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Abstract: Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the
relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensi-
tivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics
samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal
intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard
and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with
metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of
metabolites with a lower limit of detection and quantification in the low micromolar range. We also
observed an increase in the repeatability of intensity measurements upon the addition of gadolinium.
The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite
samples can improve NMR-based metabolomics.

Keywords: NMR; metabolomics; paramagnetic; relaxation; gadolinium

1. Introduction

Metabolomics is a rapidly expanding field that relies on the detection and quantifica-
tion of small molecular-weight (MW < 1500 Daltons) compounds present in a biological
sample. Metabolite levels are often correlated with different disease states or phenotypic
outcomes, which can lead to the development of highly valuable biomarkers and pro-
vide novel insights into human health and disease [1–7]. Nuclear magnetic resonance
(NMR) spectroscopy has proven to be a powerful tool for metabolomics that meets the
analytical requirements needed to achieve a robust and accurate characterization of the
metabolome [8–11]. Conventional NMR-based approaches rely on one-dimensional (1D)
1H NMR experiments, which can facilitate the absolute quantification of metabolites. How-
ever, chemical shift overlap may limit the number of metabolites that can be accurately
measured, which often relies on the application of peak-fitting algorithms. The size and
completeness of the reference database used by these peak fitting algorithms will also
limit the number of metabolites that can be quantified. Multi-dimensional techniques
such as two-dimensional (2D) 1H-13C Heteronuclear Single Quantum Correlation (HSQC)
spectroscopy can increase resolution by dispersing the chemical shifts along the carbon
dimension, but necessitates long acquisition times due to the low natural abundance of
13C (1.1%), thus limiting the real-world practicality of this approach [12].

Expanding upon the work of Rai [13] and Von Schlippenbach [14], we recently demon-
strated that non-uniform sampling (NUS) can be used to reduce the acquisition time of a
2D 1H-13C HSQC experiment to empower semi-quantitative metabolomics [15]. Indeed,
a one-hour experiment using a 25% NUS 1H-13C HSQC led to 4-fold improvement in
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sensitivity, which also yielded highly linear and repeatable data. Further, we established
guidelines based on a signal-to-noise ratio (S/N) to enable the reliable detection of a broad
range of metabolites in the low micromolar range with a coefficient of variation (CV) of
less than 20%. Using these results as our baseline, we sought herein to systematically
evaluate the effects of relaxation delays in combination with paramagnetic relaxation en-
hancement (PRE) agents to further improve the sensitivity of 2D NMR experiments for
metabolomics. First, we improved the mean signal intensity and S/N of a 25% NUS 1H-13C
HSQC experiment by optimizing the relaxation delay and the number of scans. Then, we
observed that the addition of a gadolinium-based PRE agent further improved the S/N
of the 25% NUS 1H-13C HSQC spectra for both a model mixture and plasma samples. A
lower limit of detection and quantification was achieved for most metabolites, but the
most dramatic improvement in signal intensity was seen for the weakest peaks. We also
observed that the addition of the PRE agent maintained linearity for all metabolites over
a concentration range from 50 µM to 2 mM. These intensity measurements were highly
repeatable, leading to smaller CVs. Overall, our results demonstrate that PRE agents can
improve the sensitivity of 2D NUS NMR spectra routinely used in metabolomic studies.

2. Results
2.1. Optimizing the Relaxation Delay for Semi-Quantitative Metabolomics

A fundamental principle of NMR spectroscopy is that increasing the number of ex-
perimental scans (N) increases the S/N ratio by a factor of

√
N [16]. For pulsed NMR

experiments, the relaxation delay, commonly known as d1, is the time required between
scans to allow spins to return to equilibrium. The optimal d1 time depends on the lon-
gitudinal relaxation (T1) rate—the time required for full restoration of the nuclear spin
to equilibrium along the direction of the polarizing magnetic field [16]. Each nuclei in a
molecule has a different T1 value, and for small molecules like metabolites T1 values can be
several seconds long. For example, formate has a T1 > 9 s at 600 MHz [17]. For quantitative
NMR, it is advised to set d1 to 5 × T1 of the slowest relaxing nuclei in a sample [17].
This would require a d1 of upwards of a minute in length, leading to impractically long
acquisition times that are not feasible for high-throughput NMR metabolomics. In prac-
tice, d1 is commonly set to a pre-determined value that allows for a relative quantitative
comparison between spectra collected under identical conditions. It is important to note
that only a comparison between the same metabolite can be made in this manner across
the spectral dataset. A comparison between two or more different metabolites would
be meaningless because of the d1-dependent variation in peak integrals that distorts the
relationship between peak integral and metabolite concentration.

A model mixture (“Reference 1”) was composed of 29 commonly observed human
metabolites, which included amino acids, organic acids, biogenic amines, sugars, etc., from
the literature [18–21] as well as metabolites commonly observed in our own clinical studies.
To find the optimal d1 for a model mixture of 29 metabolites (Reference 1), we recorded time
equivalent experiments (4 min ± 8 s) with varying d1 values of 1.5 s, 1.2 s, 0.8 s and 0.6 s
and observed the changes in both the 1D 1H NMR spectra and 2D 25% NUS 1H-13C HSQC
spectra (Figure 1). At first, as the d1 decreased, the signal intensity for the majority of the
metabolites increased, which is expected due to the increased number of scans (N = 64 to 92
for the 1D- and N = 36 to 84 for the 2D-experiments). For the 25% NUS 1H-13C HSQC
spectra, we observed a steady increase in the mean intensity of metabolites from 2.9 × 107

to 4.9 × 107 as d1 decreased from 1.5 s to 0.8 s. Similarly, the mean S/N increased from
98.48 to 115.34. However, the mean S/N and intensity reached a maximum at a d1 of 0.8 s.
As evident by the expanded regions of the 1D 1H NMR spectra (Figure 1a), peak intensities
began to decrease at a d1 of 0.6 s despite the larger number of scans. This is consistent with
the 25% NUS 1H-13C HSQC spectra at a d1 of 0.6 s, where the mean S/N and intensity
decreased to 106.18 and 4.7 × 107, respectively. Furthermore, significant solvent artifacts
were observed in the HSQC spectra relative to longer d1 values. Presumably, at a d1 of
0.6 s, factors related to T1 dominate spectral sensitivity, which could not be negated by the



