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ABSTRACT: Multiple sclerosis (MS) is a chronic and progressive neurological disorder without a cure, but early intervention can
slow disease progression and improve the quality of life for MS patients. Obtaining an accurate diagnosis for MS is an arduous and
error-prone task that requires a combination of a detailed medical history, a comprehensive neurological exam, clinical tests such as
magnetic resonance imaging, and the exclusion of other possible diseases. A simple and definitive biofluid test for MS does not exist,
but is highly desirable. To address this need, we employed NMR-based metabolomics to identify potentially unique metabolite
biomarkers of MS from a cohort of age and sex-matched samples of cerebrospinal fluid (CSF), serum, and urine from 206
progressive MS (PMS) patients, 46 relapsing-remitting MS (RRMS) patients, and 99 healthy volunteers without a MS diagnosis. We
identified 32 metabolites in CSF that varied between the control and PMS patients. Utilizing patient-matched serum samples, we
were able to further identify 31 serum metabolites that may serve as biomarkers for PMS patients. Lastly, we identified 14 urine
metabolites associated with PMS. All potential biomarkers are associated with metabolic processes linked to the pathology of MS,
such as demyelination and neuronal damage. Four metabolites with identical profiles across all three biofluids were discovered,
which demonstrate their potential value as cross-biofluid markers of PMS. We further present a case for using metabolic profiles from
PMS patients to delineate biomarkers of RRMS. Specifically, three metabolites exhibited a variation from healthy volunteers without
MS through RRMS and PMS patients. The consistency of metabolite changes across multiple biofluids, combined with the reliability
of a receiver operating characteristic classification, may provide a rapid diagnostic test for MS.
KEYWORDS: metabolic biomarkers, multiple sclerosis, NMR, biofluids, cerebrospinal fluid, serum, urine

■ INTRODUCTION
Multiple sclerosis (MS) is a chronic and progressive neuro-
logical disorder that affected nearly 1 million people in the
United States in 2022.1,2 MS is an autoimmune disease
mediated by T and B cells2 that damage the central nervous
system (CNS) by invading the white and gray matter, leading
to inflammation and ultimately the death of oligodendro-
cytes.2,3 Oligodendrocytes are the cells responsible for myelin
sheath formation around neurons, and the loss of these cells
results in demyelination, plaque formation, and a decrease in
neural transmission that leads to the many symptoms seen in
MS.3 The specific symptoms observed for a given patient will
depend on lesion locations and will change with time as the
disease progresses.4 Although the cause of the immune
response that leads to MS remains unclear, environmental

factors such as viral and bacterial infections, smoking, vitamin
deficiencies, and exposure to UV light, as well as genetic
predisposition could be contributing factors.2,3 MS presents a
unique challenge for physicians since there is no known cure.
Instead, a definitive diagnosis at an early stage is essential to
initiate treatment and slow disease progression. Unfortunately,
misdiagnosis is common due to the wide array of symptoms,
the heavy reliance on neurological indicators to evaluate
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Figure 1. Metabolite biomarkers from CSF discriminate patients with progressive MS from healthy controls. (A) Age distribution of female
(magenta) and male patients (blue) belonging to the Ctrl and PMS groups. All patient samples used in this comparison were pair-matched to the
serum samples used in Figure 2. (B) PCA and (C) OPLS-DA score plot generated from the 1D 1H NMR spectra of the CSF samples show distinct
variation between progressive MS (PMS, N = 57) and the healthy control (Ctrl, N = 39) groups. PCA model yielded an R2 of 0.671 and a Q2 of
0.542. OPLS-DA model yielded an R2 of 0.974, Q2 of 0.963, and a CV-ANOVA p-value < 0.001. Permutation test used 1000 iterations. Each ellipse
corresponds to the 95% confidence interval for a normal distribution of the data. (D) ROC analysis shows a five-feature multivariate model can
differentiate PMS CSF samples from Ctrl with a near perfect classification accuracy (AUC = 0.999, 95% CI:1−1). (E) Frequency, contribution, and
direction of spectral features used in the ROC curve in (D). Red arrows indicate a decrease in CSF and green arrows indicate an increase in CSF
from PMS patients compared to Ctrl. (F) Overlays of the average 1D 1H NMR spectra demonstrate the variations between Ctrl (purple) and PMS
(teal). Teal points highlight bins that are significantly changing between the Ctrl and PMS spectra by Student’s t-test (p-value < 0.001). Inlays show
expansion of the spectral regions corresponding to 3.0−4.0 and 6.0−8.0 ppm. (G) Box and whisker plots of select CSF metabolites demonstrating
relative concentration (normalized NMR peak intensities to TMSP) differences between Ctrl and PMS groups. Inserts show a representative of the
expanded 1D 1H NMR spectrum (red) assigned to each metabolite overlaid with the best-fit Chenomx reference spectrum (blue). Total of 244 1D
1H NMR bins were used for the Chenomx analysis. Student t-test p-values followed by multiple hypotheses correction using the Benjamini-
Hochberg method are indicated by *** p-value < 1 × 10−5. (H) Pathway impact plot based on all CSF metabolites from the 1D 1H NMR spectra
analysis that are statistically different between Ctrl and PMS groups. Turquoise-filled circles represent pathways with p-value < 0.05 following
multiple hypotheses correction using Benjamini-Hochberg method.
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patients according to the 2017 McDonald criteria to make a
differential diagnosis (i.e., a combination of patient history,
magnetic resonance images, and visual evoked potentials), and
the similarity of MS to numerous other neurological
diseases.5−9 Simply excluding other CNS diseases is how a
diagnosis for MS is routinely achieved.10−12 Thus, a rapid,
reliable, and noninvasive diagnostic test specific for MS would
benefit patients’ health and well-being.13−17

Identifying biomarkers to aid in the diagnosis of human
diseases is a well-established and successful endeavor that has
the potential to decrease long-term healthcare costs.18,19

Cerebrospinal fluid (CSF) has been the biofluid of choice
for MS research because of its proximity to myelin damage and
because it is expected to provide the most accurate reflection
of changes in the CNS.20−22 This has proven to be challenging,
and none of the proposed CSF biomarkers have been
successful to date.23 Further, the dangers associated with
spinal tap procedures to extract CSF diminish its value as a
diagnostic strategy, which is why using CSF has been removed
from the McDonald criteria.24,25

Metabolomics is a relatively new area of exploration for
disease-based biomarkers,26 where blood and urine metabolites
have the potential of identifying multifluid biomarkers for a
more robust and reliable disease diagnosis.21,23,27,28 Serum is
easily accessible and is a primary carrier of solutes in the body,
making it a highly informative sample source.29 Serum is also
considered the most predictive phenotype due to the size of its
identified metabolome.29 Urine is a noninvasive, readily
available, and less complex biofluid than CSF and serum.30

Accordingly, urine biomarkers are considered the ideal goal for
clinical applications.30 Yet urine is highly susceptible to
alterations due to variations in diet, exercise, personal habits,
clinical treatments, or numerous other factors.31 The further
challenge with urine and serum metabolic biomarkers is the
lack of a direct mechanistic link to MS, which may be
established if the same set of metabolites observed in CSF are
also observed in serum and urine.32 There is also a growing
concern regarding the accuracy and reproducibility of clinical
metabolomic studies. We and others have recently identified a
high rate of inconsistency across multiple clinical metabolo-
mics, where most of the potentially identified metabolite
biomarkers are simply “noise”.33−35 Instead, the detection of
the same metabolite across multiple biofluids and multiple
studies would be expected to increase the likelihood that a true
biomarker has been discovered, which could provide the
foundation for a rapid and accurate diagnostic test that will
allow treatments to begin sooner while limiting the devastating
effects of MS.

