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Metabolomics aims to study the downstream effects of variables like diet, environment, or disease on a
given biological system. However, inconsistencies in sample preparation, data acquisition/processing pro-
tocols lead to reproducibility and accuracy concerns. A systematic study was conducted to assess how
sample preparation methods and data analysis platforms affect metabolite susceptibility. A targeted panel
of 25 metabolites was evaluated in 69 clinical metabolomics samples prepared following three different
protocols: intact, ultrafiltration, and protein precipitation. The resulting metabolic profiles were character-
ized by 1D *H nuclear magnetic resonance (NMR) spectroscopy and analyzed with Chenomx v8.3 and
SMOoIESY software packages. Greater than 90% of the metabolites were extracted more efficiently using
protein precipitation than filtration, which aligns with previously reported results. Additionally, analysis of
data processing software suggests that metabolite concentrations were overestimated by Chenomx
batch-fitting, which only appears reliable for determining relative fold changes rather than absolute
quantification. However, an assisted-fit method provided sufficient guidance to achieve accurate results
while avoiding a time-consuming fully manual-fitting approach. By combining our results with previous
studies, we can now provide a list of 5 common metabolites [2-hydroxybutyrate (2-HB), choline, di-
methylamine (DMA), glutamate, lactate] with a high degree of variability in reported fold changes and
standard deviations that need careful consideration before being annotated as potential biomarkers. Our
results show that sample preparation and data processing package critically impact clinical metabolomics
study success. There is a clear need for an increased degree of standardization and harmonization of
methods across the metabolomics community to ensure reliable outcomes.

1 Introduction

Metabolomics is the process of identifying and quantifying the
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small molecular weight (<1000 Da) metabolites present in a
given organism, system, or sample."® Metabolomics has been
applied to clinical, environmental, and agricultural projects to
investigate metabolic networks of interest within humans,
plants and animals.””” The increased sensitivity of the metabo-
lome to stressors can be leveraged to learn how diet, the
environment and diseases affect underlying biochemical
pathways.®> > This heightened sensitivity of the metabolome
relative to the genome or proteome allows researchers to gain
deeper insights and to obtain reliable molecular mechanisms
of diseases, drugs, and further our understanding of a variety
of biological systems. However, a downside of the increased
sensitivity of metabolomics is that biologically irrelevant
changes in response to storage and preparation conditions
during analysis are easily detected.”**°

The typical workflow for metabolomics studies involves iso-
lating and extracting fractions of metabolites from the biologi-
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cal samples to be evaluated by an analytical instrumentation
before finally assessing the generated data or spectra with uni-
variate or multivariate statistical methods. While the process
may seem simple, there are many opportunities for inconsis-
tency when making choices about factors like storage tempera-
ture, extraction method, sample preparation and instrumenta-
tion type.'” In this regard, the metabolomics process com-
prises numerous decision points that may impact the compo-
sition of the detectable metabolome and lead to reproducibil-
ity and accuracy concerns.®

Several studies have shown that metabolites are susceptible
to variation due to both pre-analytic and post-analytic proto-
cols. For example, Breier et al. (2014) investigated the effects of
collection, transport, and sample processing methods on a
panel of metabolites and found that amino acids were particu-
larly fragile during simulated transportation."® Residual enzy-
matic activity was also observed to be present even after the
sample was frozen, which suggested the potential need for a
single freeze-thaw cycle to achieve a stable metabolomics
sample.’® Nevertheless, long term storage even at ultra-low
—80 °C temperatures resulted in statistically significant (+15%)
changes in 50% of the analyzed metabolites."* Want et al.
(2009) demonstrated that varying the extraction method and
the solvent composition produced unique metabolite panels
and yielded distinct extraction efficiencies.’® A total of 14
different extraction methods were examined and compared in
which a 100% methanol extraction of serum was deemed to
provide the best comprehensive metabolite profile with a high
degree of protein removal.”® Despite similar on-going efforts
by COSMOS: Coordination of Standards in Metabolomics,
MSI: Metabolomics Standards Initiative, mQACC: Metabolomics
Quality Assurance & Quality Control Consortium, and MANA:
Metabolomics Association of North America to establish com-
munity standards and best practices, there continues to be a
proliferation of metabolomics methodologies populating the
scientific literature.>*” Simply, the metabolomics community
has yet to broadly adopt well-vetted general guidelines for meta-
bolomics studies.?*>228-3°

