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ARTICLE INFO ABSTRACT
Keywords: Cancer is a leading cause of world-wide death and a major subject of clinical studies focused on the identification
Meta-analysis of new diagnostic tools. An in-depth meta-analysis of 244 clinical metabolomics studies of human serum samples

Cancer biomarkers
Clinical metabolomics
NMR

Mass spectrometry

highlights a reproducibility crisis. A total of 2,206 unique metabolites were reported as statistically significant
across the 244 studies, but 72% (1,582) of these metabolites were identified by only one study. Further analysis
shows a random disparate disagreement in reported directions of metabolite concentration changes when
detected by multiple studies. Statistical models revealed that 1,867 of the 2,206 metabolites (85%) are simply
statistical noise. Only 3-12% of these metabolites reach the threshold of statistical significance for a specific
cancer type. Our findings demonstrate the absence of a detectable metabolic response to cancer and provide
evidence of a serious need by the metabolomics community to establish widely accepted best practices to
improve future outcomes.

1. Introduction 100 % effective, and many cancers lack routine tests especially in the

absence of symptoms [6-8]. Other cancer screens have not been

1.1. Cancer prevalence, cost, and screening particularly successful at early detection and may lead to high false

positive rates [9]. One means of improving the early detection of cancer

Cancer is a leading cause of death worldwide, where lung, colorectal would be the discovery of new, robust, and accurate molecular bio-
and breast cancer have the highest mortality rates [1]. According to the markers [10,11].

International Agency for Research on Cancer and the World Health
Organization, there were an estimated 20 million new cancer cases and
9.7 million cancer deaths worldwide in 2022 [2]. The overall
cancer-related medical costs in the US for 2020 was estimated to be
$208.9 billion, which includes the costs of cancer screening and di-
agnostics in addition to treatments and patient care [3]. Thus, cancer
incurs a high financial and personal burden and, while progress has been
made over the past decades, new treatments and diagnostic tools are still
desperately needed [4].

Cancer is a diverse disease with over 100 different types that can
appear anywhere in the body, which means that screening and di-
agnostics procedures are highly variable and dependent on the specific
locations of the tumors. Additionally, early detection of cancer is the
goal of any diagnostic tool since it significantly increases a positive
outcome with cancer mortality rates decreasing by 33 % since 1991 due
to improved cancer screening [3,5]. However, no screening method is

1.2. Clinical metabolomics as a source for cancer biomarkers

Metabolomics has been especially impactful to issues of human
health [12,13] because the metabolome changes rapidly in response to
stressors like disease states. Thus, a common utilization of metabolomics
is the search for molecular biomarkers from tissues [14], cell cultures
[15], animal models [16-18], and biofluids [19-21] as a tool for disease
diagnosis, prognosis, and precision medicine. Accordingly, clinical
metabolomics has been applied multiple times to nearly every common
human disease [22] from asthma [23] to zika virus infections [24]. This
includes essentially every type of cancer [25]. The metabolome is
particularly appealing source of biomarkers since metabolites are pre-
sent in every biofluid that is easily accessible from a human patient, but,
more importantly, metabolomics-derived biomarkers typically consist of
a set of metabolites altered by the disease state instead of a single
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molecular entity. The accuracy and reproducibility of a diagnostic tool is
expected to increase dramatically by the simultaneous monitoring of
multiple molecular markers since it improves both sensitivity and
selectivity. Thus, clinical metabolomics holds great promise to signifi-
cantly and beneficially impact human health by improving both the
diagnosis and treatment of human diseases [26-28].

1.3. Challenges and successes associated with novel biomarker discovery

The search for clinical biomarkers is not limited to metabolites as
there are efforts being made across multiple other “-omics” fields like
proteomics and genomics to find diagnostic biomarkers of human dis-
eases [29]. However, it is quite difficult to transition any potential
biomarker identified as significant in a research study to a validated
diagnostic tool approved by the U.S. Food and Drug Administration
(FDA), European Medicines Agency (EMA), or other government
agencies for clinical usage [30]. The quality of a potential biomarker is
typically evaluated through statistical metrics such as sensitivity, spec-
ificity, positive predictive value, and negative predictive value [31,32].
Drucker et al. (2013) report that the ratio of biomarker publications to
biomarker patents is less than 6 %, demonstrating that very few of the
annually discovered biomarkers (proteins, metabolites, genes, etc.) meet
the necessary sensitivity and specificity criteria [30]. This lack of success
can be attributed to errors in the study design that include improper
sample collection and storage temperature, inadequate number of rep-
licates or unreliable data collection and data analysis [33]. Metab-
olomics faces additional unique challenges in the reliable detection of
biomarkers that includes: (i) chemical and enzymatic instability of
metabolites, (ii) the metabolome being largely unknown or uncharac-
terized (i.e., dark), (iii) incomplete coverage or detection of the metab-
olome by NMR and MS, and (iv) ambiguities in metabolite assignments.

While there are legitimate concerns about the discovery process,
there is a strong history of successful molecular biomarkers that are
being used in the clinic today. For example, breast cancer susceptibility
genes BRCA1/2 and the cancer antigen 15-3 (CA 15-3) are biomarkers
for breast cancer [34,35] and the prostate-specific antigen protein is a
biomarker used in the detection of prostate cancer [34]. Blood testing of
metabolites such as calcium, sodium, chloride, creatinine, glucose or
cholesterol are routinely screened for kidney disease, diabetes, or car-
diovascular disease [36]. A recent review by Qiu et al. (2023) high-
lighted other metabolites that are promising biomarkers for a variety of
diseases such as traumatic brain injury, asthma, tuberculosis, cancers,
and COVID-19 [37]. Overall, the road from biomarker discovery to
clinical validation is a difficult, but worthwhile effort that has benefited
numerous individuals.

