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Abstract

The Human Genome Project and similar efforts have
resulted in the identification of an abundance of novel
proteins. There is a need to expedite the process of as-
signing function to novel proteins. Nuclear magnetic res-
onance (NMR) spectroscopy can be used to infer a gen-
eral biological function for a protein of unknown func-
tion by identifying compounds that preferentially bind
the protein and comparing these results against pro-
teins with defined structure and function. The Functional
NMR screen generates hundreds of data sets and a man-
ual analysis of these data sets is laborious and time-
consuming. It is hypothesized that several sub-tasks of the
Functional NMR can be automated successfully using an
integrated database and data analysis system. Our data-
base system integrates NMR data collection, processing,
analysis, and data archiving into a unified user interface.
An NMR spectra comparison algorithm is designed and
implemented to compare NMR data in the presence and
absence of a protein to ascertain if any compound-protein
binding occurred.

1. Introduction

The Human Genome Project [13], Protein Structure
Initiative [10], and other large-scale research projects
have generated a vast amount of biological information,
creating the need for database systems that can orga-
nize and analyze this information effectively [1, 4, 6].
Development of database systems to support biolog-
ical research has gained widespread momentum over
the last five years [2, 3, 4]. An important criticism of
these biological databases has been a disregard for the
analyses that may need to be performed on the data [3].
Overall, databases have not been efficiently designed to
address biological research needs. There have been re-
cent efforts to design databases (e.g., SPINE; [3, 6])
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that incorporate analytic capabilities to help answer
relevant biological research questions.

The current paper presents the design of one such
database system used to assign general biological func-
tion to an increasingly expanding repository of novel
proteins. Fundamental to our database design is the in-
clusion of strategies for subsequent data analyses. We
propose that a comprehensive database system coupled
with data analysis techniques can significantly advance
biological research.

1.1. Protein-compound binding

Proteins are basic constituents in all living organ-
isms that perform diverse functions essential for the
survival and proliferation of the organism. Small er-
rors in protein structure often cause human diseases,
making the study of proteins an important scientific
enterprise. Intrinsic to the functional activity of a pro-
tein is its interaction with other biomolecules and small
molecules such as carbohydrates, nucleic acids and vi-
tamins. Thus, the structure of a protein is optimized
to specifically bind these components as it performs its
function.

The Human Genome Project has generated a consid-
erable amount of genetic information that is inundating
the scientific community. Approximately 30,000-90,000
proteins are predicted to be encoded from the human
genome alone, where sequencing of other model organ-
isms is adding to this tremendous wealth of knowledge
[14]. Using traditional biochemical approaches to ob-
tain functional information for this immense collection
of proteins is not feasible, as years of research are typ-
ically required to identify the function of a single pro-
tein [5].

Given that “function follows form”, the Protein
Structure Initiative has focused on inferring function
from protein structures and has embarked on an ambi-
tious effort to determine a structure for all proteins. Ex-
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isting protein structures have been grouped into hier-
archical clusters of families based on structural similar-
ities. Typically, proteins with similar structural char-
acteristics have similar or related biological functions.
Thus for a large number of novel proteins, function will
be inferred based on the observation that proteins of
similar structure and sequence have related functions.
Determining accurate structures of proteins can take
several months to a year. A further extension of the
analysis of the function of a protein is by understand-
ing and identifying the biomolecules and small mole-
cules the protein binds. In a comparable manner, pro-
teins can be assigned to similar functional groups based
on similar binding interactions to small molecules and
other biomolecules.

1.2. Functional NMR

Nuclear magnetic resonance (NMR)) spectroscopy is
routinely employed to study the physical, chemical,
and biological properties of proteins at atomic resolu-
tion [7, 11, 15]. A one-dimensional (1D) 'H NMR spec-
trum for a specific small molecule or protein will con-
tain a peak corresponding to the resonance absorbance
for each unique 'H nucleus in the molecule. Depend-
ing on the complexity of the molecule, there will be
numerous 'H resonance peaks where clusters of over-
lapping peaks are very common. The complexity of an
NMR spectra can be simplified by spreading out the in-
formation into 2D, 3D or even 4-dimensions.

The Functional NMR screen is based on the knowl-
edge that a protein by nature has been optimized to
interact with a unique and specific target [12]. Such a
target that binds specifically to a protein is called a lig-
and and the site of interaction is called the active site
or binding site. The following information is obtained
from the Functional NMR screen: (1) the identity of
the ligands that preferentially bind with the unknown
protein; (2) the protein’s active binding site; and (3)
the structure of the protein-ligand binding interaction.
By comparing these results against databases of pro-
teins with known function, a general biological function
is assigned to the protein of unknown function. This in-
formation is obtained by screening a chemical library
composed of ligands with defined biological functions
such as amino-acids, carbohydrates, co-factors, fatty
acids, hormones, inhibitors, known drugs, metabolites,
nucleic-acids, substrates, and vitamins.

