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A B S T R A C T

Cancer is a leading cause of world-wide death and a major subject of clinical studies focused on the identification 
of new diagnostic tools. An in-depth meta-analysis of 244 clinical metabolomics studies of human serum samples 
highlights a reproducibility crisis. A total of 2,206 unique metabolites were reported as statistically significant 
across the 244 studies, but 72% (1,582) of these metabolites were identified by only one study. Further analysis 
shows a random disparate disagreement in reported directions of metabolite concentration changes when 
detected by multiple studies. Statistical models revealed that 1,867 of the 2,206 metabolites (85%) are simply 
statistical noise. Only 3–12% of these metabolites reach the threshold of statistical significance for a specific 
cancer type. Our findings demonstrate the absence of a detectable metabolic response to cancer and provide 
evidence of a serious need by the metabolomics community to establish widely accepted best practices to 
improve future outcomes.

1. Introduction

1.1. Cancer prevalence, cost, and screening

Cancer is a leading cause of death worldwide, where lung, colorectal 
and breast cancer have the highest mortality rates [1]. According to the 
International Agency for Research on Cancer and the World Health 
Organization, there were an estimated 20 million new cancer cases and 
9.7 million cancer deaths worldwide in 2022 [2]. The overall 
cancer-related medical costs in the US for 2020 was estimated to be 
$208.9 billion, which includes the costs of cancer screening and di
agnostics in addition to treatments and patient care [3]. Thus, cancer 
incurs a high financial and personal burden and, while progress has been 
made over the past decades, new treatments and diagnostic tools are still 
desperately needed [4].

Cancer is a diverse disease with over 100 different types that can 
appear anywhere in the body, which means that screening and di
agnostics procedures are highly variable and dependent on the specific 
locations of the tumors. Additionally, early detection of cancer is the 
goal of any diagnostic tool since it significantly increases a positive 
outcome with cancer mortality rates decreasing by 33 % since 1991 due 
to improved cancer screening [3,5]. However, no screening method is 

100 % effective, and many cancers lack routine tests especially in the 
absence of symptoms [6–8]. Other cancer screens have not been 
particularly successful at early detection and may lead to high false 
positive rates [9]. One means of improving the early detection of cancer 
would be the discovery of new, robust, and accurate molecular bio
markers [10,11].

1.2. Clinical metabolomics as a source for cancer biomarkers

Metabolomics has been especially impactful to issues of human 
health [12,13] because the metabolome changes rapidly in response to 
stressors like disease states. Thus, a common utilization of metabolomics 
is the search for molecular biomarkers from tissues [14], cell cultures 
[15], animal models [16–18], and biofluids [19–21] as a tool for disease 
diagnosis, prognosis, and precision medicine. Accordingly, clinical 
metabolomics has been applied multiple times to nearly every common 
human disease [22] from asthma [23] to zika virus infections [24]. This 
includes essentially every type of cancer [25]. The metabolome is 
particularly appealing source of biomarkers since metabolites are pre
sent in every biofluid that is easily accessible from a human patient, but, 
more importantly, metabolomics-derived biomarkers typically consist of 
a set of metabolites altered by the disease state instead of a single 
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molecular entity. The accuracy and reproducibility of a diagnostic tool is 
expected to increase dramatically by the simultaneous monitoring of 
multiple molecular markers since it improves both sensitivity and 
selectivity. Thus, clinical metabolomics holds great promise to signifi
cantly and beneficially impact human health by improving both the 
diagnosis and treatment of human diseases [26–28].

1.3. Challenges and successes associated with novel biomarker discovery

The search for clinical biomarkers is not limited to metabolites as 
there are efforts being made across multiple other “-omics” fields like 
proteomics and genomics to find diagnostic biomarkers of human dis
eases [29]. However, it is quite difficult to transition any potential 
biomarker identified as significant in a research study to a validated 
diagnostic tool approved by the U.S. Food and Drug Administration 
(FDA), European Medicines Agency (EMA), or other government 
agencies for clinical usage [30]. The quality of a potential biomarker is 
typically evaluated through statistical metrics such as sensitivity, spec
ificity, positive predictive value, and negative predictive value [31,32]. 
Drucker et al. (2013) report that the ratio of biomarker publications to 
biomarker patents is less than 6 %, demonstrating that very few of the 
annually discovered biomarkers (proteins, metabolites, genes, etc.) meet 
the necessary sensitivity and specificity criteria [30]. This lack of success 
can be attributed to errors in the study design that include improper 
sample collection and storage temperature, inadequate number of rep
licates or unreliable data collection and data analysis [33]. Metab
olomics faces additional unique challenges in the reliable detection of 
biomarkers that includes: (i) chemical and enzymatic instability of 
metabolites, (ii) the metabolome being largely unknown or uncharac
terized (i.e., dark), (iii) incomplete coverage or detection of the metab
olome by NMR and MS, and (iv) ambiguities in metabolite assignments.

While there are legitimate concerns about the discovery process, 
there is a strong history of successful molecular biomarkers that are 
being used in the clinic today. For example, breast cancer susceptibility 
genes BRCA1/2 and the cancer antigen 15–3 (CA 15–3) are biomarkers 
for breast cancer [34,35] and the prostate-specific antigen protein is a 
biomarker used in the detection of prostate cancer [34]. Blood testing of 
metabolites such as calcium, sodium, chloride, creatinine, glucose or 
cholesterol are routinely screened for kidney disease, diabetes, or car
diovascular disease [36]. A recent review by Qiu et al. (2023) high
lighted other metabolites that are promising biomarkers for a variety of 
diseases such as traumatic brain injury, asthma, tuberculosis, cancers, 
and COVID-19 [37]. Overall, the road from biomarker discovery to 
clinical validation is a difficult, but worthwhile effort that has benefited 
numerous individuals.

