the presence of AZA cluster together in the 2D scores plot with the
uaZ14 mutant mycelia with or without the addition of AZA (Fig. 8a).
Thisresultsuggests AZAisboth active and selective in vivo (Fig. 7b).
A similar study was performed by Halouska et al.?? to determine
the invivo target of p-cycloserine (DCS) in mycobacteria. DCS is
known to inhibit multiple proteins in vitro, but despite being used
as a second-tier antibiotic for 50 years, the in vivo lethal target is
unknown. Both D-alanine racemase (alr) and D-alanine-b-alanine
ligase (ddl) are potential targets, where a alr deletion mutant
was used to determine whether alr is the invivo target of DCS.
Again, the differential NMR metabolomics protocol uses 1D "H
NMR spectra from cell lysates of wt and mutant Mycobacterium

smegmatis in the presence and absence of DCS followed by PCA.
Interestingly, all cell cultures in the presence of DCS formed
a distinct and separate cluster from the wt and mutant cells
(Fig. 8b). This result implies that DCS inhibited a second protein
target in M. smegmatis (Fig.7c), where alr was not the lethal
in vivo target of DCS and ddl is the likely source of DCS activity in
mycobacteria.

Conclusion

The versatility of NMR has enabled the technique to make
significant and valuable contributions to the discovery, validation,
and optimization of drug leads. In a similar manner, NMR
metabolomic methodologies are aiding in the discovery of disease
biomarkers, evaluating invivo drug toxicity and assisting in
the early evaluation of lead candidates for invivo efficacy and
selectivity. The drug discovery process is an extremely challenging
and costly endeavor, but these high-risk efforts, when successful,
yield tremendous benefits to human health. NMR will continue
to expand its important role in drug discovery as evident by the
recent advances in NMR-based metabolomics.
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