A crucial step in the Functional NMR screen is iden-
tifying the ligand(s) from the chemical library that
binds the protein of unknown function and ranking
their relative binding affinity. To minimize utilization
of resources, mixtures comprising three to four com-
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Figure 1. Example shows expanded regions of
NMR spectra. (A) Compound-protein spectrum;
(B) Reference spectrum. The decrease in the
peak intensities in (A) relative to (B) indicates
compound-protein binding.

pounds are used in the Functional NMR experiments
to screen the entire chemical library [9]. To identify lig-
ands that bind the protein of unknown function, 1D
NMR spectrum for each mixture of three-four com-
pounds (reference spectrum) is compared with the
1D NMR spectrum for the mixture of the same set
of compounds with the addition of the target pro-
tein (compound—protein spectrum). A change in the
intensity of the peaks, specifically a decline in the
compound-protein spectrum relative to the reference
spectrum is indicative of protein binding (Figure 1).

Spectra comparison is complicated due to several
data issues. These include the challenges of lack of a
common scale between spectra, differentiating peaks
from noise, the presence of protein NMR signals in
the compound-protein spectrum, the presence of wa-
ter and buffer NMR peaks, the variability in peak po-
sition and intensity due to instrument instability, mul-
tiple peaks attributed to each compound in the NMR
spectra, overlap of NMR peaks, and the need to prop-
erly assign the NMR peaks to each of the three-four
compounds in a mixture. Hundreds of NMR spectra
pairs will eventually need to be compared as the NMR
screening experiments are repeated for each protein of
unknown function, adding to the difficulty of manual
spectra comparison.

2. Database design

A database system has been designed and is actively
being developed to automate several components of the
Functional NMR screening process. This database sys-
tem design integrates NMR data collection, processing,
analysis and data archiving, and includes a unified user
interface. Figure 2 shows the flow diagram of the Func-
tional NMR screening process.

The three databases that are integrated in this de-
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Figure 2. Flow diagram of the Functional NMR screening process.

sign are the Compound Database, the Protein Database,
and the Compound Mixture Database. The Compound
Database is a database of more than 300 (and increas-
ing) compounds that have defined biological functions
and utility as ligands in the Functional NMR screen.
The database contains the name, structure, function,
and NMR reference spectra of these ligand compounds.
The Protein Database consists of the proteins of known
structure and function. It contains the name, sequence,
structure, function, and the similarity score for each of
the proteins against the entire Compound Database.
The Compound Mixture Database comprises informa-
tion about the ligands that make up each mixture, the
1D and 2D NMR spectra of each mixture, and the sim-
ilarity score for each ligand in each mixture for each
protein of unknown function. The NMR, experiments
are conducted using the compounds, the proteins and
the compound mixtures whose information is stored
in these databases, where the resulting NMR data is
added back to the respective databases for each execu-
tion of the Functional NMR screen.

A critical consideration in developing the database
system was to incorporate the ability to analyze data
stored in the databases. Initial NMR experiments are
conducted to obtain 1D NMR spectra for each indi-
vidual compound in the library, for the ligand mix-
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ture(s) and for the same mixture(s) in the presence of
each protein. The database design includes a compu-
tational program to compare the 1D NMR spectra ac-
quired for the compound ligand mixture and the com-
pound ligand-protein mixture to identify ligands that
show binding to the protein target. A scoring func-
tion is used to give a similarity score for each ligand
in the compound mixture. The scoring function iden-
tifies the ligands that bind the protein and provides a
means to rank the relative binding affinity of the lig-
ands. This data is stored in the Compound Mixture
Database. For ligands that are identified as binding the
protein, a second 2D NMR, experiment is required to
determine the binding-site on the protein. These po-
tential active-sites can be viewed through a graphical
user interface.

2.1. System components

An effective database design needs thoughtful con-
sideration of the organization and relationship among
its system components. Figure 3 shows the interaction
among the system components of the proposed data-
base system.