1.4. Concerns about reproducibility in clinical metabolomics

Although metabolomics has the potential to transform cancer 
research, it is still a relatively new field that lacks community agreed- 
upon best practices for data collection and reporting criteria despite 
ongoing efforts by several groups and initiatives such as COordination of 
Standards in MetabOlomicS (COSMOS), Metabolomics Standards 
Initiative (MSI), Metabolomics Quality Assurance & Quality Control 
Consortium (mQACC), and Metabolomics Association of North America 
(MANA) [38–43]. As a result, there are substantial variations in pro
tocols reported by clinical metabolomics studies regarding extraction, 
detection, and analysis methods, which can subsequently lead to 
inconsistent or contradictory outcomes. For example, different analyt
ical methods (i.e., NMR, MS, FT-IR, etc.) [44], LC columns (i.e., HILIC, 
C18, IEC, etc.) [45], solvent extraction techniques (i.e., aqueous, meth
anol, Folch, etc.) [46], and biomolecular removal protocols (i.e., pre
cipitation, filtration, intact) [47], among other factors, will lead to 
unique sets of detected metabolites. Simply, NMR measures the most 
abundant metabolites and MS detects metabolites that readily ionize. 
Differential physical, chemical, and structural properties of metabolites 

that includes solvent solubility, polarity, reactivity, molecular weight, 
oxidative and thermal stability, and biomolecular affinity will all 
uniquely impact the metabolites that remain following the sample 
preparation protocol. The selection of experimental and analysis method 
will similarly affect the precision and accuracy of the measured 
metabolite concentrations. These protocol decisions consists of the 
proper choice of internal standards (i.e., blanks, isotopically labeled 
metabolite standards, etc.), quality control (QC) samples (i.e., pooled 
case and control samples), feature selection method (i.e., S/N, RSD, 
background removal, etc.), alignment and batch correction method (i.e., 
regression models, normalization methods, etc.), statistical techniques 
(i.e., PCA, Student’s t-test, etc.), and sample randomization. Unfortu
nately, most clinical metabolomics studies exclude one or more of these 
essential protocols leading to erroneous results. Given this large di
versity in study design choices, it is not surprising that replicate clinical 
metabolomics studies have reported discordant metabolites of interest 
with opposing metabolite directional changes partly due to the variable 
application of these experimental protocols.

Our prior systematic review of pancreatic ductal adenocarcinoma 
(PDAC) papers found few metabolites were commonly reported across 
the 24 clinical metabolomics studies [48]. In fact, 87% of the 655 po
tential metabolite biomarkers for PDAC were reported by a single study. 
For the 16 most reported metabolites (i.e., 5 to 11 studies), 10 of these 
metabolites were inconsistently identified as increasing or decreasing in 
PDAC patients. Unfortunately, other meta-analysis of clinical metab
olomics studies uncovered similar inconsistencies and lack of biomarker 
reproducibility [49–52]. Herein, we present a systematic review and 
meta-analysis that expands upon our previous PDAC study to further 
explore the general reproducibility and consistency of proposed cancer 
metabolite biomarkers. Our meta-analysis of 244 clinical metabolomics 
studies of 19 homogenized cancer groups also provides an avenue to 
assess if a universal set of general cancer metabolites biomarkers exist 
and what the detection threshold for this panel may be. Importantly, we 
classified metabolomics and lipidomics studies separately and excluded 
solely lipidomics studies from our meta-analysis. Finally, our 
meta-analysis provides further evidence that community-wide standards 
and best practices are needed to ensure consistency across metabolomics 
studies to enable the harmonization of metabolomics data and results.

2. Discussion

2.1. Overview of the clinical metabolomics data set

An exhaustive search of scientific literature was conducted to find all 
clinical metabolomics studies from four major databases with an aim to 
identify diagnostic biomarkers for cancer (Fig. 1). Approximately 1,000 
manuscripts were identified but after manually applying exclusion and 
inclusion criteria a total of 244 unique clinical metabolomics studies 
were identified. Notable inclusion criteria consisted of only human 
studies involving serum biofluids analyzed by NMR and/or MS to 
identify metabolites that differentiated cancerous from non-cancerous 
individuals. The 244 studies were then manually analyzed to extract a 
diversity of relevant data including details regarding the journal publi
cation, the metabolomics and statistical methods, the cancer type and 
list of cancer dysregulated metabolites.

Considering metabolomics is a relatively new omics field, it was not 
surprising that most of the clinical metabolomics papers (82%) were 
published since 2015 (Fig. 2a). The oldest paper in the collection was 
from 2008. There were 43 unique cancer types as originally reported in 
the manuscripts, but after nomenclature homogenization that grouped 
similar cancer types together like laryngeal and nasopharyngeal cancer, 
the total number of cancer groups was reduced to 19.

(Fig. 2b). The lung (15%), colorectal (14%), hepatocellular (13%), 
and gastrointestinal (11%) cancer groups corresponded to over half of 
the clinical metabolomics studies comprising the data set. These cancer 
types are frequently ranked as the most commonly occurring cancers, 
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Fig. 1. Data Curation Workflow. Top to bottom stepwise diagram depicting the experimental workflow. Boolean search terms (Table S1) were applied to each 
database to acquire articles of interest (Table S2). Data extracted from the articles are listed in Tables S4–S12.

Fig. 2. Cohort Characteristics. a.-c. Bar chart depicting the publication year, cancer group, and cohort size distribution of the 244 studies. d. Waffle chart showing 
the percentage of metabolomics methods utilized in the 244 studies: untargeted (red), targeted (orange), targeted and untargeted (yellow), pseudotargeted (blue). e. 
Waffle chart showing the percentage of instrumentation methods utilized in the 244 studies: MS (red), NMR (orange), MS and NMR (yellow). f. Waffle chart showing 
the percentage of 244 studies that utilized age and sex matched cohorts: Both age and sex matched (yes, red), neither age nor sex matched (no, orange), only age 
matched (age, yellow), only sex matched (sex, blue). Abbreviations: Gyn – Gynecological, GI – Gastrointestinal, HCC – Hepatocellular Carcinoma, CRC – Colorectal 
Cancer, MS – Mass Spectrometry, NMR – Nuclear Magnetic Resonance. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.)
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which likely increased the availability and size of cohorts and funding 
opportunities. However, only 5% of the 244 studies examined breast 
cancer despite it being the fifth leading cause of global deaths. World
wide, over 684,000 women died from breast cancer in 2020. The sus
piciously low number of breast cancer metabolomics studies may be 
attributed to the fact that research into diseases that primarily affect 
women is disproportionately underfunded [53].