As a follow-up to our prior efforts to identify potential
urinary metabolite biomarkers of MS,36,37 herein, we describe
the application of untargeted NMR metabolomics to identify
potential biomarkers from CSF, serum, and urine to distinguish
MS patients from volunteers without a MS diagnosis (i.e.,
healthy controls). We successfully identified 32 CSF, 31 serum,
and 14 urinary metabolites that significantly changed across
disease states and differentiated between progressive MS
(PMS), relapsing-remitting MS (RRMS), and healthy controls
(Ctrl). Four metabolites, 3-hydroxybutyrate, alanine, phenyl-
alanine, and leucine, were found to be significantly altered
between PMS patients and healthy controls in all three
biofluids.

■ RESULTS
CSF Metabolome of PMS Patients. 1D 1H NMR spectra

were collected for the subset of age and sex-matched CSF
samples (Figure 1A), consisting of 39 healthy controls and 57
PMS patients (Table 1). The 1D 1H NMR metabolomics

datasets were then analyzed using multivariate statistical
methods, which demonstrated a global metabolic difference
between PMS patients and healthy controls. An unsupervised
principal component analysis (PCA) model (Figure 1B, R2

0.671 and Q2 0.542) resulted in the PMS and Ctrl groups
being separated into two distinct clusters in the 2D score plot,
signifying unique metabolic profiles. A statistically valid (CV-
ANOVA p-value < 0.001) orthogonal projection to latent
structure-discriminant analysis (OPLS-DA) model (Figure
1C) further confirmed the distinct metabolomes for the PMS
and Ctrl groups that also identified MS-specific metabolic
changes. A receiver operating characteristic (ROC) analysis
yielded a 5-feature model that classified PMS patients with a
high 99.9% prediction accuracy (Figure 1D). Four of these five
spectral features were increased in PMS compared to Ctrl
(Figure 1E). Spectral bins that changed because of the PMS
disease state were highlighted on the mean 1D 1H NMR
spectra calculated from the PMS and Ctrl CSF datasets (Figure
1F). A list of the assigned metabolites is provided in
Supporting Information (Table S1), which includes the
NMR chemical shift bins used for metabolite identification
and quantification, the metabolite concentration fold changes
between PMS and Ctrl, and the associated p-values indicating
the statistical significance (p-value < 0.05) of the MS-induced
metabolite changes. The box and whisker plots shown in
Figure 1G highlight a few representative metabolite changes
across all CSF samples. Additional box and whisker plots are
provided in Supporting Information (Figure S1). A pathway

Table 1. Cohort Demographicsa

class healthy controls (Ctrl) RRMS PMS

sample information
CSF samples 73b,c (39) 1c (0) 98b,d (57)
serum samples 44b (34) 52e (46) 196b,d (103)
urine samples 39e (26) 57e (0) 97e (46)
mean age 56.99 40.37 56.92
min/max age 19/92 35/54 21/91
female/male ratio 1:2 3:1 1:2.3

aThe total number of samples received from the NIH NeuroBioBank
or the Saunders Medical Center is listed for each type of biofluid for
the three cohort groups corresponding to healthy controls, RRMS,
and PMS. The numbers in parentheses are the number of samples
that were used to acquire NMR spectral data for biomarker
identification. The number of analyzed samples was reduced because
some samples did not yield a high-quality NMR spectrum, the spectral
data were outliers in an initial PCA score plot, or samples were
removed to adjust for age and sex matching. Serum samples were age
and sex matched to a patient’s CSF (N = 57) or urine (N = 46)
samples to determine the total set of samples (N = 103) analyzed by
NMR for biomarker identification. bThe biofluid samples were
received from the University of Maryland Brain and Tissue Bank.
cThe biofluid samples were received from the University of Miami
Brain Endowment Bank. dThe biofluid samples were received from
the Human Brain and Spinal Fluid Resource Center. eThe biofluid
samples were received from the MS Clinic within the Saunders
Medical Center (Wahoo, NE, USA).
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impact map derived from these CSF metabolites highlights the
major metabolic pathways altered by PMS (Figure 1H).

Serum Metabolome of PMS Patients. The PMS serum
samples were analyzed in a manner comparable to that of the
CSF samples (Figure 1). 1D 1H NMR spectra were collected

Figure 2. Metabolite biomarkers from serum discriminate patients with progressive MS from healthy controls. (A) Age distribution of female
(magenta) and male patients (blue) belonging to the Ctrl and PMS groups. All patient samples used in this comparison were pair-matched to the
CSF samples used in Figure 1. (B) PCA and (C) OPLS-DA score plot generated from the 1D 1H NMR spectra of the serum samples show distinct
variation between progressive MS (PMS, N = 57) and the healthy control (Ctrl, N = 34) groups. PCA model yielded an R2 of 0.602 and a Q2 of
0.568. OPLS-DA model yielded an R2 of 0.863, Q2 of 0.826, and a CV-ANOVA p-value < 0.001. Permutation test used 1000 iterations. Each ellipse
corresponds to the 95% confidence interval for a normal distribution of the data. (D) ROC analysis shows a five-feature multivariate model can
differentiate PMS serum samples from Ctrl with a high classification accuracy (AUC = 0.983, 95% CI: 0.882−1). (E) Frequency, contribution, and
direction of spectral features used in the ROC curve in (D). Red arrows indicate a decrease in serum and green arrows indicate an increase in serum
from PMS patients compared to Ctrl. (F) Overlays of the average 1D 1H NMR spectra demonstrate the variations between Ctrl (purple) and PMS
(teal). Teal points highlight bins that are significantly changing between the Ctrl and PMS spectra by Student’s t-test (p-value < 0.001). Inlays show
expansion of the spectral regions corresponding to 1.0−2.0 ppm and 6.0−8.0 ppm. (G) Box and whisker plots of select serum metabolites
demonstrating relative concentration (normalized NMR peak intensities) differences between Ctrl and PMS groups. Inserts show a representative
of the expanded 1D 1H NMR spectrum (red) assigned to each metabolite overlaid with the best-fit Chenomx reference spectrum (blue). Total of
225 1D 1H NMR bins were used for the Chenomx analysis. Student t-test p-values followed by multiple hypotheses correction using the Benjamini-
Hochberg method are indicated by * p-value < 0.05, ** p-value < 0.001, *** p-value < 1 × 10−5. (H) Pathway impact plot based on all serum
metabolites from the 1D 1H NMR spectra analysis that are statistically different between Ctrl and PMS groups. Turquoise-filled circles represent
pathways with p-value < 0.05 following multiple hypotheses correction using Benjamini-Hochberg method.
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for a subset of age and sex-matched serum samples (Table 1),
consisting of 34 healthy controls and 57 PMS patients (Figure

2A). Notably, the serum samples were acquired from the same
PMS patients who provided the CSF samples analyzed above.