Molecules 2021, 26, 5115 3 of 16

allowed increase in the number of scans. This led us to select 0.8 s as the optimal d1 value
for improved S/N.
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2.2. Gadolinium Provides Enhanced Sensitivity

The addition of PRE agents has been previously used to accelerate NMR data acqui-
sition [13,17,22–25]. PRE agents contain unpaired electrons and decrease T1 relaxation
times for all nuclei in a sample due to dipolar interactions between nuclear and electron
spin states. The PRE effect is very large, owing to the large magnetic moment of an un-
paired electron, and can be tunable by adjusting the concentration of the PRE agent [17].
By combining NUS with the relaxation enhancing agent, Cu(EDTA), Rai and colleagues
demonstrated a 22-fold reduction in the 2D 1H-13C HSQC data collection time to quan-
tify a handful of urine metabolites [13]. Gadolinium-based contrast agents have been
widely used in MRI diagnostic imaging, for studying soluble proteins, for characterizing
protein-protein, protein-oligosaccharides, and protein-nucleic acid complexes, and for
investigating membrane proteins using NMR spectroscopy [26,27]. Sakol et al. have also
shown the utility of the Gd-based contrast agent, Gd-DOTA, for cellular localization studies
using NMR spectroscopy [28]. Similarly, Mulder and colleagues utilized gadolinium-based
PRE agents and achieved a 3- to 4-fold improvement in acquisition time for quantifying
several plasma metabolites [17]. We sought to expand upon these findings by focusing on
parameters to increase spectral sensitivity for a fixed-time experiment (1 h ± 4 min) instead
of accelerating acquisition times.

We first assessed the 1D 1H spectral changes for Reference 1 (Supplementary Material
Table S1) with a d1 of 0.8 s with increasing concentrations (0.25 mM to 1 mM) of Cu (EDTA)
and Gadobutrol (Gd) (Figure S1), a gadolinium-containing macrocyclic that has previously
been shown to enhance the relaxation rates of urine metabolites [17,25] (Figure S2). In
general, contrast agents containing Gd shorten T1 and T2 relaxation rates through a dipole–
dipole interaction between the unpaired electron of Gd and nuclei in the compound. The
decrease in T1 and T2 rates depends on the contrast agent used and its concentration, the
charge state of the compound, the viscosity of the solution, and the protein affinity of either
the compound or contrast agent, among other issues. The typical range of T1 values for nu-
clei of common metabolites such as glucose, lactate, citrate, acetate, glutamine, and alanine
are between 0.9 and 4 s. Similarly, T2 values range from 100 to 600 ms [17,28,29]. In the
presence of Gd, T1 values can decrease from 2- to 10-fold depending on the concentration
of Gd. A similar reduction is observed for T2, but is more pronounced at higher Gd concen-
trations. Accordingly, NMR resonances will significantly broaden into the baseline with
the increase in Gd concentration [28]. Experimentally, we observed that a concentration
of Gd at 0.25 mM allowed us to decrease our recycle delay to 0.8 s and achieve an overall
increase in sensitivity while avoiding substantial line broadening. As the concentration of
the Gd agent increased, the decrease in T2 and the associated peak broadening eventually
eclipsed the reduction in T1 and negated any intensity gains from a larger number of
scans [17,28,30,31]. In agreement with these observations, at 0.25 mM Gd, we noted an
increase in intensities for the majority of metabolite resonances. As the concentration of Gd
increased to 0.5 mM, a handful of metabolite resonances continued to show an increase in
intensity, while others began to broaden. At 1 mM Gd, the majority of resonances were
diminished compared to the control that lacked Gd. Interestingly, our results are in line
with the theoretical optimal recycle delay predictions of Rovnyak et al. [32]. To perform the
comparison, we identified NMR relaxation times reported in the literature for metabolites
included in our study. For example, the work by Mulder et al. [17] demonstrated that
the addition of Gd at a concentration of 0.5 mM to a mixture of small molecules (glucose,
creatinine, citrate, glutamine, acetate, alanine, etc.) greatly reduced the T1 relaxation times
by 2- to 10-fold, resulting in an average T1 relaxation time of ~0.6 s. Using the equation
derived from Rovnyak et al., in the presence of Gd the theoretical optimal recycle delay
would be ~0.8 s (1.26× 0.6 s), which is in perfect agreement with our experimental findings
of an optimal d1 of 0.8 s. In the presence of Cu (EDTA), we observed a decrease in NMR
resonance intensities and significant line broadening at all concentrations tested. These
results suggest that the addition of 0.25 mM of Gd may offer an optimal improvement in
S/N. Indeed, when we recorded a 25% NUS 1H-13C HSQC spectrum with a d1 of 0.8 s in
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the presence of 0.25 mM Gd, we observed an increase in both the mean intensity and mean
S/N for Reference 1 (Figure 2). While the average fold-change increase in peak intensity
due to the addition of Gd was modest (1.25-fold), we observed large fold-change increases
(>2-fold) for the lowest intensity resonances (Figure 2c). Thus, the addition of Gd could
improve the ability to detect low abundant metabolites. Of note, significant differences
were observed in the intensity for individual metabolites, suggesting that Gd affects each
metabolite to a different extent. Previous studies have suggested that a charge distribution,
especially anionic metabolites, may be more affected by Gd [22,24]. We also verified that,
for 0.25 mM Gd, the optimal d1 remained at 0.8 s as measured by both an increase in mean
peak intensity and mean S/N (Figure S3). Taken together, our results suggest that the
addition of Gd can improve both S/N and peak intensities, which will result in an overall
sensitivity improvement, leading to a higher accuracy and precision in the measurement of
metabolite concentrations.
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2.3. Gadolinium Maintains Linearity