1.4. Concerns about reproducibility in clinical metabolomics

Although metabolomics has the potential to transform cancer
research, it is still a relatively new field that lacks community agreed-
upon best practices for data collection and reporting criteria despite
ongoing efforts by several groups and initiatives such as COordination of
Standards in MetabOlomicS (COSMOS), Metabolomics Standards
Initiative (MSI), Metabolomics Quality Assurance & Quality Control
Consortium (mQACC), and Metabolomics Association of North America
(MANA) [38-43]. As a result, there are substantial variations in pro-
tocols reported by clinical metabolomics studies regarding extraction,
detection, and analysis methods, which can subsequently lead to
inconsistent or contradictory outcomes. For example, different analyt-
ical methods (i.e., NMR, MS, FT-IR, etc.) [44], LC columns (i.e., HILIC,
C18, IEC, etc.) [45], solvent extraction techniques (i.e., aqueous, meth-
anol, Folch, etc.) [46], and biomolecular removal protocols (i.e., pre-
cipitation, filtration, intact) [47], among other factors, will lead to
unique sets of detected metabolites. Simply, NMR measures the most
abundant metabolites and MS detects metabolites that readily ionize.
Differential physical, chemical, and structural properties of metabolites
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that includes solvent solubility, polarity, reactivity, molecular weight,
oxidative and thermal stability, and biomolecular affinity will all
uniquely impact the metabolites that remain following the sample
preparation protocol. The selection of experimental and analysis method
will similarly affect the precision and accuracy of the measured
metabolite concentrations. These protocol decisions consists of the
proper choice of internal standards (i.e., blanks, isotopically labeled
metabolite standards, etc.), quality control (QC) samples (i.e., pooled
case and control samples), feature selection method (i.e., S/N, RSD,
background removal, etc.), alignment and batch correction method (i.e.,
regression models, normalization methods, etc.), statistical techniques
(ie, PCA, Student’s t-test, etc.), and sample randomization. Unfortu-
nately, most clinical metabolomics studies exclude one or more of these
essential protocols leading to erroneous results. Given this large di-
versity in study design choices, it is not surprising that replicate clinical
metabolomics studies have reported discordant metabolites of interest
with opposing metabolite directional changes partly due to the variable
application of these experimental protocols.

Our prior systematic review of pancreatic ductal adenocarcinoma
(PDAC) papers found few metabolites were commonly reported across
the 24 clinical metabolomics studies [48]. In fact, 87% of the 655 po-
tential metabolite biomarkers for PDAC were reported by a single study.
For the 16 most reported metabolites (i.e., 5 to 11 studies), 10 of these
metabolites were inconsistently identified as increasing or decreasing in
PDAC patients. Unfortunately, other meta-analysis of clinical metab-
olomics studies uncovered similar inconsistencies and lack of biomarker
reproducibility [49-52]. Herein, we present a systematic review and
meta-analysis that expands upon our previous PDAC study to further
explore the general reproducibility and consistency of proposed cancer
metabolite biomarkers. Our meta-analysis of 244 clinical metabolomics
studies of 19 homogenized cancer groups also provides an avenue to
assess if a universal set of general cancer metabolites biomarkers exist
and what the detection threshold for this panel may be. Importantly, we
classified metabolomics and lipidomics studies separately and excluded
solely lipidomics studies from our meta-analysis. Finally, our
meta-analysis provides further evidence that community-wide standards
and best practices are needed to ensure consistency across metabolomics
studies to enable the harmonization of metabolomics data and results.

2. Discussion
2.1. Overview of the clinical metabolomics data set

An exhaustive search of scientific literature was conducted to find all
clinical metabolomics studies from four major databases with an aim to
identify diagnostic biomarkers for cancer (Fig. 1). Approximately 1,000
manuscripts were identified but after manually applying exclusion and
inclusion criteria a total of 244 unique clinical metabolomics studies
were identified. Notable inclusion criteria consisted of only human
studies involving serum biofluids analyzed by NMR and/or MS to
identify metabolites that differentiated cancerous from non-cancerous
individuals. The 244 studies were then manually analyzed to extract a
diversity of relevant data including details regarding the journal publi-
cation, the metabolomics and statistical methods, the cancer type and
list of cancer dysregulated metabolites.

Considering metabolomics is a relatively new omics field, it was not
surprising that most of the clinical metabolomics papers (82%) were
published since 2015 (Fig. 2a). The oldest paper in the collection was
from 2008. There were 43 unique cancer types as originally reported in
the manuscripts, but after nomenclature homogenization that grouped
similar cancer types together like laryngeal and nasopharyngeal cancer,
the total number of cancer groups was reduced to 19.

(Fig. 2b). The lung (15%), colorectal (14%), hepatocellular (13%),
and gastrointestinal (11%) cancer groups corresponded to over half of
the clinical metabolomics studies comprising the data set. These cancer
types are frequently ranked as the most commonly occurring cancers,
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Fig. 1. Data Curation Workflow. Top to bottom stepwise diagram depicting the experimental workflow. Boolean search terms (Table S1) were applied to each
database to acquire articles of interest (Table S2). Data extracted from the articles are listed in Tables S4-S12.

o
o
o

Publication Year Distribution Cancer Group Distribution Cohort Size Distribution

Number of Publications

o o 3 & 8 B
Number of Publications

o 2 8B 8 &
Report Frequency

=) =3 -] N

CEEEFEEEEEEE T §28% gEgesssgoge?
§82858382833:888¢8 BRI
FESF3B3¥E §
g.’: =23 g
d. Metabolomics Method e. Instrumentation f. Age/Sex Matching

. Untargeted D Both . MS . NMR D Both . Yes D Age

. Targeted . Pseudotargeted . o - .

Fig. 2. Cohort Characteristics. a.-c. Bar chart depicting the publication year, cancer group, and cohort size distribution of the 244 studies. d. Waffle chart showing
the percentage of metabolomics methods utilized in the 244 studies: untargeted (red), targeted (orange), targeted and untargeted (yellow), pseudotargeted (blue). e.
Waffle chart showing the percentage of instrumentation methods utilized in the 244 studies: MS (red), NMR (orange), MS and NMR (yellow). f. Waffle chart showing
the percentage of 244 studies that utilized age and sex matched cohorts: Both age and sex matched (yes, red), neither age nor sex matched (no, orange), only age
matched (age, yellow), only sex matched (sex, blue). Abbreviations: Gyn — Gynecological, GI — Gastrointestinal, HCC — Hepatocellular Carcinoma, CRC — Colorectal
Cancer, MS — Mass Spectrometry, NMR — Nuclear Magnetic Resonance. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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which likely increased the availability and size of cohorts and funding
opportunities. However, only 5% of the 244 studies examined breast
cancer despite it being the fifth leading cause of global deaths. World-
wide, over 684,000 women died from breast cancer in 2020. The sus-
piciously low number of breast cancer metabolomics studies may be
attributed to the fact that research into diseases that primarily affect
women is disproportionately underfunded [53].