Figure 3. Metabolite biomarkers from urine discriminate patients with progressive MS from healthy controls. (A) Age distribution of female
(magenta) and male patients (blue) belonging to the Ctrl and PMS groups. All patient samples used in this comparison were pair-matched to the
serum samples used in Figure S2. (B) PCA and (C) OPLS-DA score plot generated from the 1D 1H NMR spectra of the urine samples show
distinct variation between progressive MS (PMS, N = 46) and the healthy control (Ctrl, N = 26) groups. PCA model yielded an R2 of 0.194 and a
Q2 of 0.183. OPLS-DA model yielded an R2 of 0.631, Q2 of 0.480, and a CV-ANOVA p-value < 0.001. Permutation test used 1000 iterations. Each
ellipse corresponds to the 95% confidence interval for a normal distribution of the data. (D) ROC analysis shows a ten-feature multivariate model
can differentiate PMS urine samples from Ctrl with a nominal classification accuracy (AUC = 0.764, 95% CI: 0.559−0.924). (E) Frequency,
contribution, and direction of spectral features used in the ROC curve in (D). Red arrows indicate a decrease in urine and green arrows indicate an
increase in urine from PMS patients compared to Ctrl. Only the top ten of the 25 features are shown. (F) Overlays of the average 1D 1H NMR
spectra demonstrate the variations between Ctrl (purple) and PMS (teal). Total of 222 1D 1H NMR bins were used for the Chenomx analysis. Teal
points highlight bins that are significantly changing between the Ctrl and PMS spectra by Student’s t-test (p-value < 0.001). Inlays show expansion
of the spectral regions corresponding to 1.5−4.0 ppm and 7.0−9.0 ppm. (G) Heatmap showing mean relative metabolite concentrations and a
hierarchical clustering using Euclidean distances for all commonly identified metabolites between CSF and serum samples, and their variation
between Ctrl and PMS groups in the respective biofluids. (H) Heatmap showing mean relative metabolite concentrations and a hierarchical
clustering using Euclidean distances for all commonly identified metabolites between serum and urine samples, and their variation between Ctrl and
PMS groups in the respective biofluid. Each row in the heatmaps display the relative metabolite abundance across the four groups, where red
identifies a relative metabolite accumulation and blue indicates metabolite depletion. (H) Pathway impact plot based on metabolite variations
across serum and CSF samples from PMS and Ctrl groups. Turquoise-filled circles represent pathways with p-value < 0.05 following multiple
hypotheses correction using Benjamini-Hochberg method.
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The unsupervised PCA model comparing the PMS and Ctrl
serum samples yielded two partially overlapped groups in the
resulting 2D score plot (Figure 2B, R2 0.602 and Q2 0.568).
This group separation was significantly less than what was
observed for the CSF samples above. Nevertheless, a
statistically valid (CV-ANOVA p-value < 0.001) OPLS-DA
model (Figure 2C) was produced that identified MS-specific
metabolic changes in the serum from PMS patients. A ROC
analysis yielded a high-quality model with a PMS prediction
accuracy of 98.3% that was based on only 5 spectral features
(Figure 2D). Three of these features were increased in the
serum from PMS patients compared to Ctrl, while two were
decreased (Figure 2E). Spectral bins that changed because of

the PMS disease state are highlighted in the mean 1D 1H
NMR spectra calculated from the PMS and Ctrl serum datasets
(Figure 2F). A list of the assigned metabolites is provided in
Table S1, which includes the NMR chemical shift bins used for
metabolite identification and quantification, the metabolite
concentration fold changes between PMS and Ctrl, and the
associated p-values indicating the statistical significance (p-
value < 0.05) of the MS-induced metabolite changes. The box
and whisker plots shown in Figure 2G highlight a few
representative metabolite changes across all of the serum
samples. Major metabolic pathways that were altered between
PMS and Ctrl serum samples are shown in the pathway impact
map in Figure 2H.

Figure 4. Metabolite biomarkers from serum discriminate PMS from RRMS. PCA score plot generated from the 1D 1H NMR spectra for serum
samples obtained from (A) four patient groups comprising Ctrl (purple, N = 34)), RRMS (yellow, N = 46), PMS-A (pink, N = 114), and PMS-B
(teal, N = 48) (R2 0.449 and Q2 0.425) and (B) three patient groups comprising Ctrl (purple), RRMS (yellow), and PMS-B (teal) (R2 0.510 and
Q2 0.473). (C) Metabolic tree diagram generated from the PCA score plot in A (top) and B (bottom). The p-value at each node is calculated from
the Mahalanobis distance between each group. Coloring is identical between the PCA score plot and the tree diagram. (D) Box and whisker plots
of select serum metabolites demonstrating relative concentration (normalized NMR peak intensities) differences between Ctrl (purple), RRMS
(yellow), and PMS-B (teal) from the PCA model depicted in (B) Student t-test p-values followed by multiple hypotheses correction using the
Benjamini-Hochberg method are indicated by *** p-value < 1 × 10−5. (E) Venn diagram summarizing the 31 metabolites identified as altered
between the Ctrl (purple), RRMS (yellow), and PMS-B (teal) serum samples in (B). Only three metabolites were altered across all three sera
groups (overlap), 28 metabolites were altered in PMS-B relative to Ctrl (teal), and only one metabolite differed in RRMS relative to Ctrl (yellow).
(F−I) Diagrammatic representation of a 1D 1H NMR spectra showing bins that are significantly altered between the three groups (FDR adjusted p-
value < 0.05). (F) Shows all spectral features significantly altered in PMS-B relative to Ctrl where a green bubble indicates an increase in intensity in
PMS-B relative to Ctrl. Red bubble indicates a decrease in intensity in PMS-B relative to Ctrl. (G) 1D 1H NMR spectral bins altered in RRMS
relative to Ctrl. (H) 1D 1H NMR spectral bins altered in PMS relative to RRMS. (I) 1D 1H NMR spectral bins altered across all three groups in
(B) corresponding to the three common metabolites in (D). No pair-matching restrictions were used in this comparison.
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Serum samples acquired from PMS patients who also
provided urine samples comprised a second subset of serum
samples, which contained 34 healthy controls and 93 PMS
patients (Figure S2A). This second subset of serum samples
was analyzed in the same manner as the first subset of serum
samples and yielded comparable results. The 2D score plot
from the PCA model yielded a partial overlap between PMS
and Ctrl samples (Figure S2B, R2 0.463 and Q2 0.393), but the
1D 1H NMR data produced a valid (CV-ANOVA p-value <
0.001) OPLS-DA model (Figure S2C). A ROC analysis

yielded a high-quality model with a PMS prediction accuracy
of 98.2% that was based on only 5 spectral features (Figure
S2D). Four of these features were decreased in the serum of
PMS, while one feature was increased (Figure S2E). Spectral
bins that changed because of the PMS disease state are
highlighted on the mean 1D 1H NMR spectra calculated from
the PMS and Ctrl spectra acquired for the second subset of
serum samples (Figure S2F). A list of the assigned metabolites
is provided in Table S1, which includes the NMR chemical
shift bins used for metabolite identification and quantification,