The Compound, Protein, and Compound Mixture
databases are implemented on the MySQL 4.1 data-
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Figure 3. Interaction among System Compo-
nents.

base server. MySQL is a free, fast, robust, reliable open
source relational database that supports all known
platforms and requires less hardware resources. The
computational analysis techniques for NMR spectra
comparison are implemented using Perl 5.8.6. Perl is a
free programming and scripting language that is avail-
able for most operating systems. It has extensive pro-
gramming flexibility and is very suitable for file and
string handling. Perl uses the Perl Database Interface
(DBI) to facilitate low level database interaction with
the MySQL database engine. The Perl DBI.pm module
enables Perl applications to access the MySQL data-
base transparently. The core of the user interface was
developed using CGI. The Perl CGL.pm module pro-
vides a simple interface for parsing and interpreting
query strings passed to CGI scripts. The user interface
is hosted on the Apache 1.3.33 HTTP Web Server. The
mod_perl module can be used to manage the Apache
web server, and respond to requests for web pages.
It gives a persistent Perl interpreter embedded in the
web server. Users can access the information through
a graphical user interface. The binding site on the pro-
tein structures can be viewed using VMD-XPLOR. The
whole system is implemented on a Red Hat Linux 7.3
platform.
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3. Spectra comparison algorithm

The usefulness of the Functional NMR screening
database system lies in its inclusion of data analytic
techniques to perform spectra comparison in an effi-
cient manner. The NMR screen assigns a general func-
tion to a protein of unknown function based on its sim-
ilarity with proteins of known function. A key crite-
rion for similarity comparison is the specific ligands
that bind the novel and known proteins. The identifi-
cation of ligands that preferentially bind is in turn de-
pendent on comparison of the reference spectrum and
the compound-protein spectrum. A decline in peak in-
tensities in the compound-protein spectrum relative to
the reference spectrum indicates binding. The subse-
quent task is to assign a similarity score for the ligands
in the mixture based on the strength of their binding
with the protein.

Manual comparison of NMR spectra is laborious
and time-consuming. Also, the nature of NMR spec-
tra gives rise to a number of data analyzability issues.
The spectra comparison algorithm was written and im-
plemented to automate NMR spectra comparison. For
any meaningful analysis of NMR data, the algorithm
needs to address key data analyzability issues, such as:

1. Scale: The scale of the peak intensities in a NMR
spectrum differs from spectrum to spectrum. The
lack of a common scale makes spectra comparison

difficult.

2. Noise: The problem of noise in scientific data is
well-acknowledged and NMR spectra are no excep-
tions [8]. Data analysis of NMR spectra requires
separation of noise from actual data, especially rel-
atively smaller peaks from noise.

3. Water and Buffer: Sample solutions used in NMR
experiments contain water, in which the com-
pound is dissolved, and a buffer that maintains
constant sample conditions. The NMR spectrum
of the solution will therefore contain peaks that
correspond to the water and the buffer in the so-
lution. The water and buffer regions need to be dis-
tinguished from the remaining peak regions in the
NMR spectrum and removed before data analy-
sis.

4. Peaks shift or merge: After the addition of the pro-
tein to the compound mixture containing the po-
tential ligands, some of the peaks in the resulting
NMR spectrum shift from their original position in
the reference spectrum. In some cases, the peaks
merge together to form a new peak. These shifts
or changes in peaks introduce additional complex-
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ity to the problem of finding changes in peak in-
tensities relative to the reference spectrum.

5. Owerlapping peaks: The NMR spectra some-
times contain peaks that have overlapping
regions. These peaks are often difficult to dis-
cern from each other in the graphical display
of the spectra. On the other hand, manual in-
spection of the actual data points is not feasible
(there are a total of 8192 points per spec-
trum).

The proposed algorithm addresses these data ana-
lyzability issues in the following ways:

1. Scale: The algorithm transforms the raw intensi-
ties of the NMR spectra to standardized z-scores,
thus allowing for the comparison of intensities be-
tween different NMR spectra.

2. Noise: Several methods of accounting for noise
were attempted. One of the methods involved find-
ing the median of the z-scores belonging to each
NMR spectrum. This median was used as a base-
line to differentiate real peaks from noise. Points
having z-scores below the median were considered
noise and made zero for further analyses. This
method consistently gave the best results for com-
paring NMR spectra.

3. Water and Buffer: It is known that the water peaks
occur between the frequency positions of 4.3 ppm
and 5.0 ppm and the buffer peaks occur between
the frequency positions of 3.6 ppm and 3.9 ppm.
The algorithm is designed to disregard the regions
of the spectrum that correspond to the water and
buffer peaks.

4. Peaks shift or merge: If the peak in the compound-
protein spectrum shifts from its original position
in the reference spectrum, then the peak with the
highest intensity in the same region is found with
an error tolerance of £+ 0.03 ppm. This peak in-
tensity is then used for comparison with the refer-
ence spectrum. If peaks merge to form a new sin-
gle peak in the compound-protein spectrum, then
the intensity of this merged peak is compared to
all the peaks in the same region of the reference
spectrum.