Sample size and statistical power should be a primary consideration
when organizing a clinical study [54]. Almost half (47.7%) of the
included studies had <50 samples in their cohort and only 6.2% had
more than 200 samples (Fig. 2¢). To take conclusions from a small
population and extrapolate the results to a larger population, the study
must have sufficient statistical power and, subsequently, enough repli-
cates to reach a meaningful outcome [55]. A recent clinical lipidomics
study suggests a minimum cohort size should consist of more than 100
samples and 100 controls to attain statistically valid results [56]. Simi-
larly, a large-scale study of 1,200 patients suggested that several hun-
dred samples would be needed to be representative of the population of
1,200 [57]. Furthermore, the analytical method must include suitable
quantitative internal standards and appropriate QC samples, and ideally
the conclusions need to be verified by a second, independent laboratory
to achieve the successful identification of reliable metabolite bio-
markers. Unfortunately, and as clearly identified by our meta-analysis,
these analytical methods and protocols are rarely adhered to in a clin-
ical metabolomics study. Instead, accessibility, shipping, location,
storage, throughput, manpower, practicality and cost concerns are often
cited as being detrimental to a study’s ability to acquire and analyze
several hundred samples. Consequently, these studies may not have
enough statistical power to reliably identify metabolic biomarkers.
Unsurprisingly, there are currently no widely adopted standards
regarding a minimum sample size for metabolomics clinical studies.

The clinical metabolomics data set consisted mostly of untargeted
metabolomics studies that used MS (68%) as the analytical method for
metabolite detection (Fig. 2d). Untargeted metabolomics has the
advantage of being discovery driven and hypothesis generating, which
allows for the elucidation of novel biomarkers. Targeted metabolomics
studies comprised a smaller proportion (14%) of the clinical metab-
olomics data set, but often allowed for better absolute quantitation since
calibration curves and isotopically labeled standards were implemented
into the workflow for the metabolites of interest. A point of potential
concern was the observation that only 2% of the clinical studies com-
bined untargeted and targeted methods, which could be used to confirm
and validate the potential metabolite biomarkers and provide an abso-
lute quantification of the cancer-induced metabolite concentration
changes.

In similar proportions, mass spectrometry (81%) combined with gas
or liquid chromatography was the popular choice of analytical method
due to its higher sensitivity and broader coverage of the metabolome
(Fig. 2e). Nonetheless, NMR (16%) was still commonly used in these
clinical metabolomics studies, where investigator experience and
expertise are likely factors in the choice of analytical method. Notably
and despite the inherent complementarity of NMR and MS, only 3% of
the studies used both NMR and MS.

A robust and reliable clinical study necessitates an appropriate study
design, which includes, among other considerations, age, and sex
matched cohorts. In this regard, it is encouraging to report that ~72% of
the clinical metabolomics data set reported utilizing age and sex
matched cohorts. Specifically, 60% of the manuscripts reported both age
and sex matched cohorts with 8.6% reporting only age matched cohorts
and 2.8% reporting only sex matched cohorts (Fig. 2f). However, 28.6%
and 11.4% of the manuscripts can be considered as reporting an
improperly or incompletely designed clinical trial. Of course, practical
considerations and unavoidable limitations may negatively impact the
final cohort composition that are out of investigator control, but it still
raises serious concerns about bias, and the reliability and applicability of
the study’s outcomes. A 1:1 matching between controls and cases is a

Trends in Analytical Chemistry 180 (2024) 117918

commonly accepted cohort design where adding more controls may only
increase statistical power up to a 4:1 ratio [58]. Major confounding
factors such as age and sex should always be matched to avoid or
minimize bias [59]. Simply, it has been well-documented that human
diseases manifest differently according to the sex and age of the indi-
vidual [60]. Thus, age and sex matched cohorts should be the standard
practice for all metabolomics studies. This combination of inadequate
and diverse designs of clinical metabolomics studies will likely nega-
tively impact the reproducibility, reliability, and accuracy of the cancer
biomarkers identified from the metabolomics data set.

2.2. Variability of statistical techniques used in clinical metabolomics
studies

The type of control group chosen is important for biomarker dis-
covery. Conversely, changing the control group could significantly affect
the number and type of metabolites identified as disease-dependent, and
dictate the specific utility of these disease biomarkers. For example, the
choice of control group would determine if biomarkers were useful for
diagnosing cancer (i.e., healthy controls), identifying the cancer stage (i.
e., stage 1 cancer patients), or for precision medicine (i.e., cancer patient
prior to initiating treatment). Accordingly, 88% of studies comprising
the clinical metabolomics data set used healthy individuals as a control
group, 54% of the studies used individuals with a related disease, and
43% of the studies used both healthy individuals and patients with a
related disease (Fig. 3a). Using a related disease as a control may be
beneficial to metabolite biomarker discovery given the potential of
narrowing and focusing the outcomes to the specifics of the cancer type
being investigated. In effect, common responses to any disease, like an
immune response, may be canceled out and the remaining dysregulated
metabolites would presumably be a direct result of the cancer type.
However, it is still possible to miss metabolites of interest that may vary
moderately between the related disease and cancer. Additionally,
choosing the correct related disease can be challenging. Is it best to
choose a benign tumor, an inflammatory disease, or an earlier stage of
cancer? Despite these potential issues, we believe the benefit of adding
manuscripts that used a related disease as a control and maximizing the
number of replicate studies negated any other concerns. Nevertheless,
the choice and diversity of control groups used in the metabolomics data
may negatively impact the reproducibility and the reliable application
of any proposed cancer biomarker.

Multiple hypothesis or false discovery rate (FDR) correction is
another key factor that directly determines the number of metabolites
identified as statistically dysregulated by cancer. Accordingly, all
metabolomics studies need to apply an FDR or equivalent protocol
because errors propagate exponentially as each additional metabolite of
statistical significance is added to a set (eqn. (1)):