Choosing the correct sample preparation technique
depends on several factors that include both the type and the
amount of the biological samples, and the metabolites being
investigated. The choice of analytical platform may also be
guided by these and other considerations. Nuclear magnetic
resonance (NMR) spectroscopy and mass spectrometry (MS)
are commonly used in metabolomics studies and provide
complementary results.*”*> NMR detects the most abundant
metabolites (>1 pM) while providing accurate and highly repro-
ducible absolute quantification. Conversely, MS, which is typi-
cally combined with liquid- or gas-chromatography, provides a
broader coverage of the metabolome with a significantly lower
limit of detection and a larger dynamic range. However, one of
the important benefits of NMR over MS as an analytical plat-
form for metabolomics is the limited need for sample manipu-
lation, which lowers the variability and inconsistency across
and between data sets.**** Specifically, for liquid biological
samples like blood, urine, or other biofluids, an intact sample
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preparation approach can often be effective in providing
reliable and reproducible metabolome concentration changes.
An intact sample preparation method requires the simple
addition to the sample of a deuterated buffer containing an
internal standard. Additional processing, such as the removal
of other endogenous biomolecules, is not needed. However, an
intact sample approach risks metabolite signal suppression
due to metabolite-protein (or other biomolecules) binding,
which yields lower resolution and lower intensity peaks with a
broadened baseline. The bound metabolites may remain com-
pletely undetected in the resulting NMR spectra, which can
lead to erroneous conclusions about the perceived changes in
the system. While intact sample preparation has advantages,
alternative protocols such as solvent-induced protein precipi-
tation or ultrafiltration extract the metabolites of interest
while simultaneously removing unwanted biomaterials before
analysis.>83374°

Another potential source of variation or error in a metabolo-
mics study comes from the myriad of data processing tools
used to analyze a given spectral data set.”’ For NMR, a few
options for metabolomics software toolkits include Chenomx
(Chenomx, Inc., Alberta Canada), MetaboAnalyst 5.0 (https:/
www.metaboanalyst.ca), MVAPACK (https:/mvapack.unl.edu),
and SMOoIESY (https:/github.com/pantakis/SMoIESY_platform).****
Each of these software platforms uniquely handles the NMR
data by relying on a variety of spectral binning, metabolite
identification algorithms, or statistical analysis options.
Especially among academia, there is an understandable prefer-
ence for freely available software like MetaboAnalyst 6.0,
MVAPACK, or SMOoIESY, although commercial software does
provide valuable benefits such as customer support and
routine updates. The broad range of available algorithms in
metabolomics software allows researchers the flexibility to
choose and optimize data processing pipelines to meet their
individual needs, but difficulties often arise when making
inter-laboratory comparisons or assessing data accuracy and
reproducibility. Consequently, the harmonization of metabolo-
mics methods, data, and results is an ongoing effort that has
only made modest advancements with plenty of opportunities
for improvement.>">*2¢

Despite the potential influence of other factors on meta-
bolic profiles, such as sample storage, our primary objective
was to explore only the effects of sample treatment and the
choice of software on the accurate identification and quantifi-
cation of a common set of plasma metabolites. With our
approach, we tried to simulate the typical pipeline followed in
conducting an NMR-based metabolomics study, specifically
without prior knowledge of the samples content. The reprodu-
cibility of metabolome measurements was assessed with a 1D
'H NMR data set of human plasma samples since blood
samples are commonly used in clinical metabolomics studies.
The data set consists of plasma samples obtained from
patients diagnosed with inflammatory bowel disease (IBD) that
were age and sex matched to healthy controls. An important
feature of our study is that our data was combined with pre-
viously published results to achieve a comprehensive view of

This journal is © The Royal Society of Chemistry 2024
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the degree of variation inherent to individual plasma metab-
olites. In this regard, the outcomes of our research will con-
tribute to the ongoing metabolomics harmonization efforts by
determining how sample preparation methods and NMR
acquisition and data processing parameters affect the absolute
concentration, statistical significance of between-group and
within group metabolite changes, and the reliability and repro-
ducibility of metabolite quantification and annotation.