Figure 5. Metabolite biomarkers common to CSF, serum, and urine in MS. Box and whisker plots of metabolites consistently changing in CSF,
serum, and urine samples of PMS patients relative to healthy controls. Number of samples used for each group and biofluid type were identical to
the sample usage reported in Figures 1, 2, and 3. PMS patients relative to healthy controls in CSF: 57, 39; serum: 103, 34; and urine: 46, 26,
respectively. Box plots correspond to (A−C). 3-Hydroxybutyric acid, (D−F) alanine, (G−I) phenylalanine, and (J−L) leucine. Inserts show a
representative of the expanded 1D 1H NMR spectrum (red) assigned to each metabolite overlaid with the best fit Chenomx reference spectrum
(blue). FDR corrected p-values are indicated as * p-value < 0.05, ** p-value < 0.001, *** p-value < 1 × 10−5. (M−P) Diagrammatic representation
of 1D 1H NMR spectral bins that are altered between paired CSF/serum and serum/urine samples. Green bubble indicates a decrease in PMS
relative to Ctrl in both biofluids. Red bubble indicates an increase in PMS relative to Ctrl in both fluids. Multicolored bubble indicates an
inconsistent change between the two biofluids (i.e., one increased and one decreased). (M) Venn diagrams summarizing the total number of
metabolites detected in only CSF (pink), in only serum (teal), or by both CSF and serum (overlap). (N) Venn diagram summarizing the number
of overlapped metabolites (i.e., 15) from (M) that are consistently increased (green, 1), decreased (red, 5), or differ (i.e., one increased and one
decreased) between CSF and serum samples (overlap, 9). (O) Venn diagrams summarizing the total number of metabolites detected in only serum
(teal), in only urine (yellow), or by both serum and urine (overlap). (P) Venn diagram summarizing the number of overlapped metabolites (i.e., 6)
from (O) that are consistently increased (green, 4), decreased (red, 0), or differ (i.e., one increased and one decreased) between the serum and
urine samples (overlap, 2).

ACS Chemical Neuroscience pubs.acs.org/chemneuro Research Article

https://doi.org/10.1021/acschemneuro.3c00678
ACS Chem. Neurosci. 2024, 15, 1110−1124

1116

https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acschemneuro.3c00678/suppl_file/cn3c00678_si_001.pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.3c00678?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.3c00678?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.3c00678?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acschemneuro.3c00678?fig=fig5&ref=pdf
pubs.acs.org/chemneuro?ref=pdf
https://doi.org/10.1021/acschemneuro.3c00678?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the metabolite concentration fold changes between PMS and
Ctrl, and the associated p-values indicating the statistical
significance (p-value < 0.05) of the MS-induced metabolite
changes. The box and whisker plots shown in Figure S2G
highlight a few representative metabolite changes across the
second subset of serum samples. Additional box and whisker
plots are provided in Figure S3. Major metabolic pathways that
were altered between the PMS and Ctrl groups using the
second subset of serum samples are shown in the pathway
impact map in Figure S2H.
Urine Metabolome of PMS Patients. The PMS urine

samples were analyzed in a manner equivalent to that of the
CSF and serum samples (Figures 1 and 2). 1D 1H NMR
spectra were collected for a subset of age and sex-matched
urine samples (Figure 3A), consisting of 26 healthy controls
and 46 PMS patients. Notably, the urine samples were
acquired from the same PMS patients who provided the serum
samples analyzed above. The unsupervised PCA model
comparing the PMS and Ctrl urine samples showed partial
group overlap in the resulting 2D score plot (Figure 3B, R2

0.194 and Q2 0.183), but still produced a valid (CV-ANOVA
p-value < 0.001) OPLS-DA model (Figure 3C). The OPLS-
DA model supports the presence of metabolite changes in
urine samples obtained from PMS patients. The corresponding
ROC analysis required significantly more spectral features than
was required with either the CSF or serum samples (Figure
3D). A model based on 10 spectral features from the urine
samples yielded a PMS prediction accuracy of 76.4%. The top
10 features contained 6 features that decreased in PMS and 4
features that increased in PMS (Figure 3E). Spectral bins that
changed because of the PMS disease state are highlighted in
the mean 1D 1H NMR spectra calculated from the PMS and
Ctrl urine datasets (Figure 3F). A list of the assigned
metabolites is provided in Table S1, which includes the
NMR chemical shift bins used for metabolite identification and
quantification, the metabolite concentration fold changes
between PMS and Ctrl, and the associated p-values indicating
the statistical significance (p-value < 0.05) of the MS-induced
metabolite changes. The box and whisker plots shown in
Figure S4 highlight the metabolite changes detected in the
PMS urine samples.
PMS Induces Consistent Metabolic Changes across

Multiple Biofluids. The set of metabolites identified from
each of the pairwise comparisons of the biofluids relative to
healthy controls was then compared across the matched pairs
of biofluids. Specifically, the metabolites identified from the
CSF and serum samples and from the serum and urine samples
obtained from the same PMS patients were compared. The
combined heatmaps using the pair of CSF and serum PMS
samples (Figure 3G) and the pair of serum and urine samples
(Figure 3H) show distinct clustering of group averages. The
heatmaps also highlight the altered metabolite concentrations
in the biofluids obtained from PMS and Ctrl. Similarly, a
combined impact map based on all of the metabolites
identified across the three biofluids summarizes the top
metabolic pathways differentially altered in PMS patients
(Figure 3I).
Serum Metabolome Highlights Disease Progression

from RRMS to PMS. Disease heterogeneity is a hallmark of
MS, which is highlighted by the within group variance in the
PCA and OPLS-DA score plots (Figure 2B,C). Furthermore, a
PCA model initially generated from the complete set of 196
serum samples from PMS patients produced two distinct