p=1-(1-a)" (€Y

where p is the p-value, m is the number of metabolites and « is the
significance level , usually 0.05 or less. Again, as the number of potential
metabolite biomarkers increases the likelihood of falsely rejecting the
null hypothesis (i.e., false positives) increases [61]. Troublingly, only
45% of the clinical metabolomics data set employed any type of multiple
hypothesis correction method (Fig. 3b). This is a modest improvement
over the 34% of the NMR metabolomics studies published in 2020 that
used FDR, but it is still a serious concern [62]. Of the 110 multiple hy-
pothesis corrected studies, 41% utilized the Benjamini-Hochberg FDR
correction method, where 15.5% of studies used the Bonferroni method
(Table S9). Surprisingly, while other papers (24%) mentioned the use of
a multiple hypothesis correction, the specific test employed was not
reported. Despite the common omission of an FDR correction, 86% of
studies did report the application of a p-value <0.05 as a threshold for
statistical significance (Table S10). While this p-value is a popular
choice for statistical significance, our prior meta-analysis of PDAC
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Fig. 3. Cohort Characteristics (cont.). a. Venn diagram showing the number and percentage of the 244 studies that used either a healthy control, related disease
control, or both. b. Waffle chart showing which percentage of studies implemented any form of multiple hypothesis testing: Yes (red), No (orange). The full dis-
tribution and type of multiple hypothesis testing correction method used can be found in Supplementary Table S9 c-d. Bar chart depicting the number of times that
each statistical technique or feature selection method was used across the 244 studies. The full distributions can be found in Supplementary Tables S11-S12. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

metabolite biomarkers suggested an aggressive choice of p-value may be
partly responsible for the low reproducibility of clinical metabolomics
studies. Unfortunately, only 7.4% of the studies in our cancer metab-
olomics data set utilized a more conservative choice of p-value <0.01,
0.005 or 0.001. More concerning was the observation that 3.7% of pa-
pers used much higher p-value thresholds of <0.1, <0.15 or <0.25,
where 2 %of studies did not even report a p-value. The common omis-
sion of an FDR correction and the range of p-value choices is expected to
contribute to a potentially low reproducibility in the cancer biomarkers
identified from the clinical metabolomics data set.

Metabolomics data sets were usually analyzed with a combination of
univariate and multivariate statistical techniques. Common multivariate
techniques included principal component analysis (PCA), orthogonal
projection to latent structures (OPLS) or partial least squares (PLS).
Multivariate techniques should be validated by using a permutation test,
CV-ANOVA, or ideally a cross-validation technique that involves
dividing the data into training and validation sets. Unfortunately, and as
we previously observed, only 30-40% of studies properly validated their
statistical models [62].

Unsurprisingly, t-tests, Mann-Whitney U tests, and ANOVAs were
frequently used for a univariate statistical analysis (Fig. 3c-Table S11).
Notably, multivariate statistical methods combined with an area under
the receiver operating characteristic curve (AUROC) analysis [63,64]

was the overwhelming choice in 89% of the studies. In general, in-
vestigators used multiple parametric ROC curves based on a set of me-
tabolites that individually passed common minimal parameters like VIP
(>1) and fold change (>2). Typically, the multiple parametric ROC
curves were iteratively optimized to identify the optimal set of metab-
olites that yielded the best overall predictive outcome. While AUROC is
a valuable approach to assess how well a metabolomics model may
predict a cancer diagnosis, community standards or best practices have
not been established or widely adopted for its application. For example,
what measurables and parameter settings (i.e., VIP >1, FC > 2, p-value
<0.05, etc.) should be used to include or exclude a metabolite from a
ROC curve analysis? What is the maximum number of metabolites (i.e.,
5, 10, 25, etc.) that should be used in a ROC curve analysis? The
perceived accuracy of any multiparameter fit nearly always appears to
improve with the number of added variables, but this is also likely to
lead to an over-fit and unreliable model. Also, the ROC model should be
cross validated by separating the data set into a test and validation set,
which requires a significantly larger cohort than commonly available
(Fig. 2¢). The variability in the use and application of ROC curves across
the clinical metabolomics data set may contribute to a high variability in
the identification of potential cancer biomarkers.
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2.3. Various feature selection methods used in clinical metabolomics
studies

After the data has been acquired, the feature selection and filtering
protocol used to curate and analyze the metabolomics data can be as
deeply impactful to the outcomes of a biomarker study as the choice of
statistical methods. Multiple literature reviews are available that detail
the options, merits, and limitations of feature selection and filtering
techniques [65-68], but a community consensus regarding best prac-
tices has not been established or widely adopted. Instead, a diversity of
protocols is routinely employed by metabolomics investigators based on
their experience, data structure, and other relevant concerns. The
feature selection and filtering techniques most reported in our clinical
metabolomics data set are shown in Fig. 3d. The complete distribution is
listed in Table S12. Concerningly, many papers (41%) did not list spe-
cific feature selection parameters, or the methodology description was
too vague to categorize. Removing known solvent signals, background,
and peaks under the limit of detection was a routinely used method of
data cleaning and simplification. The most common choice for feature
selection was a minimum threshold for an individual metabolite being
present within a group. A minimum threshold approach was reported in
63 or 26% of the studies (Fig. 3d). With this approach, the metabolomics
field routinely employs the “80% rule”, which excludes any metabolite
that is present in less than 80% of the samples within a group. The 80%
rule is rather arbitrary and many of the publications in the clinical
metabolomics data set used alternative cutoffs that ranged from 20% to
100%. The second most common choice for a feature selection method
was the percent relative standard deviation (RSD) cutoff, which was
reported in 39 or 16% of the studies. A threshold RSD value of <30%
was typically used to exclude metabolites by studies utilizing this
method. As with other study design decisions, the diversity and lack of
details regarding feature selection and filtering protocols will affect the
metabolites identified as potential cancer biomarkers leading to repro-
ducibility and accuracy concerns.

2.4. Low reproducibility of metabolites reported as potential cancer
biomarkers

A total of 2,206 unique metabolites were reported as statistically
significantly changing in the serum of cancer patients across the 244

a.
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studies comprising our clinical metabolomics data set. Only 624 (28%)
out of the 2,206 metabolites were reported by more than one study
(Fig. 4a). Fig. 4b shows the number of manuscripts reporting each of
these metabolites, where 480 (77%) out of 624 were reported by only 2
to 5 studies. The top five reported metabolites were glutamine and
glutamic acid (59 studies), alanine (49 studies), and lactic acid and
tyrosine (45 studies). The top 50 most highly reported metabolites were
only detected by 6-24% of the 244 studies. Even more concerningly,
1,582 (72%) out of the 2,206 metabolites were reported by a single
study and are likely false positives representing the potential noise level
of clinical metabolomics studies. A heatmap (Fig. S1) based on the 561
metabolites detected in two or more colorectal (CRC), esophageal,
gastrointestinal (GI), hepatocellular carcinoma (HCC) or lung cancer
studies and hierarchically clustered according to cancer type is clearly
random and is not dictated by any biological similarity. Most of the
clinical metabolomics studies indicated a relative change (ie.,
increasing or decreasing) in the metabolite’s serum concentration for
cancer patients. Troublingly, 4 studies corresponding to a total of 220
potential metabolite biomarkers did not indicate a relative concentra-
tion change and these metabolites were excluded from our study. Ab-
solute metabolite concentrations were rarely reported.