2 Material and methods

Details for the study design and cohort demographics, prepa-
ration of pooled QC samples, preparation of NMR samples
using ultrafiltration, preparation of NMR samples using
methanol precipitation, preparation of NMR samples using
intact plasma, NMR data acquisition and processing, represen-
tative 1D "H NMR spectra with annotations, and statistical ana-
lyses are included in the ESIL.}

3 Results and discussion

3.1 Metabolic profile is determined by protein removal
protocol and analysis method

Principal components analysis (PCA) of the 1D '"H NMR data
sets yielded a scores plot containing two distinct clusters com-
prising either the intact plasma samples or the ultrafiltered
and methanol-precipitated plasma samples (see ESI Fig. S1
and S2f). Conversely, there was no separation in the PCA
scores plot according to clinical group (see ESI Tables S1 and
S2, Fig. $3 and S47). The PCA models created from the 1D 'H
NMR data sets for each preparation method indicate that the
pooled samples are in the center of the 2D PCA scores plot.
Additionally, the lack of separation based on pathology
increases the level of confidence that the observed group
differences were truly derived from only the sample prepa-
ration method. Finally, it is encouraging to note that these
trends persist across all data irrespective of whether the PCA
was modelled with binned raw spectral data (see ESI Fig. S3a
and S4at), Chenomx data (see ESI Fig. S3b and S4bft), or
SMOIESY data (see ESI Fig. S3c and S4cf).

3.2 Methanol protein precipitation leads to higher overall
metabolite concentrations

Fig. 1 and Table S31 summarize the scaled measured concen-
trations for the 25 targeted metabolites grouped by sample
preparation protocol and data processing method. Table S37
also lists the coefficient of variation (CV) and percent differ-
ences in the measured metabolite concentrations, which are
calculated relative to the manual analysis of protein precipi-
tation plasma samples. Fig. 2 summarizes the average metab-
olite concentration and the number of metabolites that were
significantly altered (p < 0.05) in a pairwise comparison of
sample preparation protocols and according to processing
method. A detailed overview of the comparisons can be seen
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in Fig. S5 and ESI Table S4.f In nearly all cases, almost all the
metabolites in the panel were detected. The Chenomx batch-fit
approach missed the greatest number of metabolites, omitting
choline, histidine, and lysine when analyzing the plasma NMR
samples following methanol-induced protein precipitation. In
general, the assisted-fit Chenomx analysis of the 1D '"H NMR
spectra acquired for the methanol-induced protein precipi-
tation plasma samples had the most accurate (lowest % differ-
ence from Chenomx manual-fit data) metabolite concen-
trations where the average percent difference was 7% (for the
19 metabolite concentrations lower in manual-fit) or —16%
(5 higher in assisted-fit) (see ESI Table S31). The same
Chenomx analysis of the plasma NMR samples prepared by
ultrafiltration yielded a nearly uniform decrease in the
measured metabolite concentrations corresponding to an
average decrease of 57% for manual-fit and a decrease of 67%
for assisted-fit. The observed decrease in ultrafiltered plasma
samples aligns well with previous results.’® Citrate, an
endogenous metabolite, was the only notable exception.
Overall, 96% (24) of the 25 targeted metabolites were deter-
mined to have at a higher concentration in the methanol-preci-
pitated plasma samples with 92% (23) of these concentration
differences being statistically significant (Fig. 2, Fig S5, see ESI
Table S47).

3.3 SMOoIESY and Chenomx batch-fit tend to overestimate
metabolite concentrations

The batch-fit Chenomx analysis and SMoIESY processing pro-
tocols of both the methanol-precipitated and ultrafiltered
NMR data sets yielded similar, but mixed results relative to the
manual analysis of the methanol-precipitated data set. In
general, metabolite concentrations tended to increase with
batch-fit and SMoIESY. For example, batch-fit analysis pro-
duced 15 metabolites with an average increase in concen-
tration of 98% (see ESI Table S37). This trend is clearly appar-
ent for 3-hydroxybutyrate (3-HB), alanine, creatinine, dimethyl
sulfone (DMSO2), DMA, formate, glutamate, glutamine,
glycine, isoleucine, lactate, phenylalanine, tyrosine, and valine
(Fig. 1).

Alternatively, the batch-fit Chenomx analysis measured
7 metabolites with a 29% decrease in concentration for the
methanol-precipitated NMR data set. SMoIESY analysis yielded
nearly identical results to Chenomx corresponding to
19 metabolites with an average increase in concentration of
98% and 6 metabolites with a 48% decrease in concentration.
Similarly, the batch-fit Chenomx analysis of the ultrafiltered
NMR data set resulted in 12 metabolites with a 99% average
increase in concentration compared to 13 metabolites with a
52% decrease in concentration. Again, SMoIESY processing
yielded comparable results with 15 metabolites exhibiting a
121% average increase in concentration compared to 10 metab-
olites with a 38% decrease in concentration. The metabolite
concentrations measured by the batch-fit Chenomx analysis
varied significantly (p < 0.05) from the values determined by
the assisted-fit or manual-fit methods in 52% of the ultrafil-
tered plasma samples and in 41% of the methanol-
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Fig. 1 Scaled metabolite concentrations organized by fit and sample preparation method. Box and whisker plots of range scaled (0-1) data for
each of the 25 metabolites. Plots are placed in alphabetical order. Each individual box and whisker plot is organized left-to-right by preparation
method from intact (INT), to ultrafiltered (FILT), to methanol-induced protein precipitated (PRECIP). The color of each box corresponds to the pro-
cessing method used to generate the data in the following order: Chenomx — batch-fit (light blue), Chenomx-assisted-fit (teal), Chenomx —
manual-fit (dark green), SMolESY (gold). Abbreviations: 2-HB: 2-hydroxybutyrate, 3-HB: 3-hydroxybuytrate, DMSO2: dimethyl sulfone, DMA:

dimethylamine.

precipitated plasma samples (Fig. 2, see ESI Table S4t). Overall,
Chenomx determined 80% of the metabolites to be significantly
different between the methanol-precipitated plasma samples
and the ultrafiltered plasma samples, but SMolESY only found
a statistical difference in 36% of the metabolites.

3.4 Biological variance is a primary factor affecting precision
in measured metabolite concentrations

Unsurprisingly for biological samples, the overall variability in
the measured metabolite concentrations was high as assessed
by CVs (see ESI Tables S3 and S51). The Chenomx analysis of
the 69 methanol-precipitated plasma samples yielded average

5426 | Analyst, 2024,149, 5423-5432

CVs ranging from 97 to 102%. SMoIESY processing yielded a
slightly improved but not statistically significant (p > 0.4)
average CV of 86%. Given the overall lower metabolite concen-
trations measured for the ultrafiltration samples, the resulting
CVs were equally reduced and ranged from an average of 57 to
82% for Chenomx and a comparable average CV of 75% for
SMOIESY. Notably, only the manual-fit and assisted-fit
Chenomx analysis led to average CV values that were signifi-
cantly different (p < 0.0001) between the methanol-precipi-
tated plasma samples and ultrafiltered plasma samples. The
overall average 25% decrease in CV values is partly attributed
to the average 55% decrease in metabolite concentrations.

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Summary bar charts showing (A) general trends in metabolite
concentration and (B) the total number of metabolites that had statisti-
cally significant concentration variation between sample preparation
type.

Overall, there is no clear evidence to suggest that sample
preparation protocol or data processing method produced an
inherently better precision. Instead, the natural biological vari-
ation appears to be the dominating factor.

3.5 Analysis of intact plasma samples required specialized
protocols and algorithms

The analysis of the intact plasma sample was completed using
both the Chenomx and SMoIESY software platforms. SMolESY
was used to analyze the NOESY and CPMG NMR datasets and
Chenomx was only used to analyze the CPMG NMR spectra.
Chenomx is not able to account for the large protein back-
ground signal present in the NOESY NMR spectra. Conversely,
SMOIESY was specifically designed to evaluate intact plasma
samples acquired with a NOESY pulse sequence. SMolESY
mimics the effects of the CPMG NMR experiment and compu-
tationally removes the macromolecule baseline from the NMR
spectra before evaluating peak areas. In this regard, SMolESY
was able to successfully detect 100% of the metabolite panel
in 100% of the 69 NOESY and CPMG spectra acquired for the
intact plasma samples. Encouragingly, the measured metab-
olites using both the NOESY and CPMG spectra yielded
similar results from the SMoIESY platform. The average con-
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centration difference ranged from 17% to 19% with only 6 stat-
istically significant differences (p < 0.05). In total, eleven
metabolites were measured at a higher concentration using
the CPMG NMR spectra with only the differences in 2-HB and
formate being statistically significant. A total of 14 metabolites
resulted in a lower concentration with the CPMG spectra but
only the measured concentration differences for 3-HB,
acetone, glutamate, and lysine were statistically significant.
Again, the overall variability in these measured metabolite con-
centrations were high as assessed by CVs and ranged from 45
to 322%. Overall, the variability in the measured metabolite
concentrations appear to be determined by a combination of
inherent biological variations and the absolute metabolite
concentration.

The SMOIESY processing of the intact plasma samples
resulted in statistically significant (p < 0.05) differences in the
measured metabolite concentrations relative to manual-fit
Chenomx analysis of the methanol-precipitated plasma samples
(see ESI Tables S3 and S5%). Specifically, the SMoIESY proces-
sing of the NOESY data set resulted in an average increase in
measured metabolite concentrations by 174% for 20 of the
25 metabolites. Five metabolites were measured with an average
57% decrease in concentration. 16 of these metabolite concen-
tration differences were statistically significant (p < 0.05).