Metabolomics requires quantification across a broad range of concentrations and the
ability to accurately detect changes in metabolite levels [33,34]. We previously demon-
strated that NUS 1H-13C HSQC metabolite profiling is highly linear in the 0.05 µM to
2 mM range [15]. Rai and colleagues also observed that the addition of a PRE agent,
Cu(EDTA), maintained linearity for an NUS 1H-13C HSQC experiment that measured
four amino acids (glycine, alanine, valine and methionine) over a concentration range of
24 to 78 mM [13]. We first sought to confirm that the addition of Gd maintained linearity
over a broad concentration range. A series of six NUS 1H-13C HSQC spectra were recorded
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for a mixture containing 29 metabolites (Reference 2) with concentrations ranging from
50 µM to 2 mM (Table S2). For each NMR resonance, the peak intensity was plotted as a
function of concentration and the data were fit to a linear regression model (Figure S4). Ex-
ample plots of the four NMR resonance peaks for leucine and the single resonance peak for
pyruvic acid are shown in Figure 3. More than 98% of the metabolite resonances displayed
a correlation coefficient of R2 > 0.9, indicating excellent linearity (Table 1). Interestingly,
glucose resonances, which can be affected by isomers and conformational changes, had
an R2 > 0.99 that was an improvement from our previous findings without Gd, where we
observed an R2 of ~0.8 [15]. Overall, this analysis demonstrated that peak intensities are
highly linear as a function of metabolite concentration for NUS 1H-13C HSQC spectra in
the presence of Gd.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 17 
 

 

containing 29 metabolites (Reference 2) with concentrations ranging from 50 μM to 2 mM 
(Table S2). For each NMR resonance, the peak intensity was plotted as a function of con-
centration and the data were fit to a linear regression model (Figure S4). Example plots of 
the four NMR resonance peaks for leucine and the single resonance peak for pyruvic acid 
are shown in Figure 3. More than 98% of the metabolite resonances displayed a correlation 
coefficient of R2 > 0.9, indicating excellent linearity (Table 1). Interestingly, glucose reso-
nances, which can be affected by isomers and conformational changes, had an R2 > 0.99 
that was an improvement from our previous findings without Gd, where we observed an 
R2 of ~0.8 [15]. Overall, this analysis demonstrated that peak intensities are highly linear 
as a function of metabolite concentration for NUS 1H-13C HSQC spectra in the presence of 
Gd. 

 

 

(a) (b) 

Figure 3. Linear regression analysis of NMR resonance intensities for (a) leucine and (b) pyruvic acid peaks. 

Table 1. Reference 2 metabolite resonances and their correlation coefficient (R2) for each resonance. 

Metabolites/R2 1 2 3 4 5 6 7 8 9 10 11 12 13 
NAD 0.996 0.999 0.999 0.997 1.000 0.999 0.998 0.999 1.000 0.999 1.000 0.999 0.999 

NADPH 1.000 1.000 0.886 0.929 0.995 0.966 0.967 0.966 0.972 0.968 0.950   
Cytidine 0.912 0.999 0.997 0.998 0.997 0.998 0.998       

UDP 0.999 0.999 0.999 0.999 0.999 0.999 1.000       
Fructose 1.000 1.000 1.000 1.000 0.984 0.996        

AMP 0.951 0.973 0.970 0.992 0.901 0.994        
Lysine 0.998 0.999 0.999 0.998 0.942         

Histidine 0.998 1.000 0.998 0.999 0.998         
Glucose 0.995 0.997 0.993 0.996 0.974         

Ribose 5P 0.983 0.990 0.989 0.996 0.994         
Glucosamine 0.997 0.959 0.992 0.951          

2-HG 0.994 0.998 0.999 0.984          
Leucine 0.998 0.997 0.999 0.997          

Nicotinic acid 0.998 0.996 0.994 0.997          
Acetylcholine 0.999 0.989 0.998 0.998          
Glutamic acid 0.998 0.998 0.952           

Malic acid 0.993 0.989 0.996           
Arginine 0.991 0.997 0.999           
Ornithine 0.998 0.996 1.000           
Choline 0.999 0.997 0.996           

Glutamine 0.998 0.998 0.998           
GTP 0.998 0.998 0.967           

Citrate 0.990 0.998            

Figure 3. Linear regression analysis of NMR resonance intensities for (a) leucine and (b) pyruvic acid peaks.

Table 1. Reference 2 metabolite resonances and their correlation coefficient (R2) for each resonance.