The low reproducibility of cancer biomarkers may be a simple arti-
fact of grouping together the data from the 19 distinct cancer groups
(Table 1, Table S6). The metabolic diversity between and within cancer
subtype may mask any cancer specific biomarkers, especially consid-
ering the large range in clinical studies (1-36) available per cancer
group (Fig. 2b). Additionally, it is important to consider the technical
variations inherent to each metabolomics study. As outlined in Sections
1.3 and 1.4, the lack of widely adopted best practices and the resulting
large diversity in experimental protocols has likely contributed to these
differences in identified metabolites and concentrations. Large, biolog-
ically relevant metabolite concentration ranges may also affect the
detected metabolic profile. For example, glucose is the most abundant
metabolite found in serum (5 mM) followed by urea (4 mM) and amino
acids such as glutamine (500 pM), alanine (500 pM), glycine (350 pM),
and lysine (350 pM) [69]. These highly abundant metabolites may
interfere with the detection of other low abundant metabolites, espe-
cially considering the different choices of experimental protocols.

We assessed the consistency of these metabolite concentration
changes across the data set for the 36 metabolites reported in 20 or more

B2 [16-10
B3 11120
14 []21-30
W5 []31-59

27
1.2%

16 18
=% <1

Fig. 4. Metabolite Report Frequency. a. Ring chart showing ratio of metabolite report frequency. Singly reported metabolites are shown in red (72%) and me-
tabolites reported at least twice are shown in orange (28%). b. Ring chart showing a more detailed breakdown of the metabolites reported by two or more studies
(24). Metabolites counted exactly twice are shown in red (12.9%), 3x shown in orange (4.9%), 4x shown in yellow (2.6%), 5x shown in green (1.2%), 6-10x shown in
pale red (3.2%), 11-20x shown in pale orange (1.8%), 21-30x shown in pale yellow (<1%), and 31-59x shown in pale green (<1%). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Summary of clinical metabolomics data set.

Cancer Group No. Studies” No. Significant Metabolites®
Mean STDEV Min Max
Biliary Tract Cancer 3 22 18 9 34
Bone Cancer 2 49 9 42 55
Breast Cancer 12 18 16 3 57
Colorectal Cancer 35 27 44 2 240
Esophageal Cancer 18 20 26 1 103
Gastrointestinal Cancer 28 17 14 1 55
Glioblastoma (Brain Cancer) 1 3 3 3
Gynecological Cancer 17 23 26 4 100
Head and Neck Cancer 10 28 54 3 181
Hepatocellular Carcinoma 31 19 19 1 102
Kidney Cancer 12 17 17 2 64
Leukemia 5 14 10 5 30
Lung Cancer 36 26 35 2 149
Lymphoma 3 20 6 17 27
Myeloma 4 17 18 2 42
Prostate Cancer 13 16 16 2 59
Skin Cancer 2 22 5 18 25
Thyroid Cancer 4 26 26 5 64
Urothelial Carcinoma 8 12 10 5 33

# The mean, standard deviation, minimum, and maximum number of metab-
olites identified across the clinical metabolomics studies identified to be dys-
regulated in the associated cancer group.

> The number of manuscripts in the clinical metabolomics data set associated
with the listed cancer type.

studies. While there is significant scatter in Fig. 5a, not surprisingly the
average ratio of change across the values is centered around a 51% =+
16% increase and 49% + 16% decrease, which is expected for a random
outcome of two options. In general, as more studies reported the
metabolite as changing in the serum of cancer patients, the percentage of
studies reporting the same concentration trend decreased towards zero
(Fig. 5b). The metabolites responsible for the spikes in the trend corre-
spond to metabolites such as lactic acid and glutamic acid for CRC,
glutamine for esophageal cancer, glutamic acid for HCC, and hippuric
acid, palmitic acid, phenylalanine and LPC (16:1) for lung cancer.
Interestingly, when analyzing consistency across all cancers, there were
only two metabolites (pipecolic acid (PC (38:6)) and methyladenosine)
that showed a consistent trend across 6 or 8 studies, respectively.
Nevertheless, these metabolites were reported in less than 4% of the 244
studies and cannot be described as biologically significant but do war-
rant further considerations in future studies.

2.5. Impact of cancer type on metabolites reported as potential
biomarkers

An analysis of the type of metabolites reported by two or more
studies shows that amino acids were commonly dysregulated across all
cancer types (Fig. 5a). These results are consistent with the well-known
Warburg effect that has been shown to disrupt amino acid metabolism
across multiple cancer types [70,71]. Nevertheless, and despite this
expected outcome, even glutamine, which was the most commonly re-
ported and abundant amino acid, was only reported 59 times across the
244 studies (24%). Other commonly reported metabolites included
lactic acid (18%), glucose (18%), fatty acid amides (15%), and some
phospholipid species (13%).

A further analysis of these commonly reported metabolites by cancer
group once again showed no clear pattern (Fig. 5c). For clarification,
Fig. 5cis an expanded view of Fig. 5a, color coded by cancer type studies
that indicate either an increase or decrease in the concentration of the
metabolite. Both Mosaic plots in Fig. 5¢ were normalized to 100%
(compared to the original percentages plotted in Fig. 5a) to enhance the
visualization of low percentage cancer groups. These and other metab-
olites exhibited an equal likelihood to be increased or decreased in the
serum of different cancer patients. For example, Glu is commonly
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reported as increasing in the serum of 14 different types of cancer, but it
has also been identified as decreasing in 9 other cancers. LPC (14:0)
appears to only be increasing in lung and biliary tract cancer, but it has
been shown to decrease in eight different cancers. Carnitine is only re-
ported as decreasing in esophageal cancer, but it has been reported to
increase in 9 other cancers. Overall, the lack of consistency in reporting
potential cancer biomarkers across the entire data set or relative to any
specific cancer type, or the high variability in concentration trends,
raises serious concerns of the robustness and utility of these metabolites
as diagnostic markers of cancer (Fig. 5).