5. QOwerlapping Peaks: The algorithm uses actual data
points of the spectra for analysis as opposed to
analyzing the graphical display of the spectra,
thus minimizing the problem of overlapping peaks.
While not manually feasible, an automated pro-
gram can easily deal with 8192 data points per
spectrum.

IEEE Region 4
eit2005

The spectra comparison method used in this study
is described in Algorithm SPECTRA COMPARISON.

Algorithm SPECTRA COMPARISON

Input: Reference ligand mixture spectrum ASCII
data file RefMiz; Compound mixture+protein
spectrum ASCII data file CompProt; Un-
known protein spectrum ASCII data file UnProt;
List of peaks to be monitored in the refer-
ence spectrum PRef; Peak assignments for each
ligand PLig.

Output: Score for each compound; Compound that
binds the strongest.

1. For RefMiz, CompProt, and UnProt:
(a) Convert the ASCII data from 4 decimals to
2 decimals.
(b) Discard the TMSP, water, and buffer peaks.
(¢) Calculate the z-score for each point in
RefMixz, CompProt, and UnProt.

2. For each point in CompProt:
(a) new z-score in ligand_miz = z-score in Comp-
Prot — z-score in UnProt.

3. Find the median of ligand_mix and make it as
the new baseline (zero). Points having a z-score
smaller than the median have a new value of zero.

4. Repeat Step 3 for RefMix.

5. For each peak in PRef:

(a) Find the highest z-score in ligand_miz corre-
sponding to the peak position with an error
tolerance of 4+ 0.03 ppm.

(b) scoring value := z-score of peak position in
RefMix / (z-score of peak position in RefMiz
— z-score in ligand-miz).

(c¢) Save the peak and it’s scoring value.

6. Assign the saved peaks to their respective ligand
using PLig.

7. For each ligand find the average scoring value.
8. Return the compounds with their scores.

9. Return the compound that binds the strongest.

Spectra Comparison Algorithm is implemented
in Perl. The Perl program takes as input the refer-
ence spectrum ASCII data file, the compound-protein
ASCII data file, the unknown protein ASCII data file,
the list of peaks to be monitored, and the lists of peak
assignments for each compound. The total time re-
quired to come up with a score for each ligand
compound using the Perl program was around two sec-
onds as compared to the numerous hours of effort that
would be needed to generate the same data manu-
ally.
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4. Discussion

The availability of fully sequenced genomes contain-
ing an extensive number of unknown proteins chal-
lenges biological researchers to elucidate the structure
and function of these proteins at a faster pace. We have
proposed a database design to assign biological func-
tion to a vast number of proteins. Our database de-
sign integrates the various components of the Func-
tional NMR screen. A valuable feature of this design
is the inclusion of the Spectra Comparison Algorithm.
This database is critical for organizing and analyzing
NMR data, effectively streamlining the process of as-
signing protein function using NMR, and maximizing
throughput of this process. This database will be avail-
able over the World Wide Web using a graphical user
interface. We hope this will help link researchers en-
gaged in similar efforts, make results readily available,
and guide future research efforts.

This project has important implications for com-
putational biology and bioinformatics. It demonstrates
that databases can answer relevant biological research
questions by assimilating analytical requirements into
database design. This project also indicates that data-
bases in bioinformatics need to be thoroughly informed
by current biological research needs to be truly effec-
tive. Such a database is the result of true collaboration
between biological experimental researchers and com-
putational researchers. The development of this data-
base system is an ongoing project. The fully devel-
oped and integrated database system will prove highly
valuable for inferring protein biological function using
NMR.

Efforts are ongoing to incorporate more NMR spec-
tra into the database to examine its scalability. In the
future, more aspects of the Functional NMR, screen-
ing process will be integrated into the database design.
Peak-picking algorithms, for instance, can be added to
the database system design to eliminate the need for
peak lists from the user. An alternative approach to
comparing NMR, peak intensities would be to directly
compare the graphical displays of NMR, spectra. Al-
though such an approach would generate more infor-
mation, it requires a higher level of computational so-
phistication to avoid problems related to overlapping
peaks and peak-shifts. Finally, future work should also
thoroughly examine the potential data mining capabil-
ities of the Functional NMR, database.

4.1. Conclusion

It is well-acknowledged that NMR spectroscopy can

play a key role in the determination of structure and
function of proteins. The laborious expert reasoning
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needed for data analysis in NMR significantly limits
its applications. The use of databases and automated
data analyses can maximize the throughput of using
NMR in protein research.
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