Metabolites/R2 1 2 3 4 5 6 7 8 9 10 11 12 13

NAD 0.996 0.999 0.999 0.997 1.000 0.999 0.998 0.999 1.000 0.999 1.000 0.999 0.999
NADPH 1.000 1.000 0.886 0.929 0.995 0.966 0.967 0.966 0.972 0.968 0.950
Cytidine 0.912 0.999 0.997 0.998 0.997 0.998 0.998

UDP 0.999 0.999 0.999 0.999 0.999 0.999 1.000
Fructose 1.000 1.000 1.000 1.000 0.984 0.996

AMP 0.951 0.973 0.970 0.992 0.901 0.994
Lysine 0.998 0.999 0.999 0.998 0.942

Histidine 0.998 1.000 0.998 0.999 0.998
Glucose 0.995 0.997 0.993 0.996 0.974

Ribose 5P 0.983 0.990 0.989 0.996 0.994
Glucosamine 0.997 0.959 0.992 0.951

2-HG 0.994 0.998 0.999 0.984
Leucine 0.998 0.997 0.999 0.997

Nicotinic acid 0.998 0.996 0.994 0.997
Acetylcholine 0.999 0.989 0.998 0.998
Glutamic acid 0.998 0.998 0.952

Malic acid 0.993 0.989 0.996
Arginine 0.991 0.997 0.999
Ornithine 0.998 0.996 1.000
Choline 0.999 0.997 0.996

Glutamine 0.998 0.998 0.998
GTP 0.998 0.998 0.967

Citrate 0.990 0.998
Alanine 0.998 0.995

Lactic acid 0.999 0.997
Pyruvic acid 0.998
Acetic acid 0.990

Fumaric acid 0.989
Succinic acid 0.998
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2.4. Gadolinium Improves the Lower Limit of Detection and Quantification

We next sought to determine the lower limit of detection (LOD) and lower limit of
quantification (LOQ) for our NUS measurements in the presence of Gd. LOD and LOQ are
defined as follows:

LOD = 3 × σ (1)

LOQ = 10 × σ (2)

where the variance of the noise (σ) was estimated by the median absolute deviation (MAD).
MAD was calculated from the COLMAR database [35], where the positive values for all
non-peak data (Xi) were used in the following equations:

MAD = mediani(|Xi − mediani(Xj)|) (3)

σ = 1.4826 ×MAD (4)

Tables 2 and 3 list the LOD and LOQ for each of the resonances detected in Reference
2. Metabolites with multiple resonances have an LOD/LOQ for each observed peak, and
thus metabolites with multiple peaks will have a range of LOD/LOQ values. The average
LOD and LOQ in the presence of Gd was 7.8 ± 0.3 µM and 26 ± 1 µM, respectively. This
is a dramatic improvement over our previous findings that yielded an average LOD and
LOQ of 19.1 µM and 65.6 µM, respectively [15]. These prior NMR experiments lacked the
addition of Gd and used a longer d1 of 1.5 s. Thus, it is possible to detect lower abundant
metabolites by adding Gd and decreasing d1. We also compared the effects of different
NMR probes on LOD/LOQ. For the same d1 of 1.5 s, a TCI helium-cooled probe had a
lower LOD/LOQ compared to a TXI nitrogen-cooled probe (Table S3).

2.5. Gadolinium Maintains Reproducibility

Highly reproducible measurements are required to detect changes in the large number
of samples associated with metabolomics studies. We previously demonstrated that inten-
sity measurements from NUS 1H-13C HSQC experiments with a d1 of 1.5 s were highly
reproducible as evident by a percent coefficient of variation (%CV) of 14 ± 9% for a model
mixture containing 15 metabolites at a concentration of 500 µM [15]. By decreasing the d1
to 0.8 s, we observed a decrease in the %CV to 8 ± 8% (Figure 4) for three replicates of
Reference 1. This was expected, given that the increased number of scans would lead to
an increase in peak intensities. We only observed a modest decrease in %CV to 7 ± 7%
(Figure 4) by adding Gd to the samples while maintaining a d1 of 0.8 s. This suggests that
the addition of Gd does not negatively impact the reproducibility of NUS 1H-13C HSQC
experiments and may increase the reliability of these measurements.

2.6. Gadolinium Effect on Plasma Metabolites

We next assessed the effects of Gd on our ability to detect and quantify metabolites
using a commercially available standard pooled human plasma sample. We recorded a
25% NUS 1H-13C HSQC with or without the addition of Gd, and with a relaxation delay of
0.8 s, a constant scan number of 72, and an acquisition time of ~1 h. The addition of Gd
led to a 1.12-fold increase in overall mean peak intensities. This increase was slightly less
pronounced than the fold change of 1.25 observed with the model mixture and could be
due to the presence of additional anions and salts, which are known to influence the impact
of PRE agents [22,24]. Nonetheless, as noted for the model mixtures, we observed that the
largest increase in fold change was associated with low-intensity resonances. These results
further suggest that the addition of Gd could improve our ability to detect low abundant
metabolites (Figure 5c). Furthermore, the % CV was lowered from 15% to 10% for the
pooled human plasma sample in the presence of Gd (Figure 5d). Collectively, these results
suggest that the addition of Gd to plasma samples increases the S/N for metabolite NMR
resonances, especially for low abundant metabolites, and increases the reproducibility
of intensity measurements. Overall, the addition of Gd to a metabolomics sample could
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facilitate an increase in the confidence and reliability in the detection and quantification of
metabolite NMR resonances.

Table 2. Limit of detection (LOD) for measured metabolite resonances.