2.6. Experimental factors correlated with cancer biomarkers

A thorough analysis of the effects of study parameters on metabolite
reproducibility revealed several notable trends (Fig. 6). Unsurprisingly,
studies that used both a targeted and untargeted approach to metab-
olomics reported an increase in the total number of statistically signif-
icant metabolite changes compared to studies that only relied on a
targeted or untargeted approach (Fig. 6a). However, the total number of
reported metabolites was completely independent of several other study
design factors including instrumentation method (Fig. 6¢), cohort size
(Fig. 6e), journal impact factor (Fig. 6g), and multiple hypothesis testing
(MHT) usage (Fig. 6i). Instead, only a large variability was observed in
the total number of reported metabolites. While these trends are
important to note, the total number of significant metabolites may not
be the best indicator of consistency.

The number of metabolites reported by multiple studies may be a
better surrogate for the reproducibility and reliability of potential can-
cer biomarkers. In this regard, the total number of dysregulated me-
tabolites was normalized to the number of studies in each category,
which produced several additional trends. The normalized number of
metabolites increased as the methodology changed from untargeted, to
targeted, and then to a combination of both untargeted and targeted
(Fig. 6b). A similar statistically significant increase occurred as the
analytical technique changed from MS, to NMR, and then to a combi-
nation of both NMR and MS (Fig. 6d). NMR and targeted metabolomics
provide for an absolute quantification of metabolite changes in biofluids
obtained from cancer patients, presumably leading to a higher accuracy
and precision in the identified cancer metabolite biomarkers relative to
MS and untargeted metabolomics.

Other factors such as cohort size, journal impact factor and MHT
usage were also assessed to ascertain their contributions to cancer
biomarker reproducibility. A larger cohort provides for a greater sta-
tistical power, which is expected to lead to a robust outcome and more
reliable cancer biomarkers. All cohorts with <200 participants exhibited
similarly low levels of metabolite reproducibility, but a dramatic in-
crease occurred as the number of cohort participants surpassed 200
patients (Fig. 6f). A surprisingly small but statistically significant in-
crease was seen with MHT usage (Fig. 6j). The application of MHT or a
false discovery rate correction would be expected to increase the
reproducibility of cancer biomarkers by decreasing type I errors. Un-
fortunately, MHT was only employed by 45% of the studies (Fig. 3c). Itis
interesting to note that the use of MHT was correlated with journal
impact factor (Fig. 6k), where MHT usage improved as the impact factor
reached 3-4 and higher. Unexpectedly and aside from affecting MHT
implementation rate, the journal impact factor had no meaningful in-
fluence on biomarker reproducibility as articles published in a journal
with an impact factor of <1 or 10-20 had the same number of multiply
reported metabolites (Fig. 6k).

2.7. Biomarkers need a minimum of three or more independent reports of
significance

If a metabolite is a true diagnostic biomarker of cancer, it would be
expected to be reported as significantly altered in a high percentage of
comparative studies. General diagnostic guidelines indicate that a
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Fig. 5. Common Metabolites by Direction and Cancer Group. a. Mosaic plot for the 36 metabolites that were detected by at least 20 clinical metabolomics
studies. The percentage of studies that reported an increase in the metabolite’s concentration in cancer are colored green. A reported decrease in the metabolite’s
concentration is colored red. Metabolite order is alphabetical left-to-right. There is a dashed line across the chart at 50% for reference. b. Line plot depicting the
percentage of relative concentration changes (i.e., increasing or decreasing) that were matched for metabolites detected by 2-11 different clinical metabolomics
studies. All 19 cancers are depicted by a grey, dashed line with individual cancer types plotted as: CRC (olive), esophageal (green), GI (teal), HCC (blue), and lung
(pink). The dotted line indicates 50%. ¢. An expanded view of the Mosaic plot in ¢ color coded by the percentage of cancer type studies that identified the metabolites
as (top) increasing or (bottom) decreasing. Please note, the y-axis was normalized to range from 0 to 100% for both the increasing and decreasing metabolite Mosaic
plots to clearly visualize the low percentage cancer types. The metabolites are listed in alphabetical order. Abbreviations: 3-HB — 3-hydroxybutyrate, ALA - alanine,
ARG - arginine, ASP — aspartic acid, CRC — colorectal cancer, FFAs - free fatty acids, GI — Gastrointestinal, GLU - glutamic acid, GLN — glutamine, GLY — glycine, Gyn
— gynecological, HCC — hepatocellular carcinoma, HIS — histidine, ILE — isoleucine, Leu — leucine, LPC - lysophosphatidylcholine, MET — methionine, PHE —
phenylalanine, PRO - proline, SER - serine, THR - threonine, TRP - tryptophan, TYR - tyrosine, VAL — valine. (For interpretation of the references to color in this

figure legend, the reader is referred to the Web version of this article.)

“good” molecular biomarker achieves an 80% sensitivity where a 60%
threshold is considered “acceptable” [72]. The best-known cancer
biomarker is the prostate-specific antigen,

which has an 86% detection sensitivity for prostate cancer [73].
However, another common cancer biomarker, cancer antigen 15-3 (CA
15-3), which is used to detect the presence of breast cancer, only has a
reported sensitivity of 55.6% [74]. Unfortunately, our meta-analysis
indicates that the 2,206 potential metabolic biomarkers for cancer fall
far short of this range of values. In fact, the best performing metabolites
in the clinical metabolomics data set, glutamate, glutamine, alanine, and
lactic acid, were only reported as being statistically dysregulated in less
than 26% of the clinical metabolomics studies. This is despite the
well-established fact that these metabolites are disrupted in cancer [70,
75-77]. The clear lack of reproducibility across the 244 clinical
metabolomics studies warrants a further analysis to determine if the
observed outcomes are the result of a truly random process or if any of

the potential biomarkers are statistically relevant. To address this pos-
sibility, a statistical analysis of the entire metabolomics data set was
conducted to identify the number of times a metabolite needs to be
detected across multiple studies to be classified as a statistically relevant
or as statistical noise.