Although the CPMG pulse sequence is not recommended
for quantitative analyses due to its interference with signal
intensities, we also analyzed the CPMG profiles since they are
more similar to the profiles of the extracted samples (i.e.,
without the broad macromolecular signals). The intact plasma
samples acquired with the CPMG pulse sequence exhibited the
poorest Chenomx metabolic profiling across several metrics.
Metabolites were only detected in 3% of the intact samples
and required extensive manual analysis to retrieve any sem-
blance of usable data. The very sparse results that were pro-
duced by this analysis were also clearly incorrect. Chenomx
batch-fit results of the CPMG experiments suggested that in
the few samples metabolites were detected in, that they were
found to be at a much higher or much lower concentration
than the NOESY experiments. For example, when measured
with the CPMG pulse sequence, glutamine was found to be at
1003.8 pM on average but only at 164 pM in the NOESY experi-
ments and DMA was detected at 0.6 pM in CPMG experiments
but 4.85 pM in NOESY experiments.

3.6 Reproducibility of metabolomics sample preparation
protocols

Gowda et al. (2014) previously reported an increase in metab-
olite concentrations in serum and plasma samples prepared
by protein precipitation methods compared to either an ultra-
filtration protocol or to an intact sample.>® Additionally, they
determined that intact sample preparation was not appropriate
for metabolite quantitation. Thus, the protein precipitation
approach was identified as a robust and best-choice method.>*
The higher percentage of metabolites recovered through pre-
cipitation is probably a contributing factor to its relative popu-
larity as a metabolite extraction method compared to other

Analyst, 2024,149, 5423-5432 | 5427
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options.*” Precipitating proteins from a biofluid sample
removes 98% of the proteins and the addition of organic
solvent to a biofluid sample will disrupt any metabolite-
protein binding.*> However, the results from Tiziani et al.
(2008) directly contradicts these observations.*>*® Specifically,
3-HB, alanine, creatine, citrate, isobutyrate, succinate, threo-
nine, glucose, glutamate, and ethanol were all found by
Tiziani et al. (2008) to be significantly increased in filtered
samples compared to precipitated samples.’® A recently pub-
lished study by Madrid-Gambin et al. (2023) found an increase
in concentration for 63% of the metabolites measured from
protein-filtered samples compared to an increase in concen-
trations for 37% of the metabolites measured from the
protein-precipitated samples.”” The methanol-induced protein
precipitation protocol was observed to produce a non-ideal
baseline in the 1D "H NMR spectra. As a result, glyceropho-
spholipid solid-phase extraction (g-SPE) was recommended as
the preferred sample preparation method. These divergent
results and a corresponding lack in reproducibility show a
clear gap in our fundamental knowledge of metabolomics and
the effects of sample preparation method.

A direct comparison of these published outcomes with our
results can be challenging due to missing or variations in
experimental parameters and because of fundamental differ-
ences in the scale of reported metabolite concentrations.
Fortunately, Gowda et al. (2014) and Madrid-Gambin et al.
(2023) provided sufficient information to enable proper scaling
of study data for a direct comparison with our results (see ESI
Table S67). Fig. 3 (top) plots the fold change (FC) in metabolite
concentrations derived by comparing protein precipitation
samples (PRECIP) to intact plasma samples (INT) for the com-
monly reported metabolites. Similarly, FCs were also calcu-
lated between PRECIP and ultrafiltration (FILT) samples
(Fig. 3, middle). An average of these previously published FCs
was then compared to our results (Fig. 3, bottom). Since
Gowda et al. (2014) determined an intact plasma sample was
not appropriate for metabolite quantitation, this data was
excluded from Fig. 3.>> The Chenomx analysis of the intact
plasma sample was similarly determined to be unreliable and
was not included in the fold change comparison presented in
Fig. 3. Encouragingly, a qualitative examination of all the FCs
suggests similar overall trends that are independent of study.
The overall consistency in the FC calculated from the three
independent studies and the sample preparation methods is
readily apparent in the overlay of the average FC values (Fig. 3,
bottom). Please note the overlap of the average metabolite con-
centrations with the error bars and the close clustering around
or slightly above an FC of 1 in most cases. This suggests the
relative FCs likely negates sources of error and/or variability
readily apparent in the individual measurements of absolute
metabolite concentrations.