LOD (µM) per NMR Resonance

Metabolites 1 2 3 4 5 6 7 8 9 10 11 12 13 Minimal
Conc. (µM)

NAD 12.7 ±
0.49

12.58
± 0.26

26.05
± 0.32

12.2
±

0.04

10.61
±

0.19

15.54
± 0.97

7.9 ±
0.08

13.48
±

0.15

16.5
±

0.04

14.41
±

0.11

12.98
±

0.16

9.2
±

0.09

12.9
±

0.02
7.90 ± 0.08

NADPH 26.85
± 0.21

21.76
± 0.99

7.46 ±
0.17

19.01
±

0.38

13.4
±

0.48

10.66
± 0.42

14.4 ±
0.14

25.37
± 0.5

19.46
±

0.96

12.98
±

0.27

24.4
±

0.62
7.46 ± 0.17

Cytidine 18.1 ±
0.66

8.44 ±
0.02

9.04 ±
0.08

7.4 ±
0.00

6.62
±

0.05

7.86 ±
0.06

7.89 ±
0.05 6.62 ± 0.05

UDP 6.78 ±
0.09

9.47 ±
0.15

9.82 ±
0.2

9.85
±

0.01

8.69
±

0.11

10.65
± 0.15

10.69
± 0.05 6.78 ± 0.09

Fructose 19.58
± 0.93

13.82
± 0.45

13.85
± 0.44

18.89
±

1.17

18.71
±

0.33

9.49 ±
0.09 9.49 ± 0.09

AMP 8.35 ±
1.68

12.14
± 1.54

3.94 ±
0.16

13.17
±

2.97

10.75
± 1.7

14.96
± 2.96 3.94 ± 0.16

Lysine 23.24
± 0.19

10.07
± 0.24

9.28 ±
0.13

6.59
±

0.03

3.6 ±
0.1 3.60 ± 0.10

Histidine 19.15
± 2.19

18.79
± 1.91

10.85
± 1.66

7.9 ±
0.38

11.3
±

2.09
7.90 ± 0.38

Glucose 21.62
± 3.18

18.61
± 2.01

16.35
± 1.1

14.32
±

0.11

15.79
±

2.56
14.32 ± 0.11

Ribose 5P 41.21
± 2.58

30.31
± 1.82

21.22
± 0.59

8.98
±

0.26

19.94
±

0.71
8.98 ± 0.26

Glucosamine 30.31
± 1.11

19.2 ±
0.570.57

33.83
± 1.51

22.32
±

1.71
19.20 ± 0.57

2-HG 33.83
± 1.76

33.3 ±
1.89

25.95
± 0.75

12.7
± 0.3 12.70 ± 0.3

Leucine 5.64 ±
0.98

5.58 ±
1.07

20.77
± 1.54

11.49
±

1.85
5.58 ± 1.07

Nicotinic acid 10.78
± 0.03

9.71 ±
0.19

8.04 ±
0.16

7.26
±

0.01
7.26 ± 0.01

Acetylcholine 8.56 ±
0.12

0.71 ±
0.02

8.42 ±
0.1

8.06
±

0.07
0.71 ± 0.02

Glutamic acid 22.1±
1.1

8.87 ±
0.13

4.09 ±
0.08 4.09 ± 0.08

Malic acid 30.52
± 2.05

30.12
± 0.41

8.98 ±
0.26 8.98 ± 0.26

Arginine 25.49
± 2.75

9.06 ±
0.09

6.09 ±
0.06 6.09 ± 0.06

Ornithine 28.27
± 1.77

4.59 ±
0.05

6.71 ±
0.05 4.59 ± 0.05

Choline 1.41 ±
0.05

8.09 ±
0.3

7.76 ±
0.29 1.41 ± 0.05

Glutamine 8.32 ±
0.13

9.46 ±
0.22

5.06 ±
0.07 5.06 ± 0.07

GTP 11.66
± 0.18

15.58
± 0.51

7.54 ±
1.44 7.54 ± 1.44

Citrate 8.2 ±
1.11

8.15 ±
1.21 5.14 ± 0.01

Alanine 5.14 ±
0.01

13.4 ±
0.08 8.15 ± 1.21

Lactic acid 5.4 ±
0.02

13.89
± 0.22 5.4 ± 0.02

Pyruvic acid 30.79±
2.83 30.79 ± 2.83

Acetic acid 7.21 ±
0.08 7.21 ± 0.08

Fumaric acid 5.6 ±
0.14 5.67 ± 0.12

Succinic acid 3.21 ±
0.03 3.21 ± 0.03
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Table 3. Limit of quantification (LOQ) for measured metabolite resonances.

LOQ (µM) per NMR Resonance

Metabolites 1 2 3 4 5 6 7 8 9 10 11 12 13 Minimal
Conc. (µM)

