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The Discovery of Anthranilic Acid-Based MMP Inhibitors.
Part 1: SAR of the 3-Position
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Abstract—A novel series of anthranilic acid-based inhibitors of MMP-1, MMP-9, and MMP-13 was prepared and evaluated both
in vitro and in vivo. The most potent compound, 6e, has in vivo activity in a rat sponge-wrapped cartilage model. © 2001 Elsevier

Science Ltd. All rights reserved.

The matrix metalloproteinases (MMPs), comprised of
collagenases, stromelysins, gelatinases and membrane-
type MMPs, are a family of over 20 zinc-containing
enzymes that play a role in the normal remodeling and
degradation of extracellular matrix proteins. The aberrant
control of MMP levels has been implicated in the etiology
of a variety of disease states including atherosclerosis,’
rheumatoid arthritis and osteoarthritis,” and cancer.? The
potential exists for potent, orally bioavailable small
molecule inhibitors of MMPs to treat a broad spectrum
of pathologies, and has been investigated in the clinical
trials of agents such as marimastat,* Ro 32-3555,> CGS-
27023A,% and AG33407 (Fig. 1).
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Figure 1. MMP inhibitors in clinical trials.
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In that regard the discovery of sulfonamide-based
hydroxamic acid inhibitors of stromelysin (MMP-3),
exemplified by CGS-27023A, is the seminal work in the
rapidly expanding area of nonpeptide MMP inhibitors.?
The disclosure of numerous sulfonamide analogues rela-
ted to CGS-27023A, including the biaryl sulfonamides,’
piperazine,'® thiazine,!! thiazepine,'! and diazepine'?
ring systems, now prompts us to report on the synthesis
and biological evaluation of a novel series of anthranilic
acid-based MMP inhibitors.

Although a substantial number of nonpeptide sulfona-
mide hydroxamate MMP inhibitors have been studied,
almost all of these compounds have been derived from
a-amino acids, with a single carbon linking the sulfona-
mide nitrogen and the zinc chelating hydroxamic acid
moiety.'> We were interested in ascertaining whether
novel, potent MMP inhibitors could be made by using
an aromatic ring as the linker between the sulfonamide
nitrogen and the hydroxamate (Fig. 2).
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Figure 2. Sulfonylated anthranilate hydroxamic acids.
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In the event, the anthranilic acid derivative 1 had ICsys
below 1 uM versus MMP-1, MMP-9, and MMP-13 (Table
1). In contrast, the 3- and 4-aminobenzoic acid derivatives,
2 and 3, had no appreciable activity versus MMP-1 at
1 pM. With this result in hand we set out to synthesize a
series of sulfonylated anthranilic acid analogues of 1.

Table 1. In vitro potencies of compounds 1, 6a—6d

(Ph
HOHNOG N—soz—<i>-ocr4|3
R4QR1

Ry Ry

Compound R; R, R; Ry MMP-1* MMP-9% MMP-132

1 H H H H 639 650 555
6a Me H H H 115 23 50
6b H Me H H 884 346 982
6¢ H H Me H 553 353 728
6d H H H Me 1573 440 717
ICS(), nM
Chemistry

The desired sulfonamide hydroxamic acids were prepared
as shown in Scheme 1.!* Sulfonylation of the appropriate
anthranilic acid with 4-methoxybenzenesulfonyl chloride
provided the sulfonamides 5a (R,, R3=H). The sulfona-
mides were then concomitantly N- and O-alkylated to
provide compounds 5b (R,, R;=Bn). Hydrolysis of the
ester followed by acid chloride formation and conversion
into the hydroxamic acid gave compounds 6.
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Scheme 1. (i) 4-MeOPhSO,Cl, TEA; (i) R;X, NaH; (iii) NaOH; (iv)
(a) (COCI),, DMF; (b) NH,OH.

