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A B S T R A C T   

Three important wine parameters: vineyard, region, and vintage year, were evaluated using fifteen Vitis vinifera 
L. ‘Pinot noir’ wines derived from the same scion clone (Pinot noir 667). These wines were produced from two 
vintage years (2015 and 2016) and eight different regions along the Pacific Coast of the United States. We 
successfully improved the classification of the selected Pinot noir wines by combining an untargeted 1D 1H NMR 
analysis with a targeted peptide based differential sensing array. NMR spectroscopy was used to evaluate the 
chemical fingerprint of the wines, whereas the peptide-based sensing array is known to mimic the senses of taste, 
smell, and palate texture by characterizing the phenolic profile. Multivariate and univariate statistical analyses of 
the combined NMR and differential sensing array dataset classified the genetically identical Pinot noir wines on 
the basis of distinctive metabolic signatures associated with the region of growth, vineyard, and vintage year.   

1. Introduction 

The growth and cultivation of grapevines for wine production has 
been a time-honored tradition that dates back thousands of years 
(McGovern et al., 2017). Over the centuries, winegrowers have devel
oped and refined the tools and techniques of their trade. Many agri
cultural products are grown in relatively narrow ranges of climatic and 

soil conditions for optimal yield. Grapevines are frequently cultivated 
under a broader range of growing conditions to affect flavor profiles and 
enhance the potential value of the final wine product. The process of 
wine production consists broadly of three major steps: grape berry 
growth, fermentation, and wine aging. Subtle differences in each of 
these steps contribute to the complexity of the products and impart a 
unique chemical fingerprint to every wine. 
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The complexity of wine begins with the chemical composition of the 
fruit. Red wines are known for their complex palate texture, which is 
commonly attributed to polyphenolic compounds. Phenolics are oligo
mers of flavonoids and non-flavonoids found in the skin and seeds of 
grapes (Umali et al., 2011). Some of these compounds such as catechins 
and epicatechins are found abundantly in red grapes, and have been 
associated with the bitter taste and antioxidant properties of wines 
(Gougeon, da Costa, Guyon, & Richard, 2019). Phenolic compounds 
undergo chemical reactions during the berry development process and 
have been associated with markers of vintage age in red wine (Gougeon 
et al., 2019). The chemical profile of the final wine product and the 
resultant metabolite composition can be differentiated by viticultural 
practices and environment (Pereira et al., 2005). As with many agri
cultural products, the maturation of the fruit is a function of the climate 
during the growing season (Van Leeuwen & Seguin, 2006). Some red 
wine varieties such as Pinot noir are known to grow in cool regions, and 
early harvest dates are characteristic of these grape varieties. For this 
reason, delicate grape berries such as Pinot noir can be difficult to 
cultivate, especially in the warm California climate (Smith, 2003). Many 
vineyards have developed viticultural practices to protect the fruit and 
encourage healthy growth. However, year to year variation in the 
microclimate ultimately affects the chemical composition of the product 
beyond the control of any cultivator (Smith, 2003). 

Following berry development, the next step in wine production is the 
vinification process. Fermentation relies heavily on the overall health of 
the fruit and the presence of sugars and essential amino acids in the 
grapes (Baiano, Terracone, Longobardi, Ventrella, Agostiano, & Del 
Nobile, 2012). In addition to sugars, the accumulation of aroma and 
flavor metabolites or their precursors during fruit maturation enriches 
the final wine product. During wine fermentation these flavor com
pounds are released from the berry and undergo various chemical re
actions that depend on the temperature and duration of the fermentation 
process (Gougeon et al., 2019; Lee, Hwang, Berg, Lee, & Hong, 2009). 
Aging is the final step of wine production. The use of oak wood barrels 
has also been shown to affect the metabolomic composition of wines 
(Cassino, Tsolakis, Bonello, Gianotti, & Osella, 2019). A Previous study 
has shown that wine aging is characterized by a decrease in organic 
compounds such as lactic acid and succinic acid with an associated in
crease in esters (Cassino et al., 2019). Barrel aging further amplifies the 
aromatic flavors that are highly specific to the age and quality of the 
barrel product (Dumitriu, Peinado, Cotea, & López de Lerma, 2020; 
Herrera et al., 2020). Overall, the process of winegrowing, from berry 
growth to wine aging, produces a unique chemical fingerprint that is 
characteristic of each vineyard’s wine production process, geographic 
environment, and yearly microclimate. 

Due to the economic and cultural value associated with wine, fin
gerprints of wine have been extensively studied. Both biological and 
chemical analytical techniques have been used. These techniques have 
varied from sequencing technologies (Bokulich, Thorngate, Richardson, 
& Mills, 2014; Gilbert, van der Lelie, & Zarraonaindia, 2014) to nuclear 
magnetic resonance (NMR) spectroscopy (Amargianitaki & Spyros, 
2017; Cassino et al., 2019; Herrera et al., 2020). By suppressing the most 
abundant solvents (water and ethanol), one-dimensional (1D) 1H NMR 
affords the ability to characterize and quantify numerous wine compo
nents with minimal pretreatment or alteration of the wine sample. 
Metabolomics studies have used a combination of quantitative untar
geted NMR data with chemometrics to distinguish wines based on grape 
varieties (Gougeon et al., 2019), region of growth (Godelmann et al., 
2013; Gougeon et al., 2019), effects of vintage year (Cassino et al., 2019; 
Lee et al., 2009), and vinification approach (Baiano et al., 2012). 