NAD 42.34
± 1.62

41.92
± 0.88

86.83
± 1.06

40.66
±

0.13

35.37
±

0.62

51.78
± 3.22

26.35
± 0.27

44.92
±

0.51

55.01
±

0.14

48.03
±

0.38

43.26
±

0.55

30.66
±
0.3

43.01
±

0.06
26.35 ± 0.27

NADPH 89.49
± 0.7

72.53
± 3.29

24.87
± 0.55

63.38
±

1.25

44.66
±

1.61

35.52
± 1.39

48.01
± 0.47

84.56
±

1.67

64.88
±

3.19

43.27
±

0.91

81.33
±

2.07
35.52 ± 1.39

Cytidine 60.34
± 2.2

28.12
± 0.08

30.15
± 0.28

24.68
±

0.01

22.05
±

0.18

26.2 ±
0.19

26.29
± 0.15 22.05 ± 0.18

UDP 22.59
± 0.29

31.55
±0.51

32.74
± 0.68

32.85
±

0.03

28.95
±

0.36

35.49
± 0.49

35.64
± 0.15 22.59 ± 0.29

Fructose 65.27
± 3.1

46.06
±1.5

46.18
± 1.47

62.98
±

3.89

62.38
±

1.09

31.63
± 0.29 31.63 ± 0.29

AMP 27.83
± 5.61

40.46
± 5.12

13.13
± 0.52

43.92
±

9.89

35.84
±

5.68

49.86
± 9.88 13.13 ± 0.52

Lysine 77.47
± 0.64

33.57
± 0.8

30.92
± 0.44

21.95
±

0.08

12.01
±

0.34
12.01 ± 0.34

Histidine 63.83
± 7.29

62.63
± 6.38

36.18
± 5.53

26.32
±

1.25

37.67
±

6.97
26.32 ± 1.25

Glucose 72.07
±10.59

62.02
± 6.69

54.5 ±
3.66

47.74
±

0.36

52.63
±

8.54
47.74 ± 0.36

Ribose 5P 137.37
± 8.59

101.02
± 6.08

70.73
± 1.97

30.11
±

0.89

66.45
±

2.38
30.11 ± 0.89

Glucosamine 101.02
± 3.71

42.87
± 2.83

112.76
± 5.02

74.4
±

5.69
42.87 ± 2.83

2-HG 112.76
± 5.86

110.99
± 6.3

86.49
± 2.51

42.34
±1.00 42.34 ± 1.00

Leucine 18.78
± 3.27

18.61
± 3.58

69.24
± 5.13

38.28
±

6.16
18.61 ± 3.58

Nicotinic acid 35.93
± 0.1

32.36
± 0.62

26.8 ±
0.54

24.19
±

0.04
24.19 ± 0.04

Acetylcholine 28.54
± 0.4

2.38 ±
0.08

28.08 +
BL86
± 0.33

26.88
±

0.24
2.38 ± 0.08

Glutamic acid 73.67
± 3.65

29.55
± 0.44

13.64
± 0.28 13.64 ± 0.28

Malic acid 101.74
± 6.84

100.41
± 1.36

29.92
± 0.88 29.92 ± 0.88

Arginine 84.96
± 9.16

30.2 ±
0.3

20.32
± 0.19 20.32 ± 0.19

Ornithine 94.24
± 5.91

15.3 ±
0.16

22.35
± 0.18 15.30 ± 0.16

Choline 4.69 ±
0.15

26.98
± 0.99

25.85
± 0.97 4.69 ± 0.15

Glutamine 27.72
± 0.44

31.54
± 0.73

16.85
± 0.24 16.85 ± 0.24

GTP 38.87
± 0.6

51.94
± 1.7

25.13
± 4.8 25.13 ± 4.80

Citrate 27.33
± 3.71

27.18
± 4.03 27.18 ± 4.03

Alanine 17.15
± 0.02

44.67
± 0.26 17.15 ± 0.02

Lactic acid 18.08
± 0.19

46.29
± 0.74 18.08 ± 0.19

Pyruvic acid 102.65
± 9.42

102.65 ±
9.42

Acetic acid 24.61
± 0.35 24.61 ± 0.35

Fumaric acid 18.89
± 0.39 18.89 ± 0.39

Succinic acid 10.69
± 0.11 10.69 ± 0.11
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3. Discussion

Metabolites are influenced both by the genome and the environment, and thus provide
the most comprehensive readout for the state of an individual [36–38]. By monitoring
changes in metabolites, it is possible to develop novel biomarkers that reveal important
health information. Indeed, altered metabolite levels have been observed in many diseases,
including diabetes [39], neurodegeneration [40], cancer [4], cardiovascular disease [6],
and even aging [3]. Furthermore, in a series of separate studies, we have identified
metabolite biomarkers of response (BoRs) that correlate with drug responsiveness for
metastatic breast cancer patients treated with CDK4/6 inhibitors as well as the anti-HER2
therapy trastuzumab; and for gastrointestinal stromal tumor (GIST) patients treated with
tyrosine kinase inhibitors [41–43]. While additional validation studies are required, these
preliminary results suggest the exciting possibility that metabolite-based biomarkers have
for designing optimal treatment strategies for individual patients, which is a major goal of
precision medicine.

To uncover metabolite BoRs, it is first necessary to accurately measure metabolite lev-
els in biospecimens collected from a large number of patients so that the relative metabolite
concentration can be correlated with disease outcomes and/or a drug response. NMR and
mass spectrometry (MS) are the two most commonly used analytical platforms for measur-
ing metabolites. Traditionally, MS has been favored due to its high sensitivity, dynamic
range, and potential for high throughput. There are numerous sensitive LC-MS meth-
ods reported in the literature for the identification of endogenous metabolites in human
plasma [19–21,44–46]. For example, amino acids are routinely detected at submicromolar
concentrations (0.01 to 0.04 µM) by these targeted LC-MS methods. In contrast, NMR-
based approaches typically detect plasma concentrations in the micromolar (3–10 µM)
range [44–46]. However, MS can suffer from reproducibility issues, requires chromatog-
raphy because of the narrow molecular-weight distribution of metabolites, and still faces
challenges in metabolite identification [9]. Conversely, NMR is highly reproducible and
can reveal structural information to facilitate metabolite identification. However, NMR
is limited by sensitivity and spectral overlap [47]. Multidimensional NMR can overcome
some of these challenges but requires extremely long experimental times that are not
practical for the large number of samples needed for BoR discovery. Efforts to increase
the throughput of NMR are actively being explored. We and others have demonstrated
that NUS can accelerate NMR acquisition times to meet the high-throughput demands of
metabolomics [13–15]. In an approximate one-hour experiment, we verified that intensity
measurements from NUS 1H-13C HSQC spectra are highly reproducible and can facilitate
the detection of a wide variety of metabolites in the low micromolar range.