Sample size and statistical power should be a primary consideration 
when organizing a clinical study [54]. Almost half (47.7%) of the 
included studies had <50 samples in their cohort and only 6.2% had 
more than 200 samples (Fig. 2c). To take conclusions from a small 
population and extrapolate the results to a larger population, the study 
must have sufficient statistical power and, subsequently, enough repli
cates to reach a meaningful outcome [55]. A recent clinical lipidomics 
study suggests a minimum cohort size should consist of more than 100 
samples and 100 controls to attain statistically valid results [56]. Simi
larly, a large-scale study of 1,200 patients suggested that several hun
dred samples would be needed to be representative of the population of 
1,200 [57]. Furthermore, the analytical method must include suitable 
quantitative internal standards and appropriate QC samples, and ideally 
the conclusions need to be verified by a second, independent laboratory 
to achieve the successful identification of reliable metabolite bio
markers. Unfortunately, and as clearly identified by our meta-analysis, 
these analytical methods and protocols are rarely adhered to in a clin
ical metabolomics study. Instead, accessibility, shipping, location, 
storage, throughput, manpower, practicality and cost concerns are often 
cited as being detrimental to a study’s ability to acquire and analyze 
several hundred samples. Consequently, these studies may not have 
enough statistical power to reliably identify metabolic biomarkers. 
Unsurprisingly, there are currently no widely adopted standards 
regarding a minimum sample size for metabolomics clinical studies.

The clinical metabolomics data set consisted mostly of untargeted 
metabolomics studies that used MS (68%) as the analytical method for 
metabolite detection (Fig. 2d). Untargeted metabolomics has the 
advantage of being discovery driven and hypothesis generating, which 
allows for the elucidation of novel biomarkers. Targeted metabolomics 
studies comprised a smaller proportion (14%) of the clinical metab
olomics data set, but often allowed for better absolute quantitation since 
calibration curves and isotopically labeled standards were implemented 
into the workflow for the metabolites of interest. A point of potential 
concern was the observation that only 2% of the clinical studies com
bined untargeted and targeted methods, which could be used to confirm 
and validate the potential metabolite biomarkers and provide an abso
lute quantification of the cancer-induced metabolite concentration 
changes.

In similar proportions, mass spectrometry (81%) combined with gas 
or liquid chromatography was the popular choice of analytical method 
due to its higher sensitivity and broader coverage of the metabolome 
(Fig. 2e). Nonetheless, NMR (16%) was still commonly used in these 
clinical metabolomics studies, where investigator experience and 
expertise are likely factors in the choice of analytical method. Notably 
and despite the inherent complementarity of NMR and MS, only 3% of 
the studies used both NMR and MS.

A robust and reliable clinical study necessitates an appropriate study 
design, which includes, among other considerations, age, and sex 
matched cohorts. In this regard, it is encouraging to report that ~72% of 
the clinical metabolomics data set reported utilizing age and sex 
matched cohorts. Specifically, 60% of the manuscripts reported both age 
and sex matched cohorts with 8.6% reporting only age matched cohorts 
and 2.8% reporting only sex matched cohorts (Fig. 2f). However, 28.6% 
and 11.4% of the manuscripts can be considered as reporting an 
improperly or incompletely designed clinical trial. Of course, practical 
considerations and unavoidable limitations may negatively impact the 
final cohort composition that are out of investigator control, but it still 
raises serious concerns about bias, and the reliability and applicability of 
the study’s outcomes. A 1:1 matching between controls and cases is a 

commonly accepted cohort design where adding more controls may only 
increase statistical power up to a 4:1 ratio [58]. Major confounding 
factors such as age and sex should always be matched to avoid or 
minimize bias [59]. Simply, it has been well-documented that human 
diseases manifest differently according to the sex and age of the indi
vidual [60]. Thus, age and sex matched cohorts should be the standard 
practice for all metabolomics studies. This combination of inadequate 
and diverse designs of clinical metabolomics studies will likely nega
tively impact the reproducibility, reliability, and accuracy of the cancer 
biomarkers identified from the metabolomics data set.

2.2. Variability of statistical techniques used in clinical metabolomics 
studies

The type of control group chosen is important for biomarker dis
covery. Conversely, changing the control group could significantly affect 
the number and type of metabolites identified as disease-dependent, and 
dictate the specific utility of these disease biomarkers. For example, the 
choice of control group would determine if biomarkers were useful for 
diagnosing cancer (i.e., healthy controls), identifying the cancer stage (i. 
e., stage 1 cancer patients), or for precision medicine (i.e., cancer patient 
prior to initiating treatment). Accordingly, 88% of studies comprising 
the clinical metabolomics data set used healthy individuals as a control 
group, 54% of the studies used individuals with a related disease, and 
43% of the studies used both healthy individuals and patients with a 
related disease (Fig. 3a). Using a related disease as a control may be 
beneficial to metabolite biomarker discovery given the potential of 
narrowing and focusing the outcomes to the specifics of the cancer type 
being investigated. In effect, common responses to any disease, like an 
immune response, may be canceled out and the remaining dysregulated 
metabolites would presumably be a direct result of the cancer type. 
However, it is still possible to miss metabolites of interest that may vary 
moderately between the related disease and cancer. Additionally, 
choosing the correct related disease can be challenging. Is it best to 
choose a benign tumor, an inflammatory disease, or an earlier stage of 
cancer? Despite these potential issues, we believe the benefit of adding 
manuscripts that used a related disease as a control and maximizing the 
number of replicate studies negated any other concerns. Nevertheless, 
the choice and diversity of control groups used in the metabolomics data 
may negatively impact the reproducibility and the reliable application 
of any proposed cancer biomarker.

Multiple hypothesis or false discovery rate (FDR) correction is 
another key factor that directly determines the number of metabolites 
identified as statistically dysregulated by cancer. Accordingly, all 
metabolomics studies need to apply an FDR or equivalent protocol 
because errors propagate exponentially as each additional metabolite of 
statistical significance is added to a set (eqn. (1)): 

p=1 − (1 − α)m (1) 

where p is the p-value, m is the number of metabolites and α is the 
significance level , usually 0.05 or less. Again, as the number of potential 
metabolite biomarkers increases the likelihood of falsely rejecting the 
null hypothesis (i.e., false positives) increases [61]. Troublingly, only 
45% of the clinical metabolomics data set employed any type of multiple 
hypothesis correction method (Fig. 3b). This is a modest improvement 
over the 34% of the NMR metabolomics studies published in 2020 that 
used FDR, but it is still a serious concern [62]. Of the 110 multiple hy
pothesis corrected studies, 41% utilized the Benjamini-Hochberg FDR 
correction method, where 15.5% of studies used the Bonferroni method 
(Table S9). Surprisingly, while other papers (24%) mentioned the use of 
a multiple hypothesis correction, the specific test employed was not 
reported. Despite the common omission of an FDR correction, 86% of 
studies did report the application of a p-value <0.05 as a threshold for 
statistical significance (Table S10). While this p-value is a popular 
choice for statistical significance, our prior meta-analysis of PDAC 
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metabolite biomarkers suggested an aggressive choice of p-value may be 
partly responsible for the low reproducibility of clinical metabolomics 
studies. Unfortunately, only 7.4% of the studies in our cancer metab
olomics data set utilized a more conservative choice of p-value <0.01, 
0.005 or 0.001. More concerning was the observation that 3.7% of pa
pers used much higher p-value thresholds of <0.1, <0.15 or <0.25, 
where 2 %of studies did not even report a p-value. The common omis
sion of an FDR correction and the range of p-value choices is expected to 
contribute to a potentially low reproducibility in the cancer biomarkers 
identified from the clinical metabolomics data set.