groupings in the score plot. These PMS groups were identified
as PMS-A (N = 114) and PMS-B (N = 48) and then compared
to the Ctrl (N = 34) and RRMS (N = 46) groups in a PCA
model (Figure 4A, R2 0.449 and Q2 0.425). Please note that
any replicate that fell outside the 95% confidence interval for
the entire PCA model was excluded from the analysis.
Accordingly, 6 RRMS, 10 healthy controls, and 34 PMS
serum samples were excluded from the final PCA models, as
depicted in Figure 4A,B. The resulting PCA score plot
indicated a clear overlap of the Ctrl and RRMS groups, and
a partial overlap with PMS-A. The removal of the PMS-A
group yielded a PCA score plot with a distinct separation of
the PMS-B group from the two remaining groups (Figure 4B,
R2 0.510 and Q2 0.473). Tree diagrams (Figure 4C) derived
from score plots in Figure 4A (top) and Figure 4B (bottom)
show significant phenotypic variations between PMS-A and
PMS-B. The box plots for 3-hydroxybutyrate, asparagine, and
methylmalonate highlight the significant metabolic changes
that occurred across the Ctrl, RRMS, and PMS-B groups
(Figure 4D). These were the only serum metabolites identified
as significantly changing across the three groups. The resulting
Venn diagram in Figure 4E summarizes the metabolite
comparison among the Ctrl, RRMS, and PMS groups. Overall,
28 metabolites were significantly different between the PMS
and Ctrl groups, and 2 metabolites differentiated RRMS from
Ctrl. Line plots illustrate the spectral differences across the
serum samples from the Ctrl, RRMS, and PMS groups (Figure
4F−I). Spectral features significantly changing (p-value < 0.05)
between PMS and Ctrl are extensive, with variations across the
entire 1D 1H NMR spectrum (Figure 4F). Conversely, a
minimal number of spectral features were uniquely varied
between RRMS and Ctrl (Figure 4G), and between PMS and
RRMS (Figure 4H). The spectral features associated with the
three metabolites that changed across PMS, RRMS, and Ctrl
showed a narrow distribution (Figure 4I).
PMS Induces a Consistent Metabolic Profile across

Three Biofluids. Our in-depth analyses of the CSF, serum,
and urine biofluids led to the discovery of four unique
metabolites that significantly changed between the PMS and
Ctrl groups. These metabolites are 3-hydroxybutyrate (Figure
5A−C), alanine (Figure 5D−F), phenylalanine (Figure 5G−I),
and leucine (Figure 5J−L). The box plots summarize the
magnitude and direction of these metabolite changes in CSF
(top, green), serum (middle, red), and urine (bottom, yellow).
Venn diagrams with corresponding line plots (Figure 5M−P)
further summarized the commonalities of metabolites between
paired biofluids (i.e., CSF/serum and serum/urine). The total
number of metabolites identified from the 1D 1H NMR
datasets is shown at the top of each Venn diagram. Specifically,
the paired CSF and serum samples shared 15 metabolites,
where 16 metabolites were unique to CSF and 6 metabolites
were unique to serum (Figure 5M). The Venn diagram in
Figure 5N summarizes the number of these 15 shared
metabolites that were consistently increased (green, 1) or
decreased (red, 5) in both the CSF and serum samples from
PMS patients. It also indicates that 9 metabolites exhibited an
inconsistent change between these two biofluids. While the 9
metabolites were statistically different in CSF and serum
relative to Ctrl, the direction of the observed change was also
different. For example, a metabolite that was increased in CSF
relative to Ctrl was decreased in serum or vice versa. Similarly,
the paired serum and urine samples shared 6 metabolites,
where 25 metabolites were unique to serum and 8 metabolites
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were unique to urine (Figure 5O). The Venn diagram in
Figure 5P summarizes the number of these 6 shared
metabolites that were consistently increased (green, 4) or
decreased (red, 0) in both the serum and urine samples from
PMS patients. It also indicates that 2 metabolites exhibited an
inconsistent change between these two biofluids.

■ DISCUSSION
CSF Metabolome Links Diverse Metabolic Pathways

to MS. The 32 metabolites altered in the CSF of PMS patients
relative to healthy controls (Table S1) were directly associated
with a range of cellular or biological processes that contribute
to the pathology of MS. The 32 CSF metabolites were
primarily amino acids and metabolites related to glycolysis and
TCA, which included succinate, acetate, lactate, and glycerol,
which all decreased in PMS. Conversely, glucose, formate, and
citrate were increased in PMS CSF. A decrease in lactate and
an increase in glucose suggested an overall decrease in
glycolytic activity, and, consequently, a decrease in the
synthesis of the metabolic precursors necessary for protein
and lipid biosynthesis that is vital for myelin production.38 A
decrease in TCA metabolites has been previously implicated in
various encephalopathies.39 Proper brain and neuronal
function is highly dependent on the availability and efficient
utilization of glucose, where dysfunctional glycolysis can
quickly lead to cognitive impairment and brain damage.40−42

Alanine, which was decreased in PMS CSF, can be used to
generate energy via the glucose−alanine shuttle when glucose
levels are low or as a potential alternative to dysregulated
glycolysis, as we observed in the CSF of PMS patients.
Notably, alanine can also be synthesized from branched-chain
amino acids (BCAAs). BCAA isoleucine, leucine, and valine
were all decreased in the CSF from PMS patients, which is
consistent with the prior observation that BCAAs were
decreased in the CSF from MS patients.43,44 BCAAs have
been attributed to muscle tremors, a decrease in appetite,
lethargy, and neurological defects.45 Lower levels of BCAAs
may also impair regulatory T cells, which may result in
increased inflammatory T cell activity.46 Ketone 3-hydrox-
ybutyrate (3-HB) was also decreased in the CSF of PMS
patients. 3-HB is a partial degradation product of BCAAs and
can be used as a source of energy by the brain under glucose
deprivation or ketosis.47 Again, this is consistent with the
overall decrease in glycolytic activity that was observed in the
PMS CSF. 3-HB is also known to decrease lipolysis,
inflammation, and reactive oxygen species (ROS).47

Glycine, aspartate, and N-acetyl-L-aspartate (NAA) were
found to decrease in the CSF from PMS patients. Glycine
serves as an inhibitory neurotransmitter in the CNS, while 3-
aminoisobutanoate, which was decreased in PMS CSF, serves
as a partial agonist of the glycine receptor.48 Conversely,
aspartate is a major excitatory neurotransmitter and NAA is a
precursor to the neurotransmitter N-acetylaspartylglutamate
(NAAG).49 Glutamine and glutamate were also found to be
decreased in PMS CSF. Glutamate is the most abundant
excitatory neurotransmitter in the CNS. Neuronal glutamine
uptake is vital for conversion to glutamate, which is a vital
precursor of the inhibitory neurotransmitter gamma-amino-
butyric acid (GABA).50 Similar to glutamate and glutamine,
GABA was found to decrease in PMS CSF. As vital
neurotransmitters, glutamate and GABA are targets in the
development of neuroprotective therapies.50 Glutamine is also
vital to protect against neurotoxicity due to an increase in

ROS.51 Thus, a decrease in both 3-HB and glutamine levels
may lead to a higher level of ROS-induced neuronal damage in
MS patients. Both phenylalanine and tyrosine were found to
decrease in PMS. Both serve as precursors for the neuro-
transmitter dopamine.52 These metabolic changes are con-
sistent with neurotransmitters playing an important role in the
pathogenesis of MS.