A lower threshold of significance was determined by implementing
two independent statistical approaches: empirically modeling the
metabolite count by bootstrapping and fitting the one-inflated positive
Poisson generalized linear model to the metabolite count. The 950
percentile was calculated to determine the threshold value. The models
were fit to the entire data set as well as to the top five most abundant
cancer subsets present in the population (Table 2). The models showed
that any metabolite detected only 1 to 2 times across all 244 studies as
irrelevant at the a = 0.05 level and should not be classified as a statis-
tically significant metabolic biomarker for cancer. This represents the
statistical noise in the data set and reduces the pool of total metabolites
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Fig. 6. Study Parameter Effects on Reproducibility. Box and Whisker plot and bar chart comparing the a. Total number of significant metabolites and b. Total
number of significant metabolites normalized to the total number of studies reporting the metabolites to the metabolomics methodology. Box and Whisker plot and
bar chart comparing the c. Total number of significant metabolites and d. Total number of significant metabolites normalized to the total number of studies reporting
the metabolites to instrumentation method. Box and Whisker plot and bar chart comparing the e. Total number of significant metabolites and f. Total number of
significant metabolites normalized to the total number of studies reporting the metabolites to cohort size. Bar chart comparing the g. total number of significant
metabolites and h. Total number of significant metabolites normalized to the total number of studies reporting the metabolites to multiple hypothesis testing (MHT)
usage. i. Bar chart plotting the number of studies with (orange) or without (grey) the usage of MHT plotted against the journal impact factor. Box and Whisker plot
and bar chart comparing the j. Total number of significant metabolites and k. Total number of significant metabolites normalized to the total number of studies
reporting the metabolites to journal impact factor. * - denotes significance at p < 0.05 across all groups. (For interpretation of the references to color in this figure
lfgend, the reader is referred to the Web version of this article.)

<

reported across the 244 metabolic studies negates any reliable serum
cancer biomarker. Instead, our meta-analysis essentially identified an
exhaustive and large list of metabolites that are not a robust or best

Table 2
Lower thresholds for statistical significance.

Cancer Type  No. No. Lower Threshold % Total choice for a cancer biomarker. The reasons behind the lack of biomarker
Studies  Metabolites  Threshold Metabolites T : :

reproducibility as partly summarized herein are many-fold and are
All 244 2206 2 339 15.4 likely a combination of the wide variety of metabolomics protocols
Lung 36 622 2 73 1.7 employed by the community leading to inconsistencies in sample
Colorectal 35 654 4 21 3.2 llecti handli d lack of widely ad d dard
Hepatocellular 31 341 4 14 41 co ectlo.n, andling an sto.ragé, ack of widely a opte stan ard pro-
Gastrointestinal 28 325 3 15 46 tocols, inappropriate application, and interpretation of statistical
Esophageal 18 281 4 9 3.2 models, unreliable or inaccurate nomenclature, and fundamental limi-

tations and discrepancies in software performance. However, these is-
sues are not unique to metabolomics and can be found in other "-omics"s
research as well.

We are not the first to conclude that there is a desperate need for
standardization across clinical metabolomics studies to improve the
reliability and robustness of their outcomes [39,40,42,43]. Hopefully,
our meta-analysis provides further evidence to encourage the commu-
nity to establish and adopt best practices to ensure future successes.
COSMOS, MSI, mQACC, and MANA are valuable resources for metab-
olomics investigators, and are actively providing a variety of recom-
mendations for these best practices [38-43]. For example, MANA and
mQACC have published a recent series of manuscripts that provides
guidance on the future directions of NMR-based metabolomics, a
perspective on minimal reporting standards, and a summary of current
best practices employed by the NMR metabolomics community, among
other recommendations [78-80]. Thus, one path to addressing the lack
of biomarker reproducibility is for the metabolomics community to
actively engage with these organizations, help evaluate and develop
standard protocols, and readily adopt validated recommendations. The
overall poor reproducibility of the metabolite biomarkers identified by
these clinical metabolomics studies also strongly identifies the impor-
tant need to replicate studies with a second, independent laboratory that
analyzes the same metabolomics samples to verify the identical dysre-
gulated metabolites are detected with a similar cancer-induced con-
centration change.

Despite the discouraging outcome of our meta-analysis, it is still
plausible that common cancer metabolites and diagnostic biomarkers
for cancer may be identifiable from these and other clinical metab-
olomics data. Simply put, the “metabolic noise” that is currently prev-
alent in clinical studies and is masking real outcomes and needs to be
removed to reveal true metabolic biomarkers of cancer.

by 85%, from 2,206 to only 339 (Fig. 4). When considering only the
subset of metabolites associated with a specific cancer type, the reduc-
tion in the potential metabolite pool is far greater, a decrease by
88.3-96.8% occurs with the study threshold increasing to 4 to 5 repli-
cate detections (Table 2).

It is important to note that while the model suggests that any
metabolite reported three or more times out of 244 studies is statistically
significant, the model does not account for any form of biological rele-
vancy. The model’s purpose is to determine a lower threshold of sta-
tistical insignificance, rather than providing an upper threshold of
biological relevance. The impact of these findings on the clinical
metabolomics field shows that at least three independent studies need to
detect the same metabolite as significantly altered before it should begin
to be considered as a statistically relevant cancer biomarker. Quanti-
fying the noise level in metabolomics data is an important piece of in-
formation that can guide future studies and better inform the
community on when it is appropriate to designate a metabolite as a
potential biomarker. However, it is important to realize that while these
findings provide interesting insight into the noise of this data set, the
model was built from this specific data set and as the field continues to
expand and grow, these numbers may change. Thus, it is important to
continue to complete systematic analyses of metabolomics biomarker
studies to keep expanding our understanding of the collected data.

3. Conclusions

A meta-analysis of 244 clinical metabolomics studies identified a
total of 2,206 potential serum biomarkers from 19 different cancer
groups. Only 28% of these metabolites were reported by more than one
study, where the vast majority, consisting of 1,582 metabolites, were
detected by a single study. Only 36 metabolites (1.6%) were detected by
20 or more studies (8%), but even when detected by multiple studies the
typical serum concentration change in cancer patients (i.e., increasing or
decreasing) was approximately random (~50%) (Figs. 4 and 5a). Our
meta-analysis clearly demonstrates that a general metabolic response to
cancer does not currently exist in the available data sets. In essence, the
metabolic changes observed differ across and within cancer types
(Figs. 4b and 5c-d). There was also no definitive evidence of any cancer
specific metabolic biomarker. However, we were able to establish a
lower detection rate threshold of statistical significance ranging from 3
to 5 replicate detections across all 244 studies that identifies an effective
noise level.