In this study, we sought to explore additional techniques to extend the limit of metabo-
lite detection by multidimensional NMR. As a first step, we assessed the effect of the d1
relaxation delay on S/N. The relaxation delay is the experimental time between scans in an
NMR experiment to allow the nuclear spins to return to equilibrium, which is influenced
by T1 longitudinal relaxation rates of each nuclei in the sample. For quantitative NMR, it
is suggested to set d1 to at least 5 times the slowest T1 [17]. For metabolomics, this is not
practical as T1s can be several seconds in length or longer. Instead, d1 is commonly set to
a shorter, predetermined value for semi-quantification. Herein, we demonstrated that a
decrease in d1 from 1.5 s to 0.8 s enabled an increase in the number of scans from 36 to 72,
which led to an overall improvement in S/N and an increase in the mean signal intensity
for metabolite resonances. Notably, this was accomplished without increasing the total
time to acquire the NMR spectrum. Any further reduction in d1 was observed to result in
severe signal artifacts from the solvent.

With the optimal d1 selected, we next sought to manipulate the T1s of metabolite nuclei
through PRE. PRE accelerates spin relaxation due to induced magnetic dipolar interactions
with unpaired electrons. PRE-based applications have been used for macromolecular
structure determination, characterizing long-range interactions and identifying transiently
populated states of proteins and complexes [28,48,49]. PRE agents also provide the founda-
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tion for contrast agents in magnetic resonance imaging (MRI) [50]. Previous metabolomics
studies have suggested that the addition of PRE-agents, Cu(EDTA) or Gd, can decrease T1
relaxation times for metabolites [13,17]. We observed similar trends using our standard 25%
NUS 1H-13C HSQC experimental parameters and noted that the addition of Gd led to an
overall improvement in S/N and mean signal intensity for metabolites in a model mixture
and from plasma samples. Although the average increased fold change in intensity with
Gd was relatively modest, we did observe a significant improvement (>2-fold increase) for
metabolite resonances with the lowest signal intensity. For metabolomics studies, the ability
to accurately detect and quantify a broad range of metabolites that span different chemical
classes and concentration ranges is paramount. Thus, an increase in the NMR signal
intensity for low abundant metabolites suggests that the addition of Gd could improve the
coverage of the metabolome. Indeed, both the lower limit of detection and quantification
(LoD/LoQ) were significantly improved in the presence of Gd. In our previous results, the
LoD and LoQ for a model mixture of metabolites was 19.1 µM and 65.6 µM, respectively.
For the same model mixture, the LoD and LoQ decreased by more than 2-fold to 7.8 µM
and 26 µM, respectively, by decreasing the d1 and by the addition of Gd.

4. Materials and Methods

Commercially available analytical standards were used to prepare model mixtures
of metabolites, Reference 1 and Reference 2 (Tables S1 and S2): acetylcholine chloride
(C7H15NO2·HCl, >99%), L-arginine (C6H14N4O2, >98%), L-glutamine (C5H10N2O3, >99%),
D-alpha-hydroxyglutaric acid disodium salt (C5H6Na2O5, >98%), α-ketoglutaric acid dis-
odium salt dihydrate (C5H4Na2O5·2H2O, >98%), adenosine 5-monophosphate disodium
(C10H12N5Na2O7P, >99%), D-(-)-fructose (C6H12O6, >99%), guanosine 5-triphosphate
sodium salt (C10H16N5O14P3·xNa + yH2O, >95%), lithium potassium acetyl phosphate
(C2H3KLiO5P, >97%), L-ornithine hydrochloride (C5H12N2O2·HCl, >98%), β-nicotinamide
adenine dinucleotide hydrate (C21H27N7O14P2·xH2O, >98%), DL-malic acid (C4H6O5,
>99%), D-ribose 5-phosphate disodium salt dihydrate (C5H9Na2O8P·2H2O, >99%), sodium
succinate dibasic hexahydrate (C4H4Na2O4·6H2O, >99%), sodium acetate (C2H3NaO2,
>99%), sodium L-lactate (C3H5NaO3, >99), sodium citrate tribasic dihydrate
(C6H5O7Na3·2H2O, >99%), sodium fumarate dibasic (C4H2Na2O4, >98%), sodium pyru-
vate (C3H3NaO3, >99%), uridine 5-diphosphate (C9H12N2Na2O12P2·xH2O, >96%), L-
alanine (C3H7NO2, >98%), L-cysteine (C3H7NO2S, >98%), D-(+)-glucosamine hydrochlo-
ride (C6H13NO5·HCl, >99%), D-(+)-glucose (C6H12O6, >99.5%), choline chloride
(C5H13NO·HCl, >99%), cytidine (C9H13N3O5, >99%), L-leucine (C6H13NO2, >98.5%),
L-glutamic acid monosodium salt monohydrate (C5H8NNaO4·H2O, >99%), L-histidine
(C6H11N3O3·HCl, >98.5%), L-lysine, monohydrochloride (C6H14N2O2·HCl, >98.5%). All
the compounds were obtained from Sigma-Aldrich. Deuterium oxide (D2O, 99.0%) was
purchased from Cambridge Isotope Laboratory, Inc., Andover, MA. Pooled human plasma
(apheresisderived, K2EDTA) was purchased from innovative research, Novi, MI. Paramag-
netic relaxation agents gadobutrol (Gd) (C18H31GdN4O9, >99.9%) and copper (II) disodium
ethylenediaminetetraacetate tetrahydrate (Cu- EDTA) (C10H12CuN2Na2O8·4H2O) were
procured from MedChemExpress, Monmouth Junction, NJ and TCI America, Portland, OR
respectively. The NMR reference standard, deuterated 3-(trimethylsilyl)-1-propanesulfonic
acid sodium salt (DSS-d6, 98%) was purchased from Cambridge Isotope Laboratory, An-
dover, MA, USA.