NAA is also important to myelin synthesis, where its
decrease in CSF may suggest a disruption of myelin repair.
Myoinositol was likely dysregulated in PMS, which is an
important component of myelin and has been proposed to be
related to the development of peripheral neuropathy in
diabetic patients.53 Again, the overall decrease in glycolytic
activity and the reduction in the metabolic precursors vital to
myelin production would be consistent with a disruption in
myelin repair.38 The observation that β-N-acetylglucosamine
was increased in PMS CSF provides further support for a
dysfunctional myelin repair process. β-N-acetylglucosamine has
been shown to be a critical regulator of myelination and
myelination repair in mice.54 Taken together, these metabolic
changes in the CSF of PMS patients are consistent with
demyelination, which is a hallmark of MS.

Hypoxanthine was decreased, but inosine was increased in
the CSF from PMS patients. Nucleotide and purine salvage
pathways utilize these metabolites. Inosine is converted to
hypoxanthine, which is further processed to xanthine. There-
fore, an accumulation in the precursor inosine is consistent
with a decrease in both hypoxanthine and xanthine. This is
evident of an overall change in the activity of the rate-limiting
enzyme in purine degradation, xanthine oxidase, which
produces free radicals that can inhibit the neuronal uptake of
glutamate and enhance glutamate-mediated excitotoxicity.55

The observed decrease in glutamate may also explain the
resulting down-regulation in xanthine oxidase activity.56

Creatine and urea were also observed to be perturbed in the
CSF of PMS patients, but their relationship to the patho-
genesis of MS is not clear. Creatine is irreversibly converted to
creatinine. Our observation that creatinine levels were
increased and creatine levels were decreased suggests this
conversion is up-regulated in PMS patients, which is consistent
with prior observations that creatine metabolism is dysfunc-
tional in MS.57 Urea has been identified as a variable
metabolite in CSF, but its relationship to MS is controversial.43

MS-Induced Metabolic Alterations in Serum Mimics
CSF. The metabolic changes in the serum of PMS patients
were similar to the alterations observed in CSF and can be
linked to the same MS-related pathologies. Like CSF, the 31
metabolites altered in serum (Table S1) were related to
glycolysis and amino acid metabolism. Tyrosine was decreased
in PMS serum, while phenylalanine and tryptophan were
increased. These aromatic amino acids are precursors to
neurotransmitters. Arginine, which is positively correlated with
brain atrophy and white matter lesions, was found to be
decreased in the serum from PMS patients.58 Consistent with
this decrease was the observation that the level of ornithine,
which is downstream of arginine in the urea cycle, was
increased. Creatine, whose biosynthesis also relies on arginine
metabolism, was similarly found to be increased in the serum
from PMS patients. Methionine is also positively correlated
with brain atrophy and was similarly found to be increased in
the serum from PMS patients.59 Notably, methionine has been
shown to be corelated with creatine biosynthesis, completing
the metabolic connection between these four amino acids.60
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Asparagine, glutamine, and threonine were all found to be
increased in the serum from PMS patients. Conversely,
glutamate was decreased. As with CSF, BCAAs were similarly
dysregulated in serum, with isoleucine increasing in PMS while
leucine and valine were both decreased. Degradation products
of BCAAs were again identified, with methylmalonate, 3-
hydroxyisovalerate and 3-HB all being decreased in PMS. 3-
Hydroxyisobutyrate, an intermediate in valine metabolism, was
found to increase in PMS, which is consistent with the
observed decrease in valine. Changes to purine metabolism
and salvage pathways were again evident in the serum of PMS
patients, as evidenced by an increase in guanine and inosine.
Similarly, alterations in pyrimidine metabolism were evident in
uracil. Of note, the increase in threonine is consistent with its
potential to protect against peripheral neuropathy and reduce
spasticity.61,62

In contrast to CSF, glucose was decreased and lactate was
increased in the serum from PMS patients. Conversely, the
level of alanine was decreased in serum, which was consistent
with the CSF findings. Presumably, any available glucose was
redirected to the brain to meet its needs.63,64 Of course, this
likely contributed to the observed buildup of glucose in the
CSF due to the dysregulated glycolysis. Lactate has also been
implicated as a major energy source for neurons, equivalent to
glucose, and has been shown to be metabolized through the
TCA cycle.65−68 The proposed astrocyte-neuron lactate shuttle
hypothesis (ANLSH)69,70 suggests a major metabolic role and
source of lactate in neurons from astrocytic glycolysis. Like
glucose, lactate can easily cross the blood−brain barrier and is
rapidly released from the brain into the blood.71,72 Notably,
elevated lactate levels in the blood have been previously
identified following traumatic brain injury73 or in the serum of
MS patients.74 Elevated lactate levels in the CSF have also
been previously observed in Alzheimer’s disease,75 MS,76 and
Parkinson’s disease.77 Overall, neurological diseases are
broadly associated with dysregulated glycolysis and changes
in the concentrations of the associated metabolites.

Choline was found to be increased in PMS serum, is
important in lipid synthesis, and enhances myelin repair.
Glycerol is important in phospholipid biosynthesis and was
found to decrease in serum. Myoinositol, a vital component of
myelin, was also likely perturbed in the serum of PMS patients.
Taken together, these dysregulated metabolites all suggest an
impaired myelin repair system and may indicate lipogenic
breakdown.78 This observation is consistent with the
demyelination that is common in PMS and the metabolic
changes observed in the CSF.

Two metabolites, hippurate and niacinamide, were increased
in the serum from PMS patients, which can be attributed to
diet and medication. Imidazole, a precursor to histidine, was
increased in the serum of PMS patients.
Metabolic Changes Implicate Pathways Linked to

Neurodegeneration and Disease Progression. Three
metabolites were found to consistently change in serum
between Ctrl, RRMS, and PMS-B patients (Figure 4D). These
metabolites include 3-HB, methylmalonate, and asparagine.
Please note that some of these metabolic trends may differ
when considering the entire PMS cohort (Table S1) compared
to just the PMS-B subset. 3-HB consistently increased from
Ctrl to RRMS to PMS-B. 3-HB serves multiple neuroprotective
roles, including providing energy under glucose deprivation
and limiting ROS.47 Asparagine showed the opposite trend,
decreasing from Ctrl to RRMS to PMS-B. A decrease in

asparagine has been associated with impaired lipogenesis.79

Methylmalonate shows differential changes with a modest
increase from Ctrl to RRMS, but then a decrease in PMS-B,
where PMS-B patients present lower levels of methylmalonate
than Ctrl. Methylmalonate is a product of vitamin B12
metabolism and has been shown to be neurotoxic.80 The
increased levels from Ctrl to RRMS, followed by a decrease in
RRMS to PMS-B, may indicate neuronal damage in the early
stages of MS. These three metabolites may offer a unique
approach to monitoring the onset of MS relative to healthy
controls and disease progression from RRMS to PMS. One
metabolite, thiamine pyrophosphate (TPP), was found to
increase from RRMS to PMS-B patients but was not altered
between PMS-B and Ctrl. TPP is necessary for glycolysis,
oxidative phosphorylation, and the decarboxylation of
BCAAs.81 TPP may provide a unique biomarker of the
progression from RRMS to PMS.
Urinary Metabolic Changes Are Consistent between

MS Patients and Mouse MS Model. We have previously
reported on the potential discovery of MS biomarkers using
the NMR metabolomics analysis of urine samples collected
from an experimental autoimmune encephalomyelitis (EAE)-
mouse model and human patients diagnosed with RRMS.36,37

The EAE-mouse model yielded 31 metabolites, and the human
urine yielded 23 metabolites as potential biomarkers of MS.
Only 6 of these metabolites were consistently detected
between the two studies. Herein, we identified 14 metabolites
in the urine of PMS patients that were altered relative to those
of healthy controls. Combining the results from these three
very distinct studies, two consistently detected metabolites
were 3-HB and creatinine.