Again, the extremely low reproducibility of the 2,206 metabolites
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Appendix A Methods
A.1 Selection of Clinical Metabolomics Studies

Clinical metabolomics studies focused on the identification of cancer
biomarkers were sourced from four databases: Scopus (https://www.
scopus.com), PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of
Science (https://www.webofscience.com/wos), and SciFinder (https
://scifinder.cas.org/scifinder/). Separate keyword and abstract
searches were submitted to each of the four databases. Queries included
all the following terms “biofluid”, “biomarkers”, “blood”, “cancer”,
“carcinoma”, “diagnostic biomarkers”, “metabolomics”, ‘“metabo-
nomics”, “plasma”, “sarcoma”, “serum”, and “tumor”, which were
separated by the Boolean “or” operator. The exact search parameters
used for each individual database are listed in Table S1. The database
search results were exported as a standardized tag format file (RIS file
format) for the exchange of literature citations and then imported into
Endnote 20 (Fig. 1). The initial database search yielded approximately
1,000 manuscripts. After a cursory manual examination of just titles and
abstracts, the total number of manuscripts was reduced to approxi-
mately 300 studies. Initial exclusion criteria consisted of eliminating
non-human and non-serum studies, review articles, methods papers, and
studies that did not rely on either NMR or MS for the analysis of the
metabolome, and exclusively lipidomics studies. Metabolomics studies
that included lipids were included in the meta-analysis, but studies that
analyzed lipids and no other metabolites were excluded. The number of
manuscripts was reduced to a final total of 234 papers. An exhaustive
reading of each of these manuscripts revealed that several studies
analyzed multiple cancers simultaneously and, accordingly, each anal-
ysis was treated as a separate and unique study, bringing the total
number of studies to 244. A complete list of literature citations for the
234 manuscripts is provided in Table S2. A general overall inclusion
criterion consisted of diagnostic biomarker studies using human serum
to distinguish between cancerous and non-cancerous individuals using
an NMR and/or MS analytical platform. Exclusion criteria consisted of
removing clinical studies that were exclusively reliant on lipidomics,
used animal models, or were studies focused on the identification of
prognostic biomarkers or differentiating between different stages of
cancer. Manuscripts that utilized both NMR and MS to separately
identify potential cancer biomarkers were treated as two distinct clinical
studies. Similarly, manuscripts that used NMR or MS and an additional
analytical method such as Fourier transform infrared (FT-IR) spectros-
copy were also separated into distinct metabolomics projects. Accord-
ingly, and if possible, metabolites reported as significantly dysregulated
in cancer patients were cataloged by the analytical method used to
identify the metabolite (i.e., NMR or MS detected).
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A.2 Data Extraction

Each manuscript was examined at least twice by 2-3 individuals to
ensure accurate data extraction. The information recorded from each
manuscript included author, journal, impact factor, publication year,
cancer type, metabolomics method, statistical methods and the list of
metabolites reported to be significantly dysregulated in cancer patients
(Fig. 1) . Table S3 lists by manuscript number all the information
extracted from each paper. Metabolites were identified as either
increasing or decreasing in cancer patients. It was also noted if the
manuscript reported an absolute concentration or fold change. An
alphabetical list of all metabolites identified as potential cancer bio-
markers is provided in Table S4, which includes the number of times
each metabolite was identified as increasing or decreasing in a cancer
group.

Correlating data across the 234 manuscripts was challenged by the
lack of a uniform or consistent nomenclature for cancer type, metabolite
name, or experimental protocol. Cancer types were homogenized to
form 19 cancer groups to simplify the analysis at the cohort level and to
maximize the number of replicate studies. For example, acute lympho-
blastic leukemia (ALL) and acute myeloid leukemia (AML) were grouped
into the broader leukemia cohort. Similarly, non-small cell lung cancer
(NSCLC) and lung adenocarcinoma were placed into the lung cancer
group. In regards to metabolite nomenclature, many publications did
not provide HMDB [81], KEGG [82], ChemSpider [83] or any other
database identification number. Instead, only common names were
provided, requiring metabolites and groups to be homogenized manu-
ally by name only. Furthermore, specific metabolite structural infor-
mation such as stereochemistry and regiochemistry was removed due to
inconsistency in reporting across the studies. There were 2,876 unique
metabolite names reported in the 244 studies, but after grouping similar
metabolites together and removing structural information, the list was
reduced to 2,206 unique metabolite names. Examples of homogeniza-
tion included removing abbreviations and stereochemistry, Phe, PHE
and 1-Phenylalanine were converted to Phenylalanine, and f-p-glucose
was converted to glucose; removing bond location information from
lipids, 8z, 14z-eicosadienoic acid was converted to eicosadienoic acid;
and merging lipid nomenclature, PC(16:0/0:0) was converted to LPC
(16:0). Lipid nomenclature followed the protocol recently published by
Lipid Maps (https://www.lipidmaps.org/) [84]. Notably, all carnitines
and fatty acid amides of various lengths were grouped as the more
generic name “carnitine” and “fatty acid amide”. Similar nomenclature
homogenization was completed for statistical methods. For example,
Lilliefors, Shapiro-Wilk, and Kolmogrov-Smirnov tests were grouped
into a more general category of normality testing. Similarly,
GC-TOF-MS, GCxGC-TOF-MS, and GC-TQ-MS were all added to the
GC-MS group. Tables S5-S8 contain the original reported names for
cancer types, metabolites, and experimental protocols and the corre-
sponding manually assigned homogenized groups.

A.3 Statistical Methods and Modeling

Statistical analysis of data and figure generation were completed in
Microsoft Excel and JMP 17.2.0 (https://www.jmp.com/). Comparisons
of groups were completed via Student’s t-test or one-way ANOVA fol-
lowed by Tukey’s post hoc test. A p-value <0.05 were considered sig-
nificant. Hierarchical two-way clustering was completed with the
Ward’s minimum variance method and using standardized data. To
evaluate the effects of study parameters on metabolite reproducibility,
frequency normalization was completed on the metabolites that were
detected multiple times by dividing the metabolite count by the number
of studies that reported each metabolite. In this manner, frequency
normalization accounted for unequal distributions of study character-
istics across the 244 studies.

Two different approaches were employed to determine the threshold
of statistical significance for the number of times a metabolite was
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documented in a study. Empirical modeling of metabolite data was done
using classical bootstrapping of the sample means generated from
repeated resampling of the data with replacement. The bootstrapping
was implemented using R 4.3.2 (R Core Team, 2023) functions.
Threshold values were generated from the resulting empirical distribu-
tions. Furthermore, Generalized Linear Models were fit in contrast with
the bootstrap techniques [85]. Specifically, One-Inflated Positive Pois-
son distributions were fit using the vlgm function in addition to the
roipospois function from the VGAM package (v1.1-9) in R to generate
random samples [86]. Finally, the goipospois function in the VGAM
package in R was implemented to calculate the percentiles of the theo-
retical distribution.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.trac.2024.117918.
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