For the PRECIP/INTACT FC comparison from (Fig. 3, top), it
is particularly encouraging to note that our SMolESY derived
FC values closely aligns with the results from Madrid-Gambin
et al. (2023) with only a few notable deviations. Specifically,
SMOoIESY measured a significantly higher FC for 2-HB. The FC
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and present results. Fold changes (FC) are organized by group with top
panel containing precipitated sample/intact sample fold changes from
SMolESY data (gold) and Madrid-Gambin et al. (2023) data (maroon).
The middle panel contains methanol-induced protein precipitated
(PRECIP) and ultrafiltered (FILT) sample fold changes from Chenomx —
batch-fit results, Chenomx - manual-fit results, SMolESY results,
Madrid-Gambin et al. (2023) results, and Gowda et al. (2014) results. The
bottom panel contains line plots of calculated averages from the top
two panels (Chenomx results were excluded from the Precip/Filt Avg
line since they were identified as unreliable). The color of the line is cor-
related to the method or previous publication.?°° A dashed line is
present at FC = 1 for reference. All fold changes were calculated from
the data generated by each processing method or publication. For
example, the gold SMolESY lines are generated from SMolESY data. No
cross-comparative fold changes were calculated or plotted.

values for 3-HB, alanine, choline, creatine, creatinine, gluta-
mine, leucine, lysine, tyrosine and valine were opposite in the
relative directions (ie., increased or decreased). Madrid-
Gambin et al. (2023) did not report a concentration for gluta-
mate. Overall, the Madrid-Gambin et al. (2023) concentrations
averaged 39% higher than the SMoIESY derived FCs.

In the PRECIP/FILT comparison (Fig. 3, middle), the manu-
ally-fit Chenomx FC values were systematically increased rela-
tive to SMOIESY and the other studies. Chenomx consistently
underestimated metabolite concentrations from ultrafiltered
plasma samples and/or overestimated concentrations for the
methanol-precipitated plasma samples. The manually-fit
Chenomx FC values averaged 2.47 + 0.81 compared to 1.09 +
0.18 for Gowda et al. (2014), 0.92 + 0.25 for Madrid-Gambin
et al. (2023), and 1.15 + 0.44 for SMoIESY. A few notable devi-
ations were the relatively large (>200%) FC increases for 2-HB,
3-HB, choline, and citrate. Despite these systematic offsets, the
manual-fit Chenomx metabolite concentrations appear to
follow a similar trend as the other studies and SMoIESY. For
example, the spike in the FC of choline, the relative decrease
in the citrate FC, and the relative increase in isoleucine FC
were mirrored by SMolESY.

The batch-fit Chenomx analysis provided metabolite con-
centrations that were also systematically higher than the values
determined by other studies and SMolESY with an average FC
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value of 2.40 + 2.28. Again, Chenomx consistently underesti-
mated metabolite concentrations from ultrafiltered plasma
samples and/or overestimated concentrations for the metha-
nol-precipitated plasma samples. A relatively large FC increase
(236% to 589%) was observed for 2-HB, isoleucine, and
leucine. Also, the batch-fit Chenomx analysis did not report a
concentration for choline, histidine or lysine. It was also
notable that the batch-fit Chenomx FC values had the highest
variability relative to the other methods and studies. The lower
correlation in the Chenomx measured metabolite concen-
trations from the ultrafiltered and methanol-precipitated
plasma samples and the resulting higher FC values were sur-
prising since Chenomx is more compatible with extracted
samples. Conversely, the FC values calculated from the Gowda
et al. (2014), Madrid-Gambin et al. (2023), and SMoIESY ana-
lysis yielded average values near one suggesting a good corre-
lation in the measured metabolite concentrations from the
ultrafiltered and methanol-precipitated plasma samples.
Nevertheless, there are still a few deviations, with a higher FC
for 2-HB (Madrid-Gambin et al. (2023)), acetate (Gowda et al.
(2014),) formate and phenylalanine (SMolESY). A lower FC was
observed for acetone (Madrid-Gambin et al (2023) and
SMOIESY), citrate (all three), and glycine (SMoIESY).

The metabolites most sensitive to sample preparation con-
ditions may be identified by a further comparison of the three
independent studies. The average FC and standard deviation
values were calculated from the Gowda et al. (2014), Madrid-
Gambin et al. (2023), and SMoIESY reported metabolite con-
centrations and plotted in Fig. 3 (bottom) and Table S6.1 The
Chenomx derived FC values were excluded from the analysis
because of the systematically elevated values relative to the
other published studies and to the corresponding SMolESY
analysis. As evident from the visual evaluation of Fig. 3
(bottom) and confirmed by a pairwise Student #test (p > 0.1,
see ESI Table S6f) the results were statistically equivalent
except for lactate (p < 0.02). As desired, most FC values were
approximately one. There were some notable differences in the
variability or precision in the measured metabolite concen-
trations and associated FC values as evident by %CV. The
average %CV was 20% + 14% for the FC values calculated from
the comparison of the methanol-induced protein precipitation
and ultrafiltration plasma samples. Formate, glycine, and
phenylalanine exhibited significantly higher %CV values
ranging from 46% to 54%. The average %CV increased to 38%
+ 25% for the FC values calculated from the comparison of the
methanol-induced protein precipitation and intact plasma
samples. 2-HB, acetone, alanine, choline, citrate, glutamine,
and lysine exhibited significantly higher %CV values ranging
from 48% to 96%. Again, Madrid-Gambin et al. (2023) did not
report glutamate.