Five additional metabolites detected from the PMS urine
samples were also partly consistent with our prior analysis of
the urine samples from RRMS patients but not the EAE-mouse
model. These metabolites include 3-hydroxyisovalerate,
acetate, alanine, citrate, and phenylalanine. Phenylalanine was
increased in both the serum and urine samples collected from
PMS patients and in the prior RRMS urine samples. Alanine
was decreased in both the CSF and serum samples collected
from PMS patients and in the prior RRMS urine samples. It
was increased in the PMS urine samples. Similarly, acetate was
increased in both the PMS and prior RRMS urine samples but
decreased in the PMS CSF samples. 3-Hydroxyisovalerate was
also increased in both the PMS and prior RRMS urine samples
but decreased in the PMS serum samples. Conversely, citrate
was decreased in the urine from PMS and prior RRMS urine
samples but was increased in the CSF.

Seven additional metabolites were differentially altered in
the PMS urine samples relative to healthy controls that were
not identified by our previous study with RRMS. This may be
attributed to the later stage of MS disease in our PMS urine
samples compared with RRMS. These additional PMS
metabolites included arginine, indoxyl sulfate, and leucine,
which were increased in the urine from PMS patients.
Ascorbate, histidine, methyl nicotinamide, and trigonelline
were decreased. Arginine was also decreased in PMS serum
samples, while leucine was decreased in both serum and CSF.
Histidine serves as a precursor to the neurotransmitter
histamine and is important in ROS scavenging. Indoxyl sulfate
may be a result of tryptophan degradation, which is also a
precursor to neurotransmitters and may be indicative of brain
function and psychiatric disorders.82 Methyl nicotinamide is
proposed to have neuroprotective potential in neurodegener-
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ative disease.83 Again, the consistency across multiple biofluids
and the association with MS pathogenesis provide support for
these urinary metabolites as potential biomarkers for disease
progression from RRMS to PMS.
Metabolic Changes across Multiple Biofluids Suggest

Robust MS Biomarkers. Four metabolites were identified as
consistently changing across the CSF, serum, and urine
samples obtained from PMS patients (Figure 5). For clarity,
the paired-matched [i.e., CSF/serum (N = 57) and serum/
urine (N = 46)] PMS cohort (Table 1) was used in this
comparison. These metabolites include 3-HB, alanine, leucine,
and phenylalanine. Notably, all four metabolites have a
consistent fold-change pattern across the CSF (decrease) and
urine (increase) relative to healthy controls. The metabolites
displayed a partly random response to PMS in serum. 3-HB,
alanine, and leucine were all decreased, while in contrast, the
phenylalanine levels increased. It is important to note that 3-
HB exhibits a reversed, increased trend in the serum (Figure
4D) when only the subset PMS-B (N = 48) cohort was used.
Recall that the subset PMS-B cohort (Figure 4B) presents a
larger metabolic difference than the pair-matched PMS cohort
(Figures 2B,C and 5) or the subset PMS-A (Figure 4A)
relative to healthy controls, which explains the 3-HB trend
reversal. 3-HB serves as an alternative fuel source under
glucose deprivation in the CNS and is vital for protection
against inflammation and oxidative stress, for increasing
cerebral blood flow, and for promoting the expression of
neurotrophic factors.47 The decreased levels of 3-HB in CSF
were paired with a decrease in serum and an increase in urine,
which may suggest a ketogenic state for MS patients. A shift
from dysregulated glycolysis would result in the brain
consuming higher levels of ketone bodies to compensate for
the loss of glucose-derived energy.

The amino acids alanine, leucine, and phenylalanine all play
important roles in CNS neurochemistry. A decrease in alanine
in the CSF may indicate that it is metabolized to generate
pyruvate to circumvent the decrease in glucose availability.
Leucine is important for the synthesis of glutamate, which is a
vital neurotransmitter that is necessary for regulating oxidative
stress.84 Phenylalanine is a precursor in dopamine synthesis,
where decreased levels of dopamine are linked to fatigue or to
the dopamine imbalance hypothesis.85 Dopamine has been
implicated as having a critical role in modulating the neuro-
immune network that is important to MS pathogenesis.86 The
elevation of phenylalanine in the blood is also indicative of
hypomyelination of neurons in mouse models.87 Overall, the
decreased levels of these amino acids in the CSF, which are all
vital to neurological processes, suggest a lack of proper amino
acid utilization by the CNS of MS patients.

The individual attributes of these four metabolites to MS
pathogenesis and the fact that we detected statistically
significant changes for these metabolites in all three biofluids
relative to healthy controls offer significant promise for their
potential as biomarkers of MS diagnosis and progression.
Historically, there have been limited efforts to identify and
explore metabolites across multiple biofluids as potential
biomarkers of MS.23,27,28 This lack of information about the
dysregulation of metabolites across multiple locations through-
out the human body may hinder our understanding of the
development and progression of MS. A clearer association of
metabolites and metabolic processes with MS pathology may
become more evident as further multibiofluid studies are
completed.

■ CONCLUSIONS
We identified potentially unique biomarkers of MS that were
detected across three biofluids (i.e., CSF, serum, and urine)
obtained from patients diagnosed with progressive or RRMS.
We identified four metabolites (i.e., 3-HB, alanine, leucine, and
phenylalanine) that may serve as multibiofluid biomarkers of
PMS. Similarly, we detected three metabolites (i.e., 3-HB,
asparagine, and methylmalonate) that were found to change
consistently (increase or decrease) as the disease progressed
from healthy controls through RRMS to PMS. Thus, these
metabolites may serve as biomarkers of MS disease
progression. Our results were compared with our prior NMR
metabolomics studies of urine samples collected from EAE-
mice and RRMS patients and identified two urine metabolites
detected across all three studies.36,37 Thus, 3-HB and
creatinine from human urine samples may serve as readily
accessible, quick, easy, and noninvasive diagnostic markers of
MS. Excluding the EAE-mouse study from the comparison
resulted in the identification of five additional urinary
metabolites (i.e., 3-hydroxyisovalerate, acetate, alanine, citrate,
and phenylalanine) that may further serve as MS biomarkers.
Similarly, seven metabolites (i.e., arginine, histidine, indoxyl
sulfate, leucine, methyl nicotinamide, and trigonelline) were
detected only in the urine of PMS patients and not in RRMS
patients, which may be useful urine biomarkers of MS
progression. In addition to being detected across multiple
biofluids and by multiple studies, these metabolites can be
linked to numerous biological processes associated with MS
pathology. Eleven of these metabolites have also been
identified by other clinical metabolomics studies as potential
MS biomarkers (Table S2). In total, we present robust
evidence of the reliability and utility of these metabolites to
serve as potential biomarkers for MS diagnosis and disease
progression. Few prior studies have successfully identified a set
of metabolites that consistently varied across multiple
biofluids.88−90 By identification of unique biomarkers across
multiple biofluids, the mechanisms of MS physiology may be
better understood. Further, a unique and robust set of
metabolite biomarkers for rapid and differential diagnosis of
MS as well as for monitoring the effectiveness of MS treatment
may be achieved.