Metabolomics data sets were usually analyzed with a combination of 
univariate and multivariate statistical techniques. Common multivariate 
techniques included principal component analysis (PCA), orthogonal 
projection to latent structures (OPLS) or partial least squares (PLS). 
Multivariate techniques should be validated by using a permutation test, 
CV-ANOVA, or ideally a cross-validation technique that involves 
dividing the data into training and validation sets. Unfortunately, and as 
we previously observed, only 30–40% of studies properly validated their 
statistical models [62].

Unsurprisingly, t-tests, Mann-Whitney U tests, and ANOVAs were 
frequently used for a univariate statistical analysis (Fig. 3c–Table S11). 
Notably, multivariate statistical methods combined with an area under 
the receiver operating characteristic curve (AUROC) analysis [63,64] 

was the overwhelming choice in 89% of the studies. In general, in
vestigators used multiple parametric ROC curves based on a set of me
tabolites that individually passed common minimal parameters like VIP 
(>1) and fold change (>2). Typically, the multiple parametric ROC 
curves were iteratively optimized to identify the optimal set of metab
olites that yielded the best overall predictive outcome. While AUROC is 
a valuable approach to assess how well a metabolomics model may 
predict a cancer diagnosis, community standards or best practices have 
not been established or widely adopted for its application. For example, 
what measurables and parameter settings (i.e., VIP >1, FC > 2, p-value 
<0.05, etc.) should be used to include or exclude a metabolite from a 
ROC curve analysis? What is the maximum number of metabolites (i.e., 
5, 10, 25, etc.) that should be used in a ROC curve analysis? The 
perceived accuracy of any multiparameter fit nearly always appears to 
improve with the number of added variables, but this is also likely to 
lead to an over-fit and unreliable model. Also, the ROC model should be 
cross validated by separating the data set into a test and validation set, 
which requires a significantly larger cohort than commonly available 
(Fig. 2c). The variability in the use and application of ROC curves across 
the clinical metabolomics data set may contribute to a high variability in 
the identification of potential cancer biomarkers.

Fig. 3. Cohort Characteristics (cont.). a. Venn diagram showing the number and percentage of the 244 studies that used either a healthy control, related disease 
control, or both. b. Waffle chart showing which percentage of studies implemented any form of multiple hypothesis testing: Yes (red), No (orange). The full dis
tribution and type of multiple hypothesis testing correction method used can be found in Supplementary Table S9 c-d. Bar chart depicting the number of times that 
each statistical technique or feature selection method was used across the 244 studies. The full distributions can be found in Supplementary Tables S11–S12. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.3. Various feature selection methods used in clinical metabolomics 
studies

After the data has been acquired, the feature selection and filtering 
protocol used to curate and analyze the metabolomics data can be as 
deeply impactful to the outcomes of a biomarker study as the choice of 
statistical methods. Multiple literature reviews are available that detail 
the options, merits, and limitations of feature selection and filtering 
techniques [65–68], but a community consensus regarding best prac
tices has not been established or widely adopted. Instead, a diversity of 
protocols is routinely employed by metabolomics investigators based on 
their experience, data structure, and other relevant concerns. The 
feature selection and filtering techniques most reported in our clinical 
metabolomics data set are shown in Fig. 3d. The complete distribution is 
listed in Table S12. Concerningly, many papers (41%) did not list spe
cific feature selection parameters, or the methodology description was 
too vague to categorize. Removing known solvent signals, background, 
and peaks under the limit of detection was a routinely used method of 
data cleaning and simplification. The most common choice for feature 
selection was a minimum threshold for an individual metabolite being 
present within a group. A minimum threshold approach was reported in 
63 or 26% of the studies (Fig. 3d). With this approach, the metabolomics 
field routinely employs the “80% rule”, which excludes any metabolite 
that is present in less than 80% of the samples within a group. The 80% 
rule is rather arbitrary and many of the publications in the clinical 
metabolomics data set used alternative cutoffs that ranged from 20% to 
100%. The second most common choice for a feature selection method 
was the percent relative standard deviation (RSD) cutoff, which was 
reported in 39 or 16% of the studies. A threshold RSD value of <30% 
was typically used to exclude metabolites by studies utilizing this 
method. As with other study design decisions, the diversity and lack of 
details regarding feature selection and filtering protocols will affect the 
metabolites identified as potential cancer biomarkers leading to repro
ducibility and accuracy concerns.

2.4. Low reproducibility of metabolites reported as potential cancer 
biomarkers

A total of 2,206 unique metabolites were reported as statistically 
significantly changing in the serum of cancer patients across the 244 

studies comprising our clinical metabolomics data set. Only 624 (28%) 
out of the 2,206 metabolites were reported by more than one study 
(Fig. 4a). Fig. 4b shows the number of manuscripts reporting each of 
these metabolites, where 480 (77%) out of 624 were reported by only 2 
to 5 studies. The top five reported metabolites were glutamine and 
glutamic acid (59 studies), alanine (49 studies), and lactic acid and 
tyrosine (45 studies). The top 50 most highly reported metabolites were 
only detected by 6–24% of the 244 studies. Even more concerningly, 
1,582 (72%) out of the 2,206 metabolites were reported by a single 
study and are likely false positives representing the potential noise level 
of clinical metabolomics studies. A heatmap (Fig. S1) based on the 561 
metabolites detected in two or more colorectal (CRC), esophageal, 
gastrointestinal (GI), hepatocellular carcinoma (HCC) or lung cancer 
studies and hierarchically clustered according to cancer type is clearly 
random and is not dictated by any biological similarity. Most of the 
clinical metabolomics studies indicated a relative change (i.e., 
increasing or decreasing) in the metabolite’s serum concentration for 
cancer patients. Troublingly, 4 studies corresponding to a total of 220 
potential metabolite biomarkers did not indicate a relative concentra
tion change and these metabolites were excluded from our study. Ab
solute metabolite concentrations were rarely reported.

