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The reliability and robustness of metabolite assignments in 1H NMR is complicated by numerous factors
including variations in temperature, pH, buffer choice, ionic strength, and mixture composition that led
to peak overlap and spectral crowding. As sample conditions fluctuate, peak drift and line broadening fur-
ther complicate peak deconvolution and subsequent chemical assignment. We present a collection of 1D
1H NMR spectra of 54 common metabolites at varied pH (6.0 to 8.0 in 0.5 step increments) and temper-
ature (290 K to 308 K) to quantify chemical shift variability to facilitate automated metabolite assign-
ments. Our results illustrate the fundamental challenges with accurately assigning NMR peaks under
varied environmental conditions prevalent in complex mixtures. Phosphorylated metabolites showed a
larger variation in chemical shifts due to pH, whereas; amino acids showed a higher variation due to tem-
perature. Mixtures of phosphorous compounds showed a consistently poor reliability in achieving an
accurate assignment. Phosphorylated cholines, amino acids, and glycerols yielded a 40 % false negative
rate for 7 out of 9 mixture conditions. Amino acids had a false negative rate of 57 % at 298 K and pH
8. Our results demonstrate that the automated assignments of complex biofluid mixtures require an
expert to intervene to confirm the accuracy of metabolite assignments. Our analysis also indicates the
need for reference databases to include spectra under a variety of conditions that includes mixtures
and a range of pH and temperature to improve the accuracy and reproducibility of metabolite
assignments.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Metabolomics is a rapidly expanding field reliant on different
analytical techniques and variable sample origins that create
unique challenges to accurately annotate spectral data [1]. One-
dimensional proton (1D) 1H NMR offers many advantages in meta-
bolomics profiling, namely the relative simplicity of sample prepa-
ration [2], a robust method to accurately quantify the most
abundant compounds in a metabolome [3], the ready identification
of compounds that are difficult to ionize by mass spectrometry [4],
the identification of compounds of identical mass, and studies in
living organisms [4,5]. Thus, 1D 1H NMR is ubiquitously performed
for a variety of qualitative and quantitative metabolomics studies
[6]. A major challenge commonly encountered with 1D 1H NMR
metabolomics is the increase in spectral crowding and peak over-
lap that occurs with an increase in sample complexity [7]. Accurate
metabolite assignments become ambiguous, complicated, and
potentially, impossible to complete with an increase in spectral
complexity [3,8]. In addition to peak overlap, external influences
that includes variations in pH, temperature, ionic strength, buffer
choice, metabolite concentrations, and mixture composition also
present challenges to accurate assignments [9]. These and other
factors may induce significant chemical shift deviations from stan-
dard reference spectra.

One approach to limiting these issues is the use of two-
dimensional (2D) experiments such as 2D 1H–1H TOCSY and 2D
1H–13C HSQC to validate the 1D 1H NMR assignments [10]. While
homonuclear and heteronuclear 2D correlation experiments can
help resolve overlapped regions and account for chemical shift
variability (i.e., lower sensitivity of 13C chemical shifts to sample
conditions), but they also incur an increase in overall experiment
time and may potentially lead to a loss of information. For exam-
ple, peaks may be missing in 2D spectra due to a lower signal-to-
noise, because of the lower sensitivity of 15N/13C resonances in nat-
ural abundance samples, or because only a selective subset of the
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metabolites were 15N- or 13C-labeled from a 15N/13C-tracer (e.g.,
13C6-glucose).

Sample handling and preparation strategies greatly influence
the final spectral quality and ease of metabolite assignments
[11]. Sample condition variability, such as differences in pH and
temperature, are critical factors that can negatively influence
assignment accuracy and should be carefully considered during
the study design [12,13]. Unfortunately, the large variation in sam-
ple preparation and data collection protocols employed by the
NMRmetabolomics community greatly complicates the metabolite
assignment strategy. Metabolite assignment software or protocols
range from fully automated to entirely manual approaches [8,14–
16]. Fully automated approaches are quick but can lead to high
errors in the assignments especially when variable sample condi-
tions are encountered. Alternatively, manual assignments using
public databases such as the humanmetabolome database (HMDB)
[17] or the biological magnetic resonance bank (BMRB) [18] can
produce highly accurate results but are extremely time consuming
and requires extensive training [16]. Nevertheless, manual
approaches to metabolite assignments are also severely challenged
by poor spectral matches to reference libraries due to environmen-
tally induced chemical shift changes. Simply, the magnitude and
direction of a chemical shift perturbation for each individual
NMR resonances is highly variable, and in practice, unpredictable,
which makes unambiguous matches extremely difficult. Similar
changes in peak linewidths further confound the process of anno-
tating NMR metabolomics spectra.

To start resolving these issues, we have collected a series of 1D
1H NMR spectra of 54 common metabolites acquired over a range
of pHs and temperatures, and then compiled the chemical shift
changes on a per resonance basis. We have catalogued chemical
shift uncertainties relative to reference spectra at pH 7 and 298 K
for a diversity of functional groups. Further, we demonstrate the
challenges faced by variable pH and temperature conditions in
the analysis of 1D 1H NMR spectra of individual metabolites and
mixtures. The magnitude of peak shifts and linewidth changes
are metabolite dependent with the NMR spectra of some com-
pounds being more significantly impacted than others. As a result,
software designed to automate NMR assignments are severely
challenged by these chemical shift uncertainties and, unsurpris-
ingly, by the increasing complexity of the mixtures [8]. Our results
clarify the need for spectral databases to expand their content to
include pH and temperature variations for a diversity of chemical
functional groups and reference spectra for a variety of complex
mixtures including biofluids.
2. Material and methods

2.1. Urine and serum samples

De-identified human serum samples were obtained from the
NIH NeuroBioBank, specifically the University of Miami Brain
Endowment Bank. De-identified human urine samples were
obtained from the Multiple Sclerosis Clinic within the Saunders
Medical Center (Wahoo, NE, USA). All materials, biospecimens,
and human subjects’ data collected, stored, and maintained for
and during the conduct of this research was reviewed and
approved by the University of Nebraska-Lincoln Institutional
Review Board (IRB, IRB#: 20200820533EP, IRB#:
20180517991EPCOLLA).
2.2. Preparation of standard NMR samples

The standard samples for 1D 1H NMR data collection included 5
mixtures and 54 individual compounds consisting of 33
2

phosphorous-containing compounds and 21 amino acids. The
phosphorous-containing compounds were divided into four groups
comprising four NMR samples and consisted of phosphorylated
nucleic acid analogs (group 1, 11 compounds), sugars (group 2, 8
compounds), coenzymes (group 3, 6 compounds), and cholines,
amino acids and glycerols (group 4, 8 compounds). The 21 amino
acids were combined to form one mixture of amino acids. The com-
plete list of individual compounds and mixture compositions are
available in Table S1. Stock solutions for amino acids and
phosphorous-containing compounds were prepared in D2O (Sigma
Aldrich, 99.8 %) at a concentration of 90 mM and 100 mM, respec-
tively. The stock solutions were then diluted into a 50 mM phos-
phate buffer with 50 lM of 3-(tetramethylsilane) propionic acid-
2,2,3,3-d4 (TMSP-D4) in 99.8 % D2O at five different pH values (un-
corrected) of 6.0, 6.5, 7.0, 7.5, and 8.0 to prepare NMR samples for
each individual compound at a final concentration of 1.5 mM and
15 mM for amino acids and phosphorus-containing compounds,
respectively. 1D 1H NMR spectra were collected at 298 K. In addi-
tion, 1D 1H NMR spectra for the pH 7.0 samples were collected at
290 K, 294 K, 304 K, and 308 K. The same protocol was followed
for preparing each of the five standard mixtures outlined in
Table S1.

2.3. Preparation of serum NMR samples

A 150 lL aliquot of serum was added to 300 lL of methanol to
precipitate proteins. The 1:2 mixture of serum:methanol was vor-
texed for 10 s and then incubated at 4 �C for 10 min followed by
centrifugating at 14,000 g for 20 mins at 4 �C to pellet the proteins.
The supernatant was collected and centrifuged again at 14,000 g
for 5 min at 4 �C to pellet any remaining proteins. Supernatants
were then collected, snap frozen in liquid nitrogen, and dried by
speed vacuum centrifugation (SpeedVac R Plus, Savant) followed
by lyophilization using FreeZoneTM (Labconco, Kansas City, MO)
for 24 h. Samples were then stored at �80 �C until NMR analysis.
At time of data collection, samples were reconstituted using
150 lL of a 50 mM phosphate buffer in ‘‘100 %” D2O at pH 7.2 (un-
corrected) with 50 lM of TMSP-D4 as a chemical shift reference.
The samples were centrifuged at 14,000 g for 20 min at 4 �C to
remove any precipitant. The supernatants were placed in a 3 mm
NMR tube for data acquisition [19].

2.4. Preparation of urine NMR samples

A 150 lL aliquot of urine was centrifuged at 14,000 g for 10 min
to pellet debris. 135 lL of the supernatant was combined with
15 lL of a 50 mM phosphate buffer in ‘‘100 %” D2O at pH 7.2 (un-
corrected) with 50 lM of TMSP-D4 as a chemical shift reference
[20]. The samples were then transferred to a 3 mm NMR tube for
data acquisition.

2.5. NMR data collection and processing for standard samples

1D 1H NMR spectra were collected on a Bruker Avance III-HD
700 MHz spectrometer equipped with a quadruple resonance
QCI-P cryoprobe (1H, 13C, 15N, 31P) with z-axis gradients. A Sam-
pleJet automated sample changer system, automated tune and
match device, and Bruker ICON NMR software was used to auto-
mate the NMR data collection. 1D 1H NMR spectra were collected
with 32 K data points, 64 scans, 4 dummy scans, and a spectral
width of 9,090 Hz using an excitation sculpting pulse sequence
[21]. 1D 1H NMR spectra were processed using Bruker TopSpin
3.6 and MestreNova 12.0.2 (https://mestrelab.com/) in
NMRBox [22]. The spectra were processed with exponential multi-
plication and twice zero filled followed by Fourier transform. Spec-
tra were manually phased and referenced to TMSP-D4. Peaks were
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picked, integrated, and then exported to obtain peak centers and
linewidths. The NMR data set is available by request from the
authors and will be made available through the National Metabo-
lomics Data Repository at Metabolomics Workbench (https://
www.metabolomicsworkbench.org/.

2.6. 1D 1H NMR and 2D 1H–13C HSQC data collection and processing
for biofluids

1D 1H NMR spectra were collected with 64 K data points, 138
scans, 4 dummy scans, and a spectral width of 9,090 Hz using an
excitation sculpting pulse sequence.[21] Natural abundance 2D
1H–13C HSQC, and 1H–1H TOCSY spectra were collected at 25 %
sparsity using our deterministic non-uniform sampling (NUS)
schedule [23]. 2D 1H–1H TOCSY spectra were collected with 8
scans, 16 dummy scans, and 2,048 data points and a spectral width
of 7,003 Hz in the direct dimension and 256 data points with a
spectral width of 7,003 Hz in the indirect dimension. 2D 1H–13C
HSQC spectra were collected with 128 scans, 16 dummy scans,
and 1,024 data points and a spectral width of 11,160 Hz in the
direct dimension and 256 data points and a spectral width of
29,060 in the indirect dimension Both 1D and 2D NMR spectra
were processed using Topspin 3.6 and were Fourier transformed,
phased, and referenced to TMSP. NUS spectra were reconstructed
using the multi-dimensional decomposition method (MDD) [24].

2.7. Metabolite assignment strategy

The metabolites in the standard and biofluid mixtures were
assigned using Chenomx NMR Suite version 8.51 (https://www.
chenomx.com/), the Human Metabolome Database (https://
hmdb.ca) [17] and the Chenomx 700 MHz reference library. Spec-
tra labeled ‘automated’ were assigned using the batch fit algorithm
with reference libraries containing the set of 33 phosphorous com-
pounds and 21 amino acids. Automated assignments were then
triaged, or manually inspected and validated for accuracy. An over-
view of the protocol is shown in Fig. 1A.
3. Results and discussion

3.1. Need for cataloging chemical shift variations across metabolite
classes

1D 1H NMR is a routine choice for untargeted metabolomics
since it provides information rich data that is easy to acquire and
amenable to high throughput analysis [25]. However, the process
of annotating NMR spectral data and assigning metabolites to their
corresponding spectral peaks is a highly time consuming process
that is prone to errors (Fig. 1A) [26]. Spectral complexity and the
resulting high degree of peak overlap further complicates the
assignment workflow. This is clearly evident from the histogram
plot of chemical shift distributions for metabolites deposited in
the HMDB (Fig. 1B) [17]. The low spectral resolution also leads to
a loss in observable peak multiplicities, which are equally impor-
tant to the assignment process and would result in more ambigu-
ous peaks.

2D NMR experiments that include 2D 1H–1H TOCSY (Fig. 1C)
and 2D 1H–13C HSQC (Fig. 1D) can be acquired to supplement the
1D 1H NMR data and partly resolve the peak overlap problem. Of
course, the significant increase in experiment time, the decrease
in signal-to-noise, especially for natural abundant samples, and
the potential loss of low abundant metabolites may diminish the
utility of 2D NMR experiments compared to 1D NMR experiments.
Further, the use of a 15N/13C tracer chemical to enrich the 15N- or
13C-labeling of the metabolome is only selective for metabolites
3

enzymatically derived from the 5N/13C tracer. In this regard,
metabolites detected by the 1D NMR experiment may be missing
in the 2D NMR spectra of a 15N/13C-labeled metabolome. Chemical
shift variability resulting from differences in pH, temperature, ionic
strength, buffer, metabolite concentrations, and mixture composi-
tion further confounds the metabolite assignment process [9]. The
uncertainties or errors in chemical shifts are unknown values espe-
cially on a per peak basis. Therefore, both manual and automated
approaches to metabolite assignments tend to use a single large
error range to ensure matches between reference and experimen-
tal NMR spectra. A higher false positive rate is the likely outcome
with generous, uniform error-bars, while alternatively, a higher
false negative rate will occur with tighter error-bars. Further, the
choice of chemical shift error ranges is completely reliant on unin-
formed guesses. To partly address these issues, a series of 1D 1H
NMR spectra were collected at various temperatures and pH values
to better define chemical shift error-bars for matching spectra
(Fig. 1E). Our spectral data also illustrates the broad impact of
pH and temperature changes on peak linewidths. This demon-
strates the need for metabolomics databases to augment 1D 1H
NMR data sets with spectra collected over a range of temperatures
and pH values to increase assignment efficiency and reliability.

3.2. pH dependent chemical shift variation across metabolite groups

A set of 1D 1H NMR spectra were collected for each of the com-
mon metabolites comprising amino acids and phosphorous-
containing compounds as detailed in Table S1. The 21 common
amino acids provided enough structural diversity to characterize
trends in chemical shift variations based on functional group. Addi-
tionally, the common structural features for the amino acids high-
light annotation challenges due to chemical shift overlap. The 33
phosphorous containing compounds provided a similar framework
while exhibiting a higher sensitivity to pH and a likely upper-
bound to chemical shift variability. The sample pH was only varied
from 6 to 8 to bracket the typical target pH of 7–7.4 and to capture
the likely maximal pH-induced chemical shift changes encoun-
tered in routine metabolomics samples. Fig. 2 summarizes the
pH dependent chemical shift variations per functional group for
the 21 amino acids and the 33 phosphorous containing com-
pounds. Full profiles of the pH-induced 1H chemical shifts changes
for the 21 amino acids are presented in Fig. S1A-D and tabulated in
Table S2.

Fig. 2A-D displays 1H chemical shift variations compared to pH
7 for the selected amino acids. 1H chemical shift variations as a
function of pH were grouped according to the common Ha, Hb,
Hc, and Hd notations for amino acids (Fig. 2E). Most NMR reso-
nances exhibited a downfield shift as the pH increased from 6 to
8. The 1H chemical shift changes (D1H ppm) ranged from
�0.008 ppm to +0.1 ppm. The magnitude and spread of these
chemical shift changes generally increased in order from Ha to
Hd with Hc and Hd having the greatest pH-induced chemical shift
changes. Hc and Hd chemical shifts ranged from �0.002 ppm to
+0.005 ppm and from �0.008 ppm to +0.008 ppm, respectively.
An example of this trend can be easily seen by comparing the Ha
of Asp (Fig. 2A) with its Hb (Fig. 2B). Four notable outliers from this
trend were the Hbs of leucine and histidine, Hc of glutamate, and
the Hd of isoleucine, which shifted upfield with variable magnitude
changes as the pH was increased.

The amino acids with some of the largest pH-induced chemical
shift changes were plotted separately for clarity in Fig. 2F-I. Specif-
ically, the presence of exchangeable sidechain 1H resonances in
arginine (pKa 12.48), cysteine (pKa 8.37), histidine (pKa 6.04),
and lysine (pKa 10.54) resulted in sizable pH induced chemical
shift changes for Ha (Fig. 2F) and Hd (Fig. 2I) due to the sidechain
pKa values. Notably, the Hb and Hc shifts (Fig. 2G, H) were rela-
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Fig. 1. Study Design to Assess Chemical Shift Variation Based on Temperature and pH (A)Workflow of NMR metabolite assignment protocol. The dashed arrow shows the
iterative steps in the assignment process. (B) Bar graph demonstrating the distribution of 1H chemical shifts for metabolites in HMDB. A typical (C) 2D 1H–1H TOCSY spectrum
collected from a human serum sample and (D) a typical 2D 1H–13C HSQC spectrum collected from a human urine sample. The corresponding 1D 1H NMR spectra are in the
lower right-hand corner of each figure. Each Venn diagram represents the number of metabolites generally identified from the 1D 1H NMR (yellow) and 2D NMR (blue)
experiments for the indicated biofluids. (E) Study design color scheme that is used throughout the study to indicate a specific pH or temperature value. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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tively unaffected and similar to the changes observed for the other
amino acids (Fig. 2B,C). A likely impact of hydrogen bonding in pH
induced chemical shift changes was observed for serine and threo-
nine. A relatively large variation of 0.004 to 0.008 ppm was
observed for the Hb chemical shift.

The phosphorous containing compounds were assigned to one
of four groups that included (1) nucleic acid analogs, (2) phospho-
rylated analogs of sugars, (3) coenzymes, and (4) choline analogs,
amino acids, and phosphoglycerols. Fig. 2J-M highlights the chem-
ical shifts of nucleic acid analogs. Fig. 2N shows a generic nucleic
acid structure and an illustration of the Ha, Hb, Hc, and Hd naming
convention for the 1H chemical shifts. Full profiles of the 1H
chemical shifts changes for the remaining phosphorus containing
compounds are presented in Fig. S2A-J. Full profiles of the pH-
induced 1H chemical shift changes for the 33 phosphorus contain-
ing compounds are tabulated in Table S3. The larger variance in
pKa values and the considerable structural complexity of the phos-
phorous compounds compared to amino acids resulted in greater
chemical shift variations. The largest D1H ppm for the amino acids
was 0.013 for the Hd of asparagine at pH 8.0 (Fig. 2G). Conversely,
the largest D1H ppm for the phosphorous compounds was 0.078
for the Hd of glucose 1,6-bisphosphate (GBP) at pH 6.0 (Fig. S2D).
4

There was also a considerable deviation from the pH-dependent
downfield shift observed with the amino acids. In particular, the
Ha (Fig. 2J) shifted drastically upfield (ADP) or downfield (TTP,
UMP) at pH 7.5 compared to the other pH values. This inconsis-
tency in a pH-dependent trend in D1H ppm for the phosphorus
containing compounds was seen for all four groups and for each
1H resonance type and can again be attributed to pKa differences.
It should be noted that the group with the highest chemical shift
variation was the phosphorylated sugars, which when combined
with their complex 1D 1H NMR spectra will likely lead to a higher
uncertainty in obtaining a correct assignment from complex
mixtures.

3.3. Temperature dependent chemical shift variation across metabolite
groups

The effect of temperature on the chemical shifts for the 21
amino acids was also evaluated by varying the sample temperature
from 290 K to 308 K in 4 K increments. The sample temperature
was only varied from 290 K to 308 K to bracket the typical target
temperature of 298 K and to capture the likely maximal
temperature-induced chemical shift changes encountered in rou-



Fig. 2. Chemical Shift Variation as a Function of pH and Metabolite Group. (A-I) Dot plots summarizing the chemical shift variation across five different pH values for
select amino acids. Amino acids with relatively low to moderate chemical shift changes are plotted in panels A-D. Amino acids with relatively high chemical shift changes are
plotted in panels F-I. The 1H chemical shift changes (D1H ppm) relative to pH 7 for (A,F) Ha, (B,G) Hb, (C,H) Hc, and (D,H) Hd are plotted per amino acid. Each circle is colored
according to pH as outlined in Fig. 1E. (E) General amino acid structure depicting the standard nomenclature used throughout the manuscript. (A-I) Dot plots summarizing
the chemical shift variation across five different pH values for select phosphorus containing compounds (Group 1). The 1H chemical shift changes (D1H ppm) relative to pH 7
for (J) Ha, (K) Hb, (L) Hc, and (M) Hd are plotted per nucleic acid analog. (N) General nucleic acid structure depicting the standard nomenclature used throughout the
manuscript. pH values are represented by colored circles: 6.0 (yellow), 6.5 (green), 7.5 (teal), 8.0 (blue). Table S1 lists the three-letter code for each metabolite. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tine metabolomics samples. Temperature-dependent chemical
shift changes were measured relative to 298 K. Full profiles of
the temperature-induced 1H chemical shifts changes for the 21
amino acids are tabulated in Table S2. Temperature was found to
have a greater impact on chemical shift and the D1H values pre-
sented an opposite trend compared to pH (Fig. S1E-F). TheD1H val-
ues tended to increase moving along the amino acid sidechain from
the Ha to the Hd position. Specifically, D1H ppm ranged from
�0.005 to +0.01 for Ha, �0.005 to +0.025 for Hb, �0.01 to +0.025
5

for Hc, and �0.005 to + 0.020 for Hd. These chemical shift ranges
were much broader than previously observed for the pH changes.

The effect of temperature on chemical shifts was also observed
for the phosphorous containing compounds, and in contrast to the
amino acids, temperature had less of an impact on the distribution
of chemical shifts compared to pH (Fig. S2K-N). Full profiles of the
temperature-induced 1H chemical shifts changes for the 33 phos-
phorous containing compounds are tabulated in Table S3.
Most of the phosphorous containing compounds had
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temperature-induced D1H values within ± 0.05 ppm. Conversely,
the amino acids ranged from �0.01 to + 0.025 ppm and were pri-
marily shifted downfield. Peak shifts due to temperature and pH
can vary drastically, where the exact range and magnitude of these
chemical shift variations are distinct to each structure and NMR
resonance. Consequently, chemical shift variabilities present
unique challenges when interpreting NMR spectra of complex mix-
tures and creates serious uncertainties in obtaining correct
metabolite assignments.

3.4. pH dependent changes to chemical shift also affects peak
linewidths

In addition to chemical shift variabilities, changes in peak line-
widths due to pH changes can further increase the challenges in
assigning metabolites within complex mixtures. To quantify pH-
induced linewidth changes, individual peak regions were fitted
using MestreNova to estimate linewidths at each pH. Again,
changes in linewidths were measured relative to pH 7. Full profiles
of the temperature and pH-induced changes in peak multiplicity
and linewidths for the 21 amino acids and 33 phosphorus contain-
ing compounds are tabulated in Tables S2 and S3, respectively. A
series of stack plots of expanded 1D 1H spectra for select metabo-
lites and NMR resonances over the pH range of 6 to 8 are shown in
Fig. 3A-I. Each stack plot has a chemical structure of the metabolite
that highlights the selected NMR resonances and a line plot indi-
cating the linewidth changes at each pH. Selected peaks for the
amino acids arginine (Fig. 3A), histidine (Fig. 3B), and lysine
(Fig. 3C) show that peaks broaden variably as a function of pH.
Arginine and histidine exhibited broader linewidths at lower pH,
while lysine showed broader linewidths at higher pH. The effect
of pH on the apparent peak multiplicity was also demonstrated
with histidine (Fig. 3B) where the Ha peak shifted from a triplet
at pH 6.0 to quartet at pH 6.5–8.0.

Similar results were observed for selected peaks from the
phosphorous compounds pyridoxal 50-phosphate (Fig. 3D), fruc-
tose 6-phosphate (Fig. 3E), glucose 1,6-bisphosphate (Fig. 3F),
glucose 6-phosphate (Fig. 3G), cytidine monophosphate (Fig. 3H),
and thymidine monophosphate (Fig. 3I). Like the amino acids,
the selected peaks broaden differently as a function of pH. The
NMR peaks for fructose 6-phosphate, glucose 1,6-bisphosphate,
glucose 6-phosphate, and cytidine monophosphate became shar-
per at lower pH, but pyridoxal 50-phosphate became broader.
Apparent peak multiplicities again changed as a function of pH in
fructose 6-phosphate and thymidine monophosphate. At pH 7,
the fructose 6-phosphate Hb displays a single complex multiplet
of low intensity that separates into two distinct multiplets at both
higher and lower pH values. Similarly, decreasing the pH causes
the thymidine monophosphate Hc multiplet to collapse into a
neighboring multiplet. The presence of exchangeable protons fur-
ther complicates pH-dependent linewidth changes leading to vari-
able peak broadening. Both thymidine monophosphate and
glucose 1,6-bisphosphate demonstrate this effect by greater peak
broadening at pH 6.5 and 7.5 relative to pH 6.0 and 8.0.

3.5. pH dependent linewidth changes lead to spectral crowding

Variable changes in peak positions, splitting patterns and line-
widths makes it difficult to analyze a 1D 1H NMR spectrum and
assign a metabolite. The metabolite assignment problem is further
complicated by complex mixtures that leads to peak overlap and
spectral crowding. To clearly illustrate the problem, various bubble
plots are shown in Fig. 4 where each circle’s center and diameter
corresponds to the peak center and the chemical shift range,
respectively, that the peak occupies at a given pH. The distribution
of chemical shifts and linewidths results in spectral regions that
6

are highly populated with extensive peak overlap. Similar results
were seen for the peak distribution for amino acids (Fig. 4A) and
coenzymes (Fig. 4D). The expanded spectral regions at 0–5 ppm
(Fig. 4B) and 6.5–8.5 ppm (Fig. 4C) further demonstrate the high
degree of peak overlap for the amino acids at a single pH of 6.5.
A similar result was obtained with the phosphorous compounds.
The expanded spectral regions of 1–3 ppm (Fig. 4E), 3–4 ppm
(Fig. 4F), 4–5 ppm (Fig. 4G), and 5–11 ppm (Fig. 4H) at a pH of
6.5 again highlights the spectral crowding that occurs due to the
variability in chemical shifts and linewidths. This problem would
be further exasperated if the data from the amino acids and phos-
phorous compounds were combined into a single bubble plot.

The spectral region with the highest peak density is 2–4 ppm.
Accordingly, this spectral crowding would likely cause difficulties
in identifying peak splitting patterns, which would hinder metabo-
lite assignments as individual peaks lose their unique, identifying
characteristics. As demonstrated in Fig. 3A-I, pH can alter apparent
peak splitting patterns, peak locations, and peak resolutions. Fac-
toring in these variations will only worsen peak crowding and
overlap, and the challenges of annotating 1D 1H NMR spectra
becomes more difficult, if not impossible to achieve. It should be
noted that the amino acid mixture (Fig. 4A-C) contains only 21
compounds, the coenzyme phosphorous mixture (Fig. 4D) contains
only 6 compounds, and the full phosphorous compound mixture
(Fig. 4E-H) contains only 33 compounds. The size of these mixtures
is significantly smaller than metabolomics samples from biofluids
or cell/tissue extracts, which can have upwards of a hundred
detectable metabolites.

3.6. Matrix effects in known mixtures

The Chenomx batch fit algorithm, the 700 MHz Chenomx
metabolite library (338 compounds), and two individualized
metabolite libraries (i.e., amino acids and phosphorous containing
compounds) were used to demonstrate the challenges of assigning
metabolites from complex mixtures, and to evaluate the robust-
ness of an automated metabolite assignment approach without
accounting for chemical shift variability. The two individualized
metabolite libraries were derived from the complete 700 MHz Che-
nomxmetabolite library. Please note that six phosphorous contain-
ing compounds that included inosine monophosphate, thymidine
monophosphate, glucose 1,6-bisphosphate, dihydroxyacetone
phosphate, O-phospho-L-tyrosine, and cyclophosphamide com-
pounds were not available in the 700 MHz Chenomx metabolite
library. So, the individualized library for the phosphorous contain-
ing compounds only contained 27 reference spectra instead of 33.
Importantly, the 6 compounds missing from the metabolite refer-
ence libraries were not included in the calculations of true posi-
tives, false positives, and false negative rates. These three
metabolite libraries were then used to assign the 1D 1H NMR spec-
tra obtained for our known amino acid (Fig. 5A) and phosphorous
containing compounds (Fig. 5B) mixtures. The complete list of true
positives, false positives, and false negative rates are provided in
Table S4.

For the amino acid mixture of 21 compounds at pH 7.0 and
298 K, the batch fit algorithm assigned a total of 90 metabolites.
Of these 90 metabolites, 20 % (18) were true positives, 80 % (72)
were false positives. Three amino acids (14 %), asparagine, cysteine,
and histidine, were false negatives. Repeating the batch assign-
ment for the five pHs and four temperatures yielded an average
true positive rate of 17.4 % ± 0.2 %. The batch assignment of the
1D 1H NMR spectra for the amino acid mixture was repeated with
the individualized metabolite library containing only the 21 amino
acids present in the mixture. A true positive rate of 81 % was
achieved for the amino acid mixture at pH 7.0 and 298 K and an
average true positive rate of 73 % ± 1.1 % was achieved across the



Fig. 3. NMR Spectral Variations as a Function of pH and Metabolite Group. 1D 1H NMR stack plots and a corresponding line plot showing the distribution of peaks
compared to pH 7 for a select set of amino acids: (A) arginine (ARG), (B) histidine (HIS), (C) lysine (LYS), and phosphorylated compounds: (D) pyridoxal 5-phosphate (P5P), (E)
fructose 6-phosphate (F6P), (F) glucose 1,6-bisphosphate (GBP), (G) glucose 6-phosphate (G6P), (H) cytidine monophosphate (CMP), and (I) thymidine monophosphate (TMP).
1D 1H spectra traces and associated circles are colored according to pH: 6.0 (yellow), 6.5 (green), 7.0 (black), 7.5 (teal), and 8.0 (blue). The region of the 1D 1H spectra colored
grey in I corresponds to the peaks that merge with the Hc peak of TMP. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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entire set of pH and temperature conditions. Using either the
700 MHz Chenomx metabolite library or the amino acid library,
the true positive assignment rate decreased as pH varied from
7.0. Notably, temperature deviations from 298 K impacted true
assignment rates far less. Four amino acids (i.e., glycine, phenylala-
nine, serine, and tryptophan) were correctly assigned 100 % of the
time regardless of the pH or temperature condition. Conversely,
histidine, glutamine, cysteine, and cystine were correctly assigned
less than 50 % of the time. Cysteine failed to be assigned at all by
the batch fit algorithm, and histidine was only assigned once. This
outcome is consistent with the chemical shift and linewidth varia-
tions where cysteine and histidine showed consistently larger
chemical shift deviations from pH 7.0 (Figs. 2F-I, 3B). The
expanded spectral regions in Fig. 5 demonstrates where Chenomx
accurately assigned (dashed line) and incorrectly assigned (solid
line) amino acids within the mixture. The red spectral line shows
the sum fit of the reference spectra for the metabolites identified
by Chenomx that match the black experimental 1D 1H NMR spec-
trum. The higher intensity of the fit line (red) compared to the true
spectral intensity (black) is indicative of overfitting by the
software.

The 1D 1H NMR spectra for the mixtures of phosphorous con-
taining compounds were assigned using the same 700 MHz Che-
nomx metabolite library and then the individualized library of
phosphorous containing compounds. The batch fit algorithm per-
formed significantly worse for the phosphorylated compounds
compared to the amino acids. The best results were for glucose-
7

1-phosphate, which was correctly assigned for all conditions
except pH 6.0, and for glucose 6-phosphate that was correctly
assigned in all spectra except at pH 6.0 and 8.0. The group 2 mix-
ture of phosphorylated sugars at pH 7.0 and 298 K produced only a
7.7 % (2) true positive rate, a 76.9 % (20) false positive rate, and a
15.4 % (4) false negative rate. The automated assignments
improved when the targeted phosphorous containing compound
library was used. Chenomx correctly assigned 50 % of the com-
pounds with 3 true positives, 3 false negatives, and zero false pos-
itives. Overall, the four mixtures of phosphorous containing
compounds had true positive rates predominantly less than 50 %
for all pH and temperature conditions. The group 2 and 4 mixtures
performed slightly better with an average true positive rate of
44.4 % ± 14.2 % and 43.3 % ± 17.6 %, respectively. The poor results
may be partially attributed to the greater peak crowding in the
sugar region of the NMR spectra and the lack of chemical shift dis-
persion. The expanded spectral region shown in Fig. 5B clearly
demonstrates the poor fit between the red spectral line comprising
the sum fit of reference metabolite spectra identified by Chenomx
that match the black experimental 1D 1H NMR spectrum. The ran-
dom fluctuations in the true positive rates across pH and temper-
ature were correlated with the chemical shift variability detailed
in Figs. 2 and S2.

Biofluid samples were used to further demonstrate the chal-
lenges that chemical shift variability imposes on an automated
approach to annotate complex 1D 1H NMR spectra. The NMR spec-
tra were fit automatically then manually triaged using the



Fig. 4. Spectral Crowding Due to pH-Induced Linewidth Changes in Complex Metabolic Mixtures. Bubble plots with circle diameters corresponding to peak width and
color corresponding to pH 6.0 (yellow), 6.5 (green), 7.5 (teal), 8.0 (blue) for (A) amino acids and (D) coenzymes. Expanded views of the amino acid bubble plots corresponding
to the (B) 1.0 to 5.0 ppm region and the (C) 6.50 to 8.5 ppm region. (E-H) Expanded views of the bubble plots corresponding to the four groups of phosphorylated compounds
consisting of nucleic acid analogs (red), sugars (blue), coenzymes (gray), and cholines, amino acids and glycerols (green). Expanded views correspond to the (E) 1 to 3 ppm
region, (F) the 3 to 4 ppm region, (G) the 4 to 5 ppm region, and the (H) 5 to 11 ppm region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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700 MHz Chenomx metabolite library. For the 1D 1H NMR spectra
obtained from the serum sample shown in Fig. 5C, an automated
assignment fit a total of 75 compounds where a manual triage
reduced the number of compounds that fit the spectra to 52. The
dashed box highlights an expanded spectral region with a poor
fit from the automated assignments, while the solid box highlights
an expanded region that appears to be well fit by the software.
Nevertheless, the solid box includes a crowded region that is still
overfit by the software while the dashed boxed region appears
underfit. For the 1D 1H NMR spectra obtained from the urine sam-
ple shown in Fig. 5D, an automated assignment fit a total of 125
compounds where a manual triage reduced the number of com-
pounds that fit the spectra to 46. The expanded spectral region
highlighted by a solid box appears to be well fit by the software
but upon closer inspection shows the region is actually overfit
while the dashed region is again underfit. Overall, the automated
assignments falsely fit numerous compounds because it can’t accu-
rately account for the variability in both peak position and line-
widths, which is consistent with a similar conclusion made by
Tredwell et al (2011) [16]. Most assignment software can only
make minor adjustments to account for peak fluctuations so the
accurate annotation of a 1D 1H NMR spectrum still requires a man-
ual intervention [8]. It is important to note that the results
reported with the Chenomx batch fit algorithm are not necessarily
representative of all metabolomics assignment software. Instead,
our analysis was intended to highlight the high failure rate that
is likely to occur if chemical shift and linewidth variability are
not properly accounted for by either a manual or automated
assignment protocol.
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4. Conclusion

While the automated assignment of 1D 1H NMR spectra is the
ideal scenario for metabolomics analyses, it remains fraught with
problems. Variations in pH, temperature, ionic strength, buffer,
mixture composition, sample preparation, and magnetic field
strength, among other issues, pose serious challenges when anno-
tating an experimental NMR spectrumwith a database of reference
spectra. Current databases are data limited and do not account for
various environmental factors that contribute to peak position
uncertainties. We have shown that the accuracy of an automated
assignment decreases when peak variability is not adequately
accounted for, which also confounds a manual assignment [16].
Adherence to pH, temperature, ionic strength, and magnetic field
strengths that are consistent with the conditions used to collect
the NMR reference data used by automated assignments software
improves assignment accuracy, but of course it doesn’t account for
chemical shift variabilities due to other factors like differences in
mixture compositions or metabolite concentrations [9]. The expan-
sion of reference databases to include matrix and sample condition
effects would allow for improved data analyses. Specifically, know-
ing the true chemical shift uncertainty associated with each indi-
vidual NMR resonance or functional group would precisely define
search parameters (chemical shift range) to allow for a reliable
match between experimental and reference peak while avoiding
overfitting of the data [8]. To partly address this need, we experi-
mentally measured the chemical shift variability for 54 common
metabolites using modest differences in pH (6 to 8) and tempera-
ture (290 K to 308 K) as a surrogate for the natural variability



Fig. 5. The Accuracy of Automated NMR Assignments are Affected by Chemical Shift Variabilities. 1D 1H NMR stack plots of (A) the amino acid mixture, (B) a
phosphorylated compound mixture (Group 2), and human (C) serum and (D) urine samples. Experimental 1D 1H NMR spectra are colored black. The spectral line comprising
the sum fit of the reference NMR spectra for the metabolites identified by Chenomx are colored red. The manually assigned 1D 1H NMR spectra are colored blue. The solid and
dashed boxes overlayed onto the 1D 1H NMR spectra identify the expanded spectral regions shown to the right of each spectrum. The solid box identifies the expanded
spectral region that matches well to the sum of reference spectra, while the dashed box identifies the spectral region that was poorly fitted to the sum of reference spectra.
The Venn diagrams summarize the total number of metabolites (white circle), the correctly assigned metabolites (green circle), and the incorrectly assigned metabolites (red
circle) identified by Chenomx. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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encountered in complex metabolomics mixtures. It is important to
note that other factors such as differences in ionic strength, buffers,
metabolite concentrations, and mixture composition, will also
modulate chemical shifts. Our analysis of the pH and temperature
dependency of chemical shifts is only the first step to completely
characterizing the true range of chemical shift errors. Incorporating
known chemical shift variability on a per resonance basis into an
automated metabolite assignment software may improve the over-
all accuracy for one of the most crucial aspects of a metabolomics
project [8].
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