In order to examine the effect of substitution on the
anthranilic acid ring on inhibitory potency, analogues of
6 derived from 3-, 4-, 5-, and 6-methyl 2-amino-benzoic
acid were synthesized. The 1Cs, values of methyl analo-
gues 6a—6d (Table 1) clearly demonstrate that while the 4-,
5-, and 6-methyl compounds (6b—6d) are no more active
than the parent compound, the 3-methyl derivative 6a is
an order of magnitude more potent than the unsub-
stituted anthranilate. Furthermore, compound 6e, the
N-3-picolyl analogue of 6a, is as potent as the CGS-
27023A standard (Table 2).

The carboxylic acid analogue of 6a, and the NH-sulfon-
amide analogue are approximately 100-fold less active

than 6a. A series of analogues of 6a in which the 3-sub-
stituent was varied was therefore targeted next.

Compounds 6f and 6g (Table 2) were synthesized from
the commercially available 3-substituted anthranilic
acids in the same general manner as shown in Scheme 1.
The 3-nitro derivative, 6h, was synthesized via nitration
of 5 (R;=H, R,=Me, R3;=Bn). The N,N-dimethyl ani-
line 6i was prepared via tin chloride reduction of the nitro
aryl intermediate 5 (R; =3-NO,, R,=Me, R;=Bn), fol-
lowed by methylation of the resulting aniline with iodo-
methane/potassium carbonate in DMF and subsequent
ester hydrolysis and hydroxamate formation. The synth-
esis of the 3-trifluoromethyl analogue 6j commenced with
the sulfonylation of benzylamine to give 7. Reaction of 7
with 2-fluoro-3-trifluoromethylbenzonitrile in the pre-
sence of sodium hydride then provided 8. The nitrile
was then converted into the corresponding hydroxamic
acid via carboxamide 8 as shown in Scheme 2.

Additional 3-substituted anthranilic acid analogues
were readily prepared according to Scheme 3. Thus,
sulfonylation of 3-hydroxy methyl anthranilate gave 9,
which was elaborated as shown to give compounds 6k
and 6l.

The 3-carbomethoxy derivative was synthesized from
aldehyde 11 as shown in Scheme 4. Bis-bromination of
the 3-methyl derivative 5S¢, followed by hydrolysis gave
aldehyde 11. Oxidation to the carboxylic acid was
accomplished with sulfamic acid and sodium chlorite.

Biology

All of the anthranilate hydroxamic acids were tested in
vitro!> for their ability to inhibit MMP-1, MMP-9, and
MMP-13 (Table 1). Inhibitors of MMP-9 are potentially
valuable as inhibitors of tumor metastasis,> while MMP-
13 inhibitors may offer protection from the cartilage
degradation associated with osteoarthritis.?> Selectivity
for MMP-9 and MMP-13 over MMP-1 was sought in
order to examine whether the inhibition of MMP-1 is
the source of musculoskeletal side effects seen in clinical
trials of broad spectrum MMP inhibitors.'®

The 3-substituted anthranilate hydroxamic acids shown
in Table 2 are potent in vitro inhibitors of both MMP-9
and MMP-13. In particular, the 3-methyl derivative 6e,
methyl ester 6m, and the bis-hydroxamic acids, 6k and
6l, are less than 10 nM against both MMP-9 and MMP-
13. Compounds 6k and 6m are also potent inhibitors of
TNF-a converting enzyme (TACE) with 1Cs, values of
81 and 38 nM, respectively.!” Compounds 6l and 6m are
the only inhibitors of the series that are at least 50-fold
selective for MMP-13 over MMP-1, with the geminal
dimethyl group of 6l providing a 25-fold reduction in
potency versus MMP-1, relative to 6k. The 3-methoxy
analogue 6f and the 3-trifluoromethyl derivative, 6j, are
potent gelatinase inhibitors with greater than 20-fold and
5-fold selectivity over MMP-1 and MMP-13, respec-
tively. Dimethylaniline 6i is a less potent MMP-9 inhi-
bitor that displays a similar gelatinase-selective profile.
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Table 2. In vitro potency of 3-substituted anthranilate hydroxamic acids
F[‘z
HOHNOC N—302@OCH3
o5
Compound R, R, MMP-1? MMP-92 MMP-13*
1 H CH,Ph 639 650 555
6a CH; CH,Ph 115 23 50
e CH; CH,-3-Py 143 5 8
6f OCHj3; CH,Ph 520 23 138
6g Cl CH,Ph 398 31 NT
6h NO, CH,Ph 202 13 42
6i N(CH3), CH,Ph 19%® 64 531
6j CF; CH,Ph 41%"° 27 136
6k OCH,CONHOH CH,Ph 24 2 1
6l OC(CHj;),CONHOH CH,Ph 597 4 6
6m CO,CH3; CH,-3-Py 207 6 4
CGS-27023A — — 15 9 8