Multivariate statistical techniques such as principal component 
analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) 
are routinely utilized to classify wine by differentiating the samples 
based on their chemical profile (Godelmann et al., 2013; Gougeon et al., 
2019; Grainger, Yeh, Byer, Hjelmeland, Lima, & Runnebaum, 2021). 
Conversely, univariate techniques utilize a subset of spectral features or 

metabolites to discriminate samples and classify group membership. 
Techniques such as random forest (RF) and receiver operating charac
teristic (ROC) curves have also been utilized to classify wine according 
to grape varieties by using NMR and mass spectrometry (MS) analytical 
techniques (Gómez-Meire, Campos, Falqué, Díaz, & Fdez-Riverola, 
2014; Mascellani, Hoca, Babisz, Krska, Kloucek, & Havlik, 2021). Uni
variate techniques such as RF allow high-classification performance 
while minimizing the risk of over-fitting the data (Mascellani et al., 
2021). Please see (Fan, Upadhye, & Worster, 2006; Lo, Rensi, Torng, & 
Altman, 2018; Worley & Powers, 2013) for a review of multivariate and 
univariate statistical techniques. 

In addition to traditional analytical techniques, the differential 
sensing (DS) approach (Joydev Hatai, 2020; Patwardhan, Cai, Newson, 
& Hargrove, 2019) has become a powerful alternative method to detect 
and distinguish a variety of small molecules (Diehl, Ivy, Rabidoux, Petry, 
Müller, & Anslyn, 2015; Li, Zamora-Olivares, Diehl, Tian, & Anslyn, 
2017) and biomolecules (Zamora-Olivares, Kaoud, Jose, Ellington, 
Dalby, & Anslyn, 2014; Zamora-Olivares et al., 2020) in complex bio
logical samples. Polymeric materials have been particularly successful in 
the DS of a variety of beverages (Bender, Bojanowski, Seehafer, & Bunz, 
2018; Huang, Seehafer, & Bunz, 2019; Wang et al., 2018). For wine, the 
DS technique mimics the senses of taste, smell, and palate texture. This 
technique utilizes a variety of cross-reactive receptors that display 
different binding affinities for multiple target molecules (Umali & Ans
lyn, 2010). The DS method has been successfully employed to classify 
wine varietals (Umali et al., 2011), wine blends (Ghanem et al., 2015), 
and to differentiate harvest decisions (Umali et al., 2015) on the basis of 
phenolic composition and distribution. The peptide-based sensors are 
ensembles of histidine-rich peptides bound to divalent metals and 
colorimetric indicators (Table S1) containing a catechol moiety. The 
peptide ensemble variably binds to phenolics, including polyphenolics 
(i.e., tannins), to create a targeted fingerprint for each wine sample 
(Nguyen & Anslyn, 2006). The colorimetric indicators are displaced 
from the peptide ensembles upon phenol binding and the color changes 
are quantified by UV–Vis spectroscopy. The resulting dataset of color 
changes are then analyzed as a composite pattern using chemometric 
routines such as PCA or linear discriminant analysis (LDA) (Stewart, Ivy, 
& Anslyn, 2014). 

The efficient and relatively simple readout of a targeted DS array is 
distinct and complementary to an untargeted approach offered by 1D 1H 
NMR spectroscopy. Thus, the combination of untargeted and targeted 
techniques was expected to improve the analysis and classification of 
wine and provide results that neither method can efficiently achieve 
independently (Fig. 1). Such analyses are crucial when attempting to 
capture subtle variations uniquely imparted by growing site and year to 
year growing conditions. Few studies have evaluated the advantages of 
combining NMR or mass spectrometry techniques with a targeted DS 
array. Thus, we hypothesize that the combination of these two analytical 
techniques will improve the classification of Pinot noir wines grown 
from fifteen vineyards, from eight distinct American Vitcultural Areas 
(AVAs) along the United States Pacific Coast, and for two vintage years 
(2015 and 2016). The Pinot noir wines were classified with a very high 
accuracy according to vineyard, regions, and vintage by combining 1D 
1H NMR spectroscopy with DS arrays. This was achieved by using 
multivariate PCA models and univariate statistical modeling based on 
RF and ROC analyses. Variability attributed to fermentation and aging 
steps was minimized by using identical fermentation and aging pro
tocols in stainless steel vessels. Quantifying differences that could be 
attributed to the growing site or conditions is of upmost importance 
considering the anticipated changes in microclimates and water avail
ability over the upcoming decades due to climate change (Hannah et al., 
2013). 
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2. Materials and methods 

2.1. Vineyard sites 

Wine grapes (Vitis vinifera L. ‘Pinot noir’ clone 667) from fifteen 
different vineyard sites along the Pacific Coast of the United States were 
harvested at a sugar concentration as close as possible to 24 Brix 
(determined by measuring with a density meter, Anton Paar 35 DMA) 
between 13 August to 15 September 2015 and between 25 August to 21 
September 2016. Eight AVAs, which span a latitudinal distance of 
approximately 1450 km, are represented in this study: Santa Rita Hills 
(SRH), Santa Maria Valley (SMV), Arroyo Seco (AS), Carneros (CRN), 
Sonoma Coast (SNC), Russian River Valley (RRV), Anderson Valley 
(AV), and Willamette Valley (OR). 