Taken together, these results clearly demonstrate that fold-
change measurements provide an overall higher reproducibil-
ity in measured metabolite changes compared to absolute
metabolite concentrations. FC values were statistically equi-
valent regardless of the plasma sample preparation protocol,
methanol-induced protein precipitation, protein removal by
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ultrafiltration, or an intact plasma sample. Presumably, calcu-
lating a ratio negates constant sources of errors resulting from
the processing, handling, and analysis of the plasma samples.
In our study, measurements taken from the methanol-precipi-
tated plasma samples served as the gold standard. However,
we posit that employing reference compounds (such as the
addition of non-endogenous metabolites to the samples) and/
or electronic signals (such as ERETIC*®) could also effectively
mitigate errors stemming from the processing, handling, and
analysis of the plasma samples as well as multicentered
cohorts. Conversely, Chenomx processing was sensitive to
sample preparation protocols and data processing methods,
resulting in over a 100% difference in measured FC values.
Recall, the manual-fit Chenomx analysis of the plasma
samples following methanol-induced protein precipitation pro-
duced the highest overall metabolite concentrations, which is
likely the primary source of the poor correlation between
sample preparation protocols. The results also highlight the
metabolites that should be carefully scrutinized to determine
if the observed concentration change is truly caused by the
condition of interest or is an artifact of sample preparation.
For example, metabolites with %CVs and FCs significantly
higher than average may be suspect.

3.7 2-HB and glutamate are sensitive to sample preparation
method

To evaluate metabolite stability, we compared average metab-
olite standard deviations and %CV across each processing
method (see ESI Fig. S6 and Table S7}). Metabolites with a
standard deviation above the group average as determined by
Tukey’s IQR outlier test were determined to be less stable.
Conversely, standard deviations below the group average were
determined to be more stable. While %CYV is a valuable metric,
it is not the most precise measurement of reproducibility since
its magnitude varies with absolute concentration. When evalu-
ating each metabolite’s %CV, DMA and DMSO2 were the most
consistent outliers with %CV’s ranging from 158%-519%.
However, these two metabolites were also present at the lowest
concentration in the plasma samples and their standard devi-
ations were similar to other metabolites. Thus, the lower absol-
ute concentration systematically inflated the %CV to being a
statistical outlier. Therefore, our criteria for determining a
metabolite to be significantly more or less stable than average
was based exclusively on quantile range outlier testing of the
standard deviations.

Lysine and phenylalanine have the highest standard devi-
ation of 0.22 when all the data was analyzed together as one
group (see ESI Fig. S6at). However, lysine and phenylalanine
were not statistically different after grouping the data by pro-
cessing software. The Chenomx data shows an increase in the
standard deviation for 2-HB and glutamate (see ESI Fig. S6bt)
while the SMOIESY analysis resulted in no standard deviation
values for the combined dataset being identified as an outlier
(see ESI Fig. S6ct). The data from the Chenomx batch-fit ana-
lysis was excluded from the pooled Chenomx group since it
was previously determined to be an unreliable analysis
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method, which was further confirmed by the widespread in
standard deviation values as seen in Fig. S6d and e.f However,
when examining the Chenomx assisted-fit and manual-fit stan-
dard deviations, a clear trend can be seen in both the ultrafil-
tered and methanol-precipitated plasma samples. 2-HB, DMA
and glutamate consistently exhibited standard deviations that
were outliers from the rest of the metabolites. Glutamate, in
particular, was a clear outlier in all four data groups (see ESI
Fig. S6f-if). Overall, these results suggest that 2-HB, DMA and
glutamate are especially sensitive to sample preparation con-
ditions. Additionally, the standard deviations from the metha-
nol-precipitated plasma samples have a narrower range
(excluding outliers, see ESI Fig. S6g and i) compared to
the ultrafiltered plasma samples (see ESI Fig. S6f and ht). This
trend is highlighted by the tight distribution around the
dashed average line in the scatter plots shown in Fig. S6d-i.f
These results confirm previous studies which concluded
that methanol-induced protein precipitation to be the
most robust protein removal method for plasma or serum
metabolomics.*>*”