2]Csp, nM. Inhibitor concentrations were run in triplicate. ICs, determinations were calculated from a 4-parameter logistic fit of the data within a
single experiment.
5% Inhibition at 1 uM.
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Scheme 2. (i) NaH, 2-F-3-CF;PhCN; (ii) NaOH; (iii) NOBFy; (iv) (a)
(COCl),, DMF; (b) NH,OH.
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Scheme 3. (i) TBDMSCI, imidazole; (i) BnBr, NaH; (iii) BuyNF; (iv)
BrC(R),CO,Et, NaH; (v) NaOH; (vi) (a) (COCl),, DMF; (b) NH,OH.
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Scheme 4. (i) NBS; (i) NaOH; (iii) 3-Picolyl chloride-HCI, K,COs5;
(iv) NaClO,, H,NSO;3H; (v) (a) (COCl),, DMF; (b) NH,OH.

Structural analysis by NMR of the solution structure of
compound 6e bound in the active site of MMP-13 indi-
cates that the para-methoxyphenyl group lies in the S1!
pocket of the enzyme and that the pyridine ring is solvent
exposed.'® The sulfonyl oxygens are within hydrogen
bonding distance to the peptide backbone. The anthra-

nilate aromatic ring occupies the S2! pocket of the active
site. This binding scheme is quite similar to that of
CGS-27023A, with the anthranilate aryl ring taking the
place of the isopropyl group of CGS 27023A.1°

The in vivo bioactivity of several of the anthranilate-
hydroxamates (6a, e, g, k, and m) was assessed through
the use of a dialysis tubing implant assay.?® All of the
compounds tested were compared to CGS-27023A in
the same experiment. None of the N-benzyl substituted
sulfonamides had significant in vivo activity. The most
active of the compounds tested in this assay is the N-
picolyl derivative 6e, which is essentially equipotent to
CGS-27023A at 50 mg/kg, po against MMP-9. It has an
EDs, of 33mg/kg, po in this assay. However, against
MMP-13 in the dialysis implant model, compound 6e has
only 60% of the activity of CGS-27023A at the same oral
dose. Ester 6m, with 30% of the activity of CGS 27023A
versus MMP-13 at 50mg/kg ip, was significantly less
potent than 6e.

The 3-methyl anthranilate-hydroxamate 6e was also tested
in a bovine articular cartilage explant assay.*® At a dose of
1 uM, 6e provides a level of inhibition of collagen degra-
dation comparable to CGS 27023A (49%). Evaluation of
6e in an in vivo rat sponge-wrapped cartilage model?!
demonstrated that the administration of 50 mg/kg/day ip
of 6e via osmotic pump gave a 51% inhibition of collagen
degradation. Oral dosing of 6e at 50 mg/kg/bid provided a
27% inhibition of collagen degradation, compared to a
52% inhibition of CGS-27023A at the same dose.

In conclusion, we have synthesized a series of anthrani-
late-hydroxamic acid MMP inhibitors. These com-
pounds are potent inhibitors of MMP-9 and MMP-13 in
vitro. Compound 6e is also active in an in vitro cartilage
degradation assay and displays oral activity in an in
vivo mouse bioactivity model as well as ip activity in a
rat sponge-wrapped cartilage model. The further
exploration of the SAR of these novel MMP inhibitors
will be reported in due course.
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