2.2. Winemaking 

Grapes were fermented in 200 L stainless steel fermentors at the UC 
Davis Teaching & Research Winery (Davis, CA). Primary fermentation 
was initiated by inoculating with Lalvin RC212 (Lallemand) after 
warming the must to 21 ◦C. The fermentation temperature was held a 
21 ◦C for two days after inoculation, and subsequently allowed to rise to 
27 ◦C, where it was held for the remainder of the primary fermentation. 
Wine was pressed off the red grape skins by using a basket press on the 
ninth day after grapes were placed into the fermentor. Wines were 
inoculated with Lalvin VP41 (Lallemand) for malolactic fermentation. 
Upon completion as measured by conversion of malic acid, the product 
was stored in stainless steel kegs. Wines were bottled under screw-cap 
closures approximately six months after harvest. Additional fermenta
tion and winemaking details are available as previously reported 
(Grainger et al., 2021). 

2.3. Differential sensing method 

The indicators Chrome Azurol S (CAS) (purity 65%), Bromopyr
ogagllol Red (BPR), and Pyrocatechol Violet (PCV) (purity 100%) were 
purchased from Sigma-Aldrich (Saint Louis, MO). Nickel chloride 
hexahydrate (purity 99.7%), copper (II) sulfate (purity 99.2%), and 
HEPES buffer were purchased from Fisher Scientific (Hampton, NH). 
Solid phase peptide synthesis reagents were purchased from P3 Bio
Systems (Louisville, KY). Peptides were synthesized using standard 
solid-phase peptide synthesis and a CEM Liberty Blue Automated Mi
crowave Synthesizer (Matthews, NC, USA). Absorbance values were 
recorded using a Spectra Max Plus 384 plate reader (Molecular Device 

Inc.). 

2.4. Peptide array and processing 

A library of nine peptide-based sensors (MM1–MM9) were used for 
the construction of the DS array. Each sensor was assembled using a 
histidine peptide, a divalent metal, and a colorimetric indicator. Three 
different histidine-containing peptides, WAHEDEFF (TT2), FHFPHHF 
(SEL1), and WEEHEE (RN8), were used to construct the peptide-metal- 
indicator ensembles with the corresponding binding ratios shown in 
Table S1, as previously reported (Umali et al., 2011). Peptides were 
combined with a metal ion and one of the following indicators: PCV, 
CAS, and BPR. The imidazole side chain on the peptides chelate the 
divalent metal ions, and these metals also bind to the colorimetric in
dicators (Fig. 1). Upon addition of the wine to the peptide sensors, the 
indicators become displaced from the ensembles producing color 
changes as differential optical responses due to the polyphenols present 
in the wine, in the manner previously reported in detail (Umali et al., 
2011). Arrays were prepared in Fisher Scientific non-treated 96-well 
plates with flat bottom and clear polystyrene. Final well-plate solu
tions of peptide ensembles and wine concentration of 1% (v/v) were 
prepared using 50 mM HEPES in ethanol (1:1 (v/v), pH = 7.4). Absor
bance endpoint-values due to the displacement of each indicator by the 
phenolics were measured at 430 nm, 444 nm, and 560 nm corresponding 
to the λmax of free CAS, PCV, and BPR, respectively. Eight analytical 
replicates were used for each of the fifteen wines to ensure reproduc
ibility. Controls consisted of a column of wine alone and a column of the 
ensemble alone in each plate. 

2.5. Sensing array batch correction 

Systematic data variation can arise from known and unknown 
sources, such as instrument differences, personnel changes, and envi
ronmental variation between batches. Such variations are observed in 
many biological assays (Chakraborty, 2019; Worley & Powers, 2014). 
Due to the prevalence of batch effects in analytical data, statistical 
techniques such as PLS have been used as a primary tool to monitor and 
correct for batch effects when real-time quality measurements are un
available (Fonville et al., 2010; Nomikos & MacGregor, 1995). In this 
model, a PLS analysis was used to correct for the variable separation 
between the two vintage years. 

Fig. 1. Schematic Representation of Pinot noir Combined Wine Classification. The combined experimental approach utilized NMR spectroscopy and DS array of 
phenolics (e.g., flavonoids, tannins). The analytical techniques were combined to discriminate fifteen Pinot noir wines from nine AVAs along the coast of California 
and Oregon. A combination of multivariate and univariate statistical methods was