The treatment of MS is challenged by the lack of a cure and
the existence of four disease courses: clinically isolated
syndrome (CIS), RRMS, secondary progressive (SPMS), and
primary progressive (PPMS). Thus, current MS therapies seek
to decrease the progression and severity of the disease while
also providing relief to patient symptoms. There are over 20
different U.S. Food and Drug Administration (FDA)-approved
disease-modifying treatments (DMT) for MS, where there are
more treatment choices for RRMS than PMS.91 A particular
patient’s choice of DMT is based on a balance of maximizing
efficacy (i.e., decreasing disease progression) while avoiding or
minimizing side-effects (i.e., bruising easily, flu-like symptoms,
heart palpitations, increased risk of infections, etc.). Accord-
ingly, it is common for MS patients to change their DMT
multiple times throughout the course of their treatment,
especially as the disease enters distinct stages. Thus, in addition
to helping diagnose and prognose MS, the potential metabolite
biomarkers outlined above may assist in providing personalized
care by aiding a physician in identifying a proper DMT for a
given patient. As an illustrative example, a patient who only
presents the four PMS metabolites (i.e., 3-HB, alanine, leucine,
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and phenylalanine) in either of the three biofluids or the seven
metabolites (i.e., 3-hydroxyisovalerate, arginine, histidine,
indoxyl sulfate, leucine, methyl nicotinamide, and trigonelline)
in only urine may suggest a physician consider beginning a MS
treatment with ocrelizumab.92 Conversely, a MS patient
receiving a typical first-line therapy (e.g., dimethyl fumarate,
fingolimod, glatiramer acetate, interferon β 1b/1a, or
teriflunomide) but starting to demonstrate changes in the
three metabolites associated with a progression from RRMS to
PMS (i.e., 3-HB, asparagine, and methylmalonate) may suggest
a physician consider initiating a transition to a second-line
treatment (e.g., natalizumab) or even a third-line treatment
(e.g., alemtuzumab).91 Finally, a new MS patient that does not
demonstrate either the PMS or the progression from RRMS to
PMS metabolite biomarkers listed above but instead exhibits
the six consistently detected urinary MS metabolites (i.e., 3-
HB, acetate, alanine, citrate, creatinine, and phenylalanine)
may inform a physician to consider starting the patient with
typical first-line MS therapy. Factors that inform a clinician to
start or change a treatment for MS are limited and are often
dependent on few evidence-based data, observational reports,
and practical experience. The ready accessibility of metabolite
biomarkers that can simplify the assessment of MS disease
progression and a patient’s response to treatment would
simplify a clinician’s decision process and lead to better
outcomes for the MS patient.

Despite the potential utility and promise of our results, there
are still several caveats that need to be addressed before these
metabolites can be accurately labeled as biomarkers of MS.
Foremost is the need to further validate these potential
biomarkers with additional clinical studies. In addition, it is still
plausible that confounding factors, such as the type of drug
treatment or a generic response to a disease state (i.e., immune
response), may explain the observed metabolic difference
between MS patients and healthy controls. The metabolic
changes could also reflect common symptoms or comorbidities
of MS like obesity, diabetes, depression, and cardiovascular
diseases, among other issues. Another consideration is the
possibility that the metabolic response is not unique to MS and
is observed in other neurological, autoimmune, or diseases in
general. Nevertheless, an important advantage of metabolomic-
based biomarkers is the identification of a set of metabolites
instead of a typical single molecular biomarker. While
individual metabolites may be associated with other disease
states besides MS, it is still likely that the full set of metabolites,
in addition to the relative trends (i.e., increase or decrease),
may be uniquely attributed to MS and serve as a viable
biomarker for disease diagnosis, progression, and personalized
medicine.

■ MATERIALS AND METHODS
Study Design and Cohort Demographics. The aim of this

study was to track metabolites across multiple biofluids that were
acquired from MS patients and healthy volunteers without a MS
diagnosis. We received CSF, serum, and urine samples from the NIH
NeuroBioBank, which included the University of Maryland Brain and
Tissue Bank, the University of Miami Brain Endowment Bank, and
the Human Brain and Spinal Fluid Resource Center. To supplement
the NIH NeuroBioBank samples, we collected additional biofluids at
the MS clinic within the Saunders Medical Center (Wahoo, NE,
USA). Specifically, serum and urine samples were collected from
RRMS patients during their normal healthcare visits and from healthy
family members. All materials, biospecimens, and human subjects’
data collected, stored, and maintained for and during the conduct of

this research was reviewed and approved by the University of
Nebraska-Lincoln Institutional Review Board (IRB, IRB#:
20200820533EP and IRB#: 20180517991EPCOLLA). Limited
human subject data were available for all biospecimens provided by
the NIH NeuroBioBank and primarily consisted of age, sex, biofluid
type, and MS classification. The type of treatment received by the MS
patient was only provided by the Saunders Medical Center and
corresponded to a range of options consisting of Avonex (3.8%),
Copaxone (3.8%), Ocrevus (5.8%), Plegridy (1.9%), Tecfidera
(34.6%), Tysabri (46.2%), or none (3.8%). A complete description
of the cohorts used in this study is provided in Table 1. Briefly, we
received a total of 73 CSF, 44 serum, and 39 urine samples from
healthy controls; and 99 CSF, 248 serum, and 154 urine samples from
MS patients. We focused our NMR metabolomics analyses on sets of
patient samples in which we had access to at least two types of
biofluids from the same patient. For example, a serum sample paired
with either a CSF or urine sample acquired from the same patient was
included in the set of biofluid samples used to acquire a NMR
spectrum for biomarker identification. Biofluid samples were excluded
from further analysis if the sample did not yield a high-quality NMR
spectrum or the spectral data were outliers in an initial PCA score
plot. Of the total number of samples received from the NIH
NeuroBioBank and Saunders Medical Center, a reduced subset of
each biofluid was used in the NMR metabolomics analyses, as
denoted by the numbers in parentheses in Table 1. These sample
subsets were closely matched for age and sex. In total, 96 CSF, 183
serum, and 72 urine samples were used in the metabolomics NMR
data analyses.

Our NMR metabolomics experiments followed our standard
procedures as previously published.93,94 Experimental details of the
NMR sample preparation, NMR data collection and processing, and
univariate and multivariate statistical analysis are provided in
Supporting Information.
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