The low reproducibility of cancer biomarkers may be a simple arti
fact of grouping together the data from the 19 distinct cancer groups 
(Table 1, Table S6). The metabolic diversity between and within cancer 
subtype may mask any cancer specific biomarkers, especially consid
ering the large range in clinical studies (1–36) available per cancer 
group (Fig. 2b). Additionally, it is important to consider the technical 
variations inherent to each metabolomics study. As outlined in Sections 
1.3 and 1.4, the lack of widely adopted best practices and the resulting 
large diversity in experimental protocols has likely contributed to these 
differences in identified metabolites and concentrations. Large, biolog
ically relevant metabolite concentration ranges may also affect the 
detected metabolic profile. For example, glucose is the most abundant 
metabolite found in serum (5 mM) followed by urea (4 mM) and amino 
acids such as glutamine (500 μM), alanine (500 μM), glycine (350 μM), 
and lysine (350 μM) [69]. These highly abundant metabolites may 
interfere with the detection of other low abundant metabolites, espe
cially considering the different choices of experimental protocols.

We assessed the consistency of these metabolite concentration 
changes across the data set for the 36 metabolites reported in 20 or more 

Fig. 4. Metabolite Report Frequency. a. Ring chart showing ratio of metabolite report frequency. Singly reported metabolites are shown in red (72%) and me
tabolites reported at least twice are shown in orange (28%). b. Ring chart showing a more detailed breakdown of the metabolites reported by two or more studies 
(2+). Metabolites counted exactly twice are shown in red (12.9%), 3x shown in orange (4.9%), 4x shown in yellow (2.6%), 5x shown in green (1.2%), 6–10x shown in 
pale red (3.2%), 11–20x shown in pale orange (1.8%), 21–30x shown in pale yellow (<1%), and 31–59x shown in pale green (<1%). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)
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studies. While there is significant scatter in Fig. 5a, not surprisingly the 
average ratio of change across the values is centered around a 51% ±
16% increase and 49% ± 16% decrease, which is expected for a random 
outcome of two options. In general, as more studies reported the 
metabolite as changing in the serum of cancer patients, the percentage of 
studies reporting the same concentration trend decreased towards zero 
(Fig. 5b). The metabolites responsible for the spikes in the trend corre
spond to metabolites such as lactic acid and glutamic acid for CRC, 
glutamine for esophageal cancer, glutamic acid for HCC, and hippuric 
acid, palmitic acid, phenylalanine and LPC (16:1) for lung cancer. 
Interestingly, when analyzing consistency across all cancers, there were 
only two metabolites (pipecolic acid (PC (38:6)) and methyladenosine) 
that showed a consistent trend across 6 or 8 studies, respectively. 
Nevertheless, these metabolites were reported in less than 4% of the 244 
studies and cannot be described as biologically significant but do war
rant further considerations in future studies.

2.5. Impact of cancer type on metabolites reported as potential 
biomarkers

An analysis of the type of metabolites reported by two or more 
studies shows that amino acids were commonly dysregulated across all 
cancer types (Fig. 5a). These results are consistent with the well-known 
Warburg effect that has been shown to disrupt amino acid metabolism 
across multiple cancer types [70,71]. Nevertheless, and despite this 
expected outcome, even glutamine, which was the most commonly re
ported and abundant amino acid, was only reported 59 times across the 
244 studies (24%). Other commonly reported metabolites included 
lactic acid (18%), glucose (18%), fatty acid amides (15%), and some 
phospholipid species (13%).

A further analysis of these commonly reported metabolites by cancer 
group once again showed no clear pattern (Fig. 5c). For clarification, 
Fig. 5c is an expanded view of Fig. 5a, color coded by cancer type studies 
that indicate either an increase or decrease in the concentration of the 
metabolite. Both Mosaic plots in Fig. 5c were normalized to 100% 
(compared to the original percentages plotted in Fig. 5a) to enhance the 
visualization of low percentage cancer groups. These and other metab
olites exhibited an equal likelihood to be increased or decreased in the 
serum of different cancer patients. For example, Glu is commonly 

reported as increasing in the serum of 14 different types of cancer, but it 
has also been identified as decreasing in 9 other cancers. LPC (14:0) 
appears to only be increasing in lung and biliary tract cancer, but it has 
been shown to decrease in eight different cancers. Carnitine is only re
ported as decreasing in esophageal cancer, but it has been reported to 
increase in 9 other cancers. Overall, the lack of consistency in reporting 
potential cancer biomarkers across the entire data set or relative to any 
specific cancer type, or the high variability in concentration trends, 
raises serious concerns of the robustness and utility of these metabolites 
as diagnostic markers of cancer (Fig. 5).

2.6. Experimental factors correlated with cancer biomarkers

A thorough analysis of the effects of study parameters on metabolite 
reproducibility revealed several notable trends (Fig. 6). Unsurprisingly, 
studies that used both a targeted and untargeted approach to metab
olomics reported an increase in the total number of statistically signif
icant metabolite changes compared to studies that only relied on a 
targeted or untargeted approach (Fig. 6a). However, the total number of 
reported metabolites was completely independent of several other study 
design factors including instrumentation method (Fig. 6c), cohort size 
(Fig. 6e), journal impact factor (Fig. 6g), and multiple hypothesis testing 
(MHT) usage (Fig. 6i). Instead, only a large variability was observed in 
the total number of reported metabolites. While these trends are 
important to note, the total number of significant metabolites may not 
be the best indicator of consistency.

The number of metabolites reported by multiple studies may be a 
better surrogate for the reproducibility and reliability of potential can
cer biomarkers. In this regard, the total number of dysregulated me
tabolites was normalized to the number of studies in each category, 
which produced several additional trends. The normalized number of 
metabolites increased as the methodology changed from untargeted, to 
targeted, and then to a combination of both untargeted and targeted 
(Fig. 6b). A similar statistically significant increase occurred as the 
analytical technique changed from MS, to NMR, and then to a combi
nation of both NMR and MS (Fig. 6d). NMR and targeted metabolomics 
provide for an absolute quantification of metabolite changes in biofluids 
obtained from cancer patients, presumably leading to a higher accuracy 
and precision in the identified cancer metabolite biomarkers relative to 
MS and untargeted metabolomics.