There were no outliers when examining the standard devi-
ation values from the combined SMolESY data set (see ESI
Fig. S6ct), but when grouping the data by sample preparation
method, 2-HB, choline, and lactate became outliers.
Interestingly, 2-HB had a higher standard deviation in the
Chenomx analysis of the methanol-precipitated plasma
samples, but it had a non-significant standard deviation in the
SMOIESY analysis of these same samples. A significantly lower
standard deviation in the SMolESY analysis was obtained with
the intact samples. This wide range of low, normal, and high
standard deviations suggests 2-HB may be more sensitive to
sample preparation conditions than the other metabolites. For
similar reasons, choline and lactate are also suspect.

4 Conclusions

In the present study, we systematically reviewed the effects of
sample preparation methods and data analysis platforms on
measured metabolite concentrations. The quickly expanding
library of metabolomics software provides many alternative
options for spectral analysis, but also adds new complications
for on-going harmonization efforts by the metabolomics com-
munity. We clearly observed that both the choice of sample
preparation method and data analysis platform significantly
perturbed the resulting metabolic profile, requiring careful
consideration of an appropriate metabolomics processing
pipeline. Consistent with prior results, we also found that
methanol-induced protein precipitation yielded a higher
overall concentration of metabolites recovered from plasma
samples. Clearly, methanol-induced protein precipitation
should be the preferred choice for sample preparation by the
scientific community. Importantly, a high level of reproducibil-
ity was achieved across our study and the two prior studies by
using fold-change measurements relative to absolute concen-
tration changes.’®*®*” Calculating metabolite concentration
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ratios cancels out sample processing errors, making an
additional “normalization step” (e.g., ratio calculation) essen-
tial when merging datasets from multicenter cohorts, various
studies or laboratories.

Our parallel investigation of Chenomx and SMoIESY as
analysis platforms offered several valuable insights. Chenomx
presents several degrees of automation, batch-fit, assisted-fit,
and manual-fit, which can be useful for high-throughput data
analysis as the number of samples, or the cohort size
increases to comprise hundreds to thousands of NMR
spectra. Encouragingly, assisted-fit, and manual-fit Chenomx
analysis were found to yield essentially identical results.
Assisted-fit Chenomx processing is the preferred choice,
especially for a large number of samples, since it drastically
reduces the analysis time proportional to the increase in
cohort size.

The manual-fit Chenomx processing of the plasma samples
prepared by protein-precipitation yielded the highest overall
metabolite concentrations relative to SMolESY and the other
Chenomx protocols. Accordingly, this increase in measured
metabolite concentrations is likely a closer representation of
the true metabolite concentrations in the plasma samples.
Thus, it is important to recognize that manually adjusting
Chenomx profiles will likely lead to a positive increase in
metabolite concentrations. However, the comparative analysis
of Chenomx to SMolESY and other studies from the scientific
literature revealed fold changes that were systematically elev-
ated. This may suggest that Chenomx either overestimates
metabolite concentrations from the methanol-precipitated
plasma samples or significantly underestimates concen-
trations from the ultrafiltered plasma samples. Conversely, the
overall consistency in the results obtained by Gowda et al.
(2014), Madrid-Gambin et al. (2023), and SMoIESY is quite
encouraging and indicates NMR-based metabolomics data is
reproducible. Further, the consistent outcome also suggests
that intact plasma samples may be a viable choice.

Finally, while our results align with previously reported
data, 2-HB, choline, DMA, lactate, and glutamate were found
to deviate from the measurements obtained for other metab-
olites. 2-HB and glutamate exhibit significant deviations
regardless of sample preparation and processing methods.
Thus, these metabolites may be specifically sensitive to sample
preparation method and may need to be carefully considered
before being classified as a biomarker or a group-differentiat-
ing metabolite. This work is not the first to investigate the
effect of sample preparation on metabolomics studies and
while a handful of other studies have similarly explored
sample handling, processing and preparation concerns, the
underlying issues to these protocols are complex. Accordingly,
a robust and consensus best practice has not yet been reached,
but our results reported herein provide an important next step
to achieving accurate and reproducible metabolomics
data 2935574749751 Aq 3 final note, there is a natural biological
variance in the metabolome due to a variety of factors that
may be exacerbated by the choice of experimental protocols.
Recognizing this challenge and minimizing non-biological var-
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iance by the proper design and implementation of a metabolo-
mics study is critical to its success.
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