4.1. NMR Sample Preparation

Reference 1 and Reference 2 were prepared as previously described [15]. Human
plasma extraction: metabolites were extracted from 1 mL of human plasma via a methanol
and chloroform liquid–liquid extraction. The aqueous phase was transferred to a 15 mL
Falcon tube and freeze-dried. The powder was reconstituted in 180 µL of 50 mM phosphate
buffer at pH 7.4 in D2O, and then immediately transferred to a 3 mm NMR tube for NMR
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data collection. The NMR standard, DSS-d6, was added to each sample for chemical
shift referencing.

4.2. NMR Experiments and Data Processing

All NMR spectra were acquired on a Bruker AVANCE III solution-state NMR spec-
trometer equipped with a liquid helium-cooled TCI (H/F, C, N), deuterium lock, and a
cryoprobe operating at a frequency of 599.773010 MHz for proton and 150.822998 MHz for
carbon. NUS schedules were generated using a Poisson gap distribution with a sinusoidal
weight of two and random seed generator [51]. The same 25% NUS schedule and seed
were used for all experiments. All NMR data were collected at 298 K.

The spectral widths along the direct and the indirect dimensions were set at 9578.544
and 24,132.982 Hz, respectively. The number of complex points in the direct dimension
was set at 512, and in the indirect dimension set at 32 with a 25% NUS sampling schedule.
The number of scans for the 1D 1H experiments was set to 64 (d1 = 1.5 s), 72 (d1 = 1.2 s),
84 (d1 = 0.8 s), and 92 (d1 = 0.6 s). The number of scans for the 2D 1H-13C HSQC experiments
was set to 36 (d1 = 1.5 s), 48 (d1 = 1.2 s), 72 (d1 = 0.8 s) and 84 (d1 = 0.6 s), respectively.
The scan numbers were selected such that the total acquisition time for each 1D- and 2D-
experiment was on average 246 s, and 69 min., respectively. The transmitter frequency
offset was set to 75 ppm in the 13C dimension and 4.7 ppm in the 1H dimension.

The spectral data were processed using the NMRPipe software package, as previously
described [52]. The NUS data were reconstructed using iterative soft thresholding according
to the hmsIST algorithm [51] to generate the same number of direct dimension data points
and twice the number of indirect dimension data points, 512 (N2) × 256 (N1). Both
the NUS and US NMR data were zero-filled, Fourier-transformed and manually phase-
corrected to yield a final digital resolution of 2048 (N2) × 2048 (N1) points. Chemical
shift queries, metabolite identifications and quantifications were performed using the
COLMARm NMR webserver (http://spin.ccic.ohio-state.edu/index.php/colmar (accessed
on 4 February 2021) [35]. The metabolite list is presented in the Supplementary Materials
section for Reference 1 (Table S1) and Reference 2 (Table S2). The resonance assignments
were used as previously reported [15].

5. Conclusions

In this study, we demonstrated the ability of Gd to improve the sensitivity of 2D
NUS NMR spectra for the analysis of metabolomics samples. The addition of Gd led
to an overall improvement in S/N and mean signal intensity for metabolites in both a
model mixture and plasma samples. In the model mixture, the addition of Gd led to
a 1.25-fold improvement in NMR signal intensities, which resulted in 1.7- and 1.6-fold
improvements in LOD and LOQ, respectively. Interestingly, a significant improvement
(>2-fold increase) was observed for metabolites with the lowest peak intensities, which
suggests that the combination of Gd with NUS may improve the coverage of the plasma
metabolome. The addition of Gd also maintained the highly linear intensity measurements
that were correlated with a wide range of metabolite concentrations (50 µM to 2 mM). The
reproducibility of intensity measurements, as noted by a decrease in %CV for both the
model mixture (8% to 7%) and the plasma samples (15% to 10%), was similarly improved
with the addition of Gd. Collectively, our results suggest that supplementing metabolomics
samples with 0.25 mM Gd can improve the sensitivity of 2D NUS 1H-13C HSQC spectra
and enhance the overall quality of the resulting data analysis. The routine adoption of
PRE by the metabolomics community may expand the utility of multidimensional NMR to
empower future biomarker discoveries.

Supplementary Materials: The following are available online. Figure S1. Chemical structure of
Gadobutrol (Gd), Figure S2. Effect of addition of relaxation agents on 1H-13C HSQC 1D 1H spectral
intensity for a model mixture (Reference 1) of metabolites in time equivalent experiments, Figure S3.
Plots showing (a) mean peak intensity and (b) mean S/N for Reference 1 with and without addition
of Gadobutrol, Figure S4. Linear regression curve of Reference 2 metabolites, Table S1. The list of
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metabolites in Reference 1 model mixture, Table S2. The list of metabolites in Reference 2 model
mixture, Table S3. Comparison of LOD and LOQ at 0.8 D1 and at 1.5 D1 with and without Gd.
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