Other factors such as cohort size, journal impact factor and MHT 
usage were also assessed to ascertain their contributions to cancer 
biomarker reproducibility. A larger cohort provides for a greater sta
tistical power, which is expected to lead to a robust outcome and more 
reliable cancer biomarkers. All cohorts with <200 participants exhibited 
similarly low levels of metabolite reproducibility, but a dramatic in
crease occurred as the number of cohort participants surpassed 200 
patients (Fig. 6f). A surprisingly small but statistically significant in
crease was seen with MHT usage (Fig. 6j). The application of MHT or a 
false discovery rate correction would be expected to increase the 
reproducibility of cancer biomarkers by decreasing type I errors. Un
fortunately, MHT was only employed by 45% of the studies (Fig. 3c). It is 
interesting to note that the use of MHT was correlated with journal 
impact factor (Fig. 6k), where MHT usage improved as the impact factor 
reached 3–4 and higher. Unexpectedly and aside from affecting MHT 
implementation rate, the journal impact factor had no meaningful in
fluence on biomarker reproducibility as articles published in a journal 
with an impact factor of <1 or 10–20 had the same number of multiply 
reported metabolites (Fig. 6k).

2.7. Biomarkers need a minimum of three or more independent reports of 
significance

If a metabolite is a true diagnostic biomarker of cancer, it would be 
expected to be reported as significantly altered in a high percentage of 
comparative studies. General diagnostic guidelines indicate that a 

Table 1 
Summary of clinical metabolomics data set.

Cancer Group No. Studiesb No. Significant Metabolitesa

Mean STDEV Min Max

Biliary Tract Cancer 3 22 18 9 34
Bone Cancer 2 49 9 42 55
Breast Cancer 12 18 16 3 57
Colorectal Cancer 35 27 44 2 240
Esophageal Cancer 18 20 26 1 103
Gastrointestinal Cancer 28 17 14 1 55
Glioblastoma (Brain Cancer) 1 3 3 3
Gynecological Cancer 17 23 26 4 100
Head and Neck Cancer 10 28 54 3 181
Hepatocellular Carcinoma 31 19 19 1 102
Kidney Cancer 12 17 17 2 64
Leukemia 5 14 10 5 30
Lung Cancer 36 26 35 2 149
Lymphoma 3 20 6 17 27
Myeloma 4 17 18 2 42
Prostate Cancer 13 16 16 2 59
Skin Cancer 2 22 5 18 25
Thyroid Cancer 4 26 26 5 64
Urothelial Carcinoma 8 12 10 5 33

a The mean, standard deviation, minimum, and maximum number of metab
olites identified across the clinical metabolomics studies identified to be dys
regulated in the associated cancer group.

b The number of manuscripts in the clinical metabolomics data set associated 
with the listed cancer type.
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“good” molecular biomarker achieves an 80% sensitivity where a 60% 
threshold is considered “acceptable” [72]. The best-known cancer 
biomarker is the prostate-specific antigen,

which has an 86% detection sensitivity for prostate cancer [73]. 
However, another common cancer biomarker, cancer antigen 15–3 (CA 
15–3), which is used to detect the presence of breast cancer, only has a 
reported sensitivity of 55.6% [74]. Unfortunately, our meta-analysis 
indicates that the 2,206 potential metabolic biomarkers for cancer fall 
far short of this range of values. In fact, the best performing metabolites 
in the clinical metabolomics data set, glutamate, glutamine, alanine, and 
lactic acid, were only reported as being statistically dysregulated in less 
than 26% of the clinical metabolomics studies. This is despite the 
well-established fact that these metabolites are disrupted in cancer [70,
75–77]. The clear lack of reproducibility across the 244 clinical 
metabolomics studies warrants a further analysis to determine if the 
observed outcomes are the result of a truly random process or if any of 

the potential biomarkers are statistically relevant. To address this pos
sibility, a statistical analysis of the entire metabolomics data set was 
conducted to identify the number of times a metabolite needs to be 
detected across multiple studies to be classified as a statistically relevant 
or as statistical noise.

A lower threshold of significance was determined by implementing 
two independent statistical approaches: empirically modeling the 
metabolite count by bootstrapping and fitting the one-inflated positive 
Poisson generalized linear model to the metabolite count. The 95th 

percentile was calculated to determine the threshold value. The models 
were fit to the entire data set as well as to the top five most abundant 
cancer subsets present in the population (Table 2). The models showed 
that any metabolite detected only 1 to 2 times across all 244 studies as 
irrelevant at the α = 0.05 level and should not be classified as a statis
tically significant metabolic biomarker for cancer. This represents the 
statistical noise in the data set and reduces the pool of total metabolites 

Fig. 5. Common Metabolites by Direction and Cancer Group. a. Mosaic plot for the 36 metabolites that were detected by at least 20 clinical metabolomics 
studies. The percentage of studies that reported an increase in the metabolite’s concentration in cancer are colored green. A reported decrease in the metabolite’s 
concentration is colored red. Metabolite order is alphabetical left-to-right. There is a dashed line across the chart at 50% for reference. b. Line plot depicting the 
percentage of relative concentration changes (i.e., increasing or decreasing) that were matched for metabolites detected by 2–11 different clinical metabolomics 
studies. All 19 cancers are depicted by a grey, dashed line with individual cancer types plotted as: CRC (olive), esophageal (green), GI (teal), HCC (blue), and lung 
(pink). The dotted line indicates 50%. c. An expanded view of the Mosaic plot in c color coded by the percentage of cancer type studies that identified the metabolites 
as (top) increasing or (bottom) decreasing. Please note, the y-axis was normalized to range from 0 to 100% for both the increasing and decreasing metabolite Mosaic 
plots to clearly visualize the low percentage cancer types. The metabolites are listed in alphabetical order. Abbreviations: 3-HB – 3-hydroxybutyrate, ALA – alanine, 
ARG – arginine, ASP – aspartic acid, CRC – colorectal cancer, FFAs – free fatty acids, GI – Gastrointestinal, GLU – glutamic acid, GLN – glutamine, GLY – glycine, Gyn 
– gynecological, HCC – hepatocellular carcinoma, HIS – histidine, ILE – isoleucine, Leu – leucine, LPC – lysophosphatidylcholine, MET – methionine, PHE – 
phenylalanine, PRO – proline, SER – serine, THR – threonine, TRP – tryptophan, TYR – tyrosine, VAL – valine. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)
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by 85%, from 2,206 to only 339 (Fig. 4). When considering only the 
subset of metabolites associated with a specific cancer type, the reduc
tion in the potential metabolite pool is far greater, a decrease by 
88.3–96.8% occurs with the study threshold increasing to 4 to 5 repli
cate detections (Table 2).

It is important to note that while the model suggests that any 
metabolite reported three or more times out of 244 studies is statistically 
significant, the model does not account for any form of biological rele
vancy. The model’s purpose is to determine a lower threshold of sta
tistical insignificance, rather than providing an upper threshold of 
biological relevance. The impact of these findings on the clinical 
metabolomics field shows that at least three independent studies need to 
detect the same metabolite as significantly altered before it should begin 
to be considered as a statistically relevant cancer biomarker. Quanti
fying the noise level in metabolomics data is an important piece of in
formation that can guide future studies and better inform the 
community on when it is appropriate to designate a metabolite as a 
potential biomarker. However, it is important to realize that while these 
findings provide interesting insight into the noise of this data set, the 
model was built from this specific data set and as the field continues to 
expand and grow, these numbers may change. Thus, it is important to 
continue to complete systematic analyses of metabolomics biomarker 
studies to keep expanding our understanding of the collected data.

3. Conclusions

A meta-analysis of 244 clinical metabolomics studies identified a 
total of 2,206 potential serum biomarkers from 19 different cancer 
groups. Only 28% of these metabolites were reported by more than one 
study, where the vast majority, consisting of 1,582 metabolites, were 
detected by a single study. Only 36 metabolites (1.6%) were detected by 
20 or more studies (8%), but even when detected by multiple studies the 
typical serum concentration change in cancer patients (i.e., increasing or 
decreasing) was approximately random (~50%) (Figs. 4 and 5a). Our 
meta-analysis clearly demonstrates that a general metabolic response to 
cancer does not currently exist in the available data sets. In essence, the 
metabolic changes observed differ across and within cancer types 
(Figs. 4b and 5c-d). There was also no definitive evidence of any cancer 
specific metabolic biomarker. However, we were able to establish a 
lower detection rate threshold of statistical significance ranging from 3 
to 5 replicate detections across all 244 studies that identifies an effective 
noise level.

Again, the extremely low reproducibility of the 2,206 metabolites 

reported across the 244 metabolic studies negates any reliable serum 
cancer biomarker. Instead, our meta-analysis essentially identified an 
exhaustive and large list of metabolites that are not a robust or best 
choice for a cancer biomarker. The reasons behind the lack of biomarker 
reproducibility as partly summarized herein are many-fold and are 
likely a combination of the wide variety of metabolomics protocols 
employed by the community leading to inconsistencies in sample 
collection, handling and storage, lack of widely adopted standard pro
tocols, inappropriate application, and interpretation of statistical 
models, unreliable or inaccurate nomenclature, and fundamental limi
tations and discrepancies in software performance. However, these is
sues are not unique to metabolomics and can be found in other "-omics"s 
research as well.

We are not the first to conclude that there is a desperate need for 
standardization across clinical metabolomics studies to improve the 
reliability and robustness of their outcomes [39,40,42,43]. Hopefully, 
our meta-analysis provides further evidence to encourage the commu
nity to establish and adopt best practices to ensure future successes. 
COSMOS, MSI, mQACC, and MANA are valuable resources for metab
olomics investigators, and are actively providing a variety of recom
mendations for these best practices [38–43]. For example, MANA and 
mQACC have published a recent series of manuscripts that provides 
guidance on the future directions of NMR-based metabolomics, a 
perspective on minimal reporting standards, and a summary of current 
best practices employed by the NMR metabolomics community, among 
other recommendations [78–80]. Thus, one path to addressing the lack 
of biomarker reproducibility is for the metabolomics community to 
actively engage with these organizations, help evaluate and develop 
standard protocols, and readily adopt validated recommendations. The 
overall poor reproducibility of the metabolite biomarkers identified by 
these clinical metabolomics studies also strongly identifies the impor
tant need to replicate studies with a second, independent laboratory that 
analyzes the same metabolomics samples to verify the identical dysre
gulated metabolites are detected with a similar cancer-induced con
centration change.

Despite the discouraging outcome of our meta-analysis, it is still 
plausible that common cancer metabolites and diagnostic biomarkers 
for cancer may be identifiable from these and other clinical metab
olomics data. Simply put, the “metabolic noise” that is currently prev
alent in clinical studies and is masking real outcomes and needs to be 
removed to reveal true metabolic biomarkers of cancer.
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Fig. 6. Study Parameter Effects on Reproducibility. Box and Whisker plot and bar chart comparing the a. Total number of significant metabolites and b. Total 
number of significant metabolites normalized to the total number of studies reporting the metabolites to the metabolomics methodology. Box and Whisker plot and 
bar chart comparing the c. Total number of significant metabolites and d. Total number of significant metabolites normalized to the total number of studies reporting 
the metabolites to instrumentation method. Box and Whisker plot and bar chart comparing the e. Total number of significant metabolites and f. Total number of 
significant metabolites normalized to the total number of studies reporting the metabolites to cohort size. Bar chart comparing the g. total number of significant 
metabolites and h. Total number of significant metabolites normalized to the total number of studies reporting the metabolites to multiple hypothesis testing (MHT) 
usage. i. Bar chart plotting the number of studies with (orange) or without (grey) the usage of MHT plotted against the journal impact factor. Box and Whisker plot 
and bar chart comparing the j. Total number of significant metabolites and k. Total number of significant metabolites normalized to the total number of studies 
reporting the metabolites to journal impact factor. * - denotes significance at p < 0.05 across all groups. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)

Table 2 
Lower thresholds for statistical significance.

Cancer Type No. 
Studies

No. 
Metabolites

Lower 
Threshold

Threshold 
Metabolites

% Total

All 244 2206 2 339 15.4
Lung 36 622 2 73 11.7
Colorectal 35 654 4 21 3.2
Hepatocellular 31 341 4 14 4.1
Gastrointestinal 28 325 3 15 4.6
Esophageal 18 281 4 9 3.2
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Appendix A Methods

A.1 Selection of Clinical Metabolomics Studies

Clinical metabolomics studies focused on the identification of cancer 
biomarkers were sourced from four databases: Scopus (https://www. 
scopus.com), PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of 
Science (https://www.webofscience.com/wos), and SciFinder (https 
://scifinder.cas.org/scifinder/). Separate keyword and abstract 
searches were submitted to each of the four databases. Queries included 
all the following terms “biofluid”, “biomarkers”, “blood”, “cancer”, 
“carcinoma”, “diagnostic biomarkers”, “metabolomics”, “metabo
nomics”, “plasma”, “sarcoma”, “serum”, and “tumor”, which were 
separated by the Boolean “or” operator. The exact search parameters 
used for each individual database are listed in Table S1. The database 
search results were exported as a standardized tag format file (RIS file 
format) for the exchange of literature citations and then imported into 
Endnote 20 (Fig. 1). The initial database search yielded approximately 
1,000 manuscripts. After a cursory manual examination of just titles and 
abstracts, the total number of manuscripts was reduced to approxi
mately 300 studies. Initial exclusion criteria consisted of eliminating 
non-human and non-serum studies, review articles, methods papers, and 
studies that did not rely on either NMR or MS for the analysis of the 
metabolome, and exclusively lipidomics studies. Metabolomics studies 
that included lipids were included in the meta-analysis, but studies that 
analyzed lipids and no other metabolites were excluded. The number of 
manuscripts was reduced to a final total of 234 papers. An exhaustive 
reading of each of these manuscripts revealed that several studies 
analyzed multiple cancers simultaneously and, accordingly, each anal
ysis was treated as a separate and unique study, bringing the total 
number of studies to 244. A complete list of literature citations for the 
234 manuscripts is provided in Table S2. A general overall inclusion 
criterion consisted of diagnostic biomarker studies using human serum 
to distinguish between cancerous and non-cancerous individuals using 
an NMR and/or MS analytical platform. Exclusion criteria consisted of 
removing clinical studies that were exclusively reliant on lipidomics, 
used animal models, or were studies focused on the identification of 
prognostic biomarkers or differentiating between different stages of 
cancer. Manuscripts that utilized both NMR and MS to separately 
identify potential cancer biomarkers were treated as two distinct clinical 
studies. Similarly, manuscripts that used NMR or MS and an additional 
analytical method such as Fourier transform infrared (FT-IR) spectros
copy were also separated into distinct metabolomics projects. Accord
ingly, and if possible, metabolites reported as significantly dysregulated 
in cancer patients were cataloged by the analytical method used to 
identify the metabolite (i.e., NMR or MS detected).

A.2 Data Extraction

Each manuscript was examined at least twice by 2-3 individuals to 
ensure accurate data extraction. The information recorded from each 
manuscript included author, journal, impact factor, publication year, 
cancer type, metabolomics method, statistical methods and the list of 
metabolites reported to be significantly dysregulated in cancer patients 
(Fig. 1) . Table S3 lists by manuscript number all the information 
extracted from each paper. Metabolites were identified as either 
increasing or decreasing in cancer patients. It was also noted if the 
manuscript reported an absolute concentration or fold change. An 
alphabetical list of all metabolites identified as potential cancer bio
markers is provided in Table S4, which includes the number of times 
each metabolite was identified as increasing or decreasing in a cancer 
group.

Correlating data across the 234 manuscripts was challenged by the 
lack of a uniform or consistent nomenclature for cancer type, metabolite 
name, or experimental protocol. Cancer types were homogenized to 
form 19 cancer groups to simplify the analysis at the cohort level and to 
maximize the number of replicate studies. For example, acute lympho
blastic leukemia (ALL) and acute myeloid leukemia (AML) were grouped 
into the broader leukemia cohort. Similarly, non-small cell lung cancer 
(NSCLC) and lung adenocarcinoma were placed into the lung cancer 
group. In regards to metabolite nomenclature, many publications did 
not provide HMDB [81], KEGG [82], ChemSpider [83] or any other 
database identification number. Instead, only common names were 
provided, requiring metabolites and groups to be homogenized manu
ally by name only. Furthermore, specific metabolite structural infor
mation such as stereochemistry and regiochemistry was removed due to 
inconsistency in reporting across the studies. There were 2,876 unique 
metabolite names reported in the 244 studies, but after grouping similar 
metabolites together and removing structural information, the list was 
reduced to 2,206 unique metabolite names. Examples of homogeniza
tion included removing abbreviations and stereochemistry, Phe, PHE 
and L-Phenylalanine were converted to Phenylalanine, and β-D-glucose 
was converted to glucose; removing bond location information from 
lipids, 8z, 14z-eicosadienoic acid was converted to eicosadienoic acid; 
and merging lipid nomenclature, PC(16:0/0:0) was converted to LPC 
(16:0). Lipid nomenclature followed the protocol recently published by 
Lipid Maps (https://www.lipidmaps.org/) [84]. Notably, all carnitines 
and fatty acid amides of various lengths were grouped as the more 
generic name “carnitine” and “fatty acid amide”. Similar nomenclature 
homogenization was completed for statistical methods. For example, 
Lilliefors, Shapiro-Wilk, and Kolmogrov-Smirnov tests were grouped 
into a more general category of normality testing. Similarly, 
GC-TOF-MS, GCxGC-TOF-MS, and GC-TQ-MS were all added to the 
GC-MS group. Tables S5–S8 contain the original reported names for 
cancer types, metabolites, and experimental protocols and the corre
sponding manually assigned homogenized groups.

A.3 Statistical Methods and Modeling

Statistical analysis of data and figure generation were completed in 
Microsoft Excel and JMP 17.2.0 (https://www.jmp.com/). Comparisons 
of groups were completed via Student’s t-test or one-way ANOVA fol
lowed by Tukey’s post hoc test. A p-value <0.05 were considered sig
nificant. Hierarchical two-way clustering was completed with the 
Ward’s minimum variance method and using standardized data. To 
evaluate the effects of study parameters on metabolite reproducibility, 
frequency normalization was completed on the metabolites that were 
detected multiple times by dividing the metabolite count by the number 
of studies that reported each metabolite. In this manner, frequency 
normalization accounted for unequal distributions of study character
istics across the 244 studies.

Two different approaches were employed to determine the threshold 
of statistical significance for the number of times a metabolite was 
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documented in a study. Empirical modeling of metabolite data was done 
using classical bootstrapping of the sample means generated from 
repeated resampling of the data with replacement. The bootstrapping 
was implemented using R 4.3.2 (R Core Team, 2023) functions. 
Threshold values were generated from the resulting empirical distribu
tions. Furthermore, Generalized Linear Models were fit in contrast with 
the bootstrap techniques [85]. Specifically, One-Inflated Positive Pois
son distributions were fit using the vlgm function in addition to the 
roipospois function from the VGAM package (v1.1-9) in R to generate 
random samples [86]. Finally, the qoipospois function in the VGAM 
package in R was implemented to calculate the percentiles of the theo
retical distribution.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.trac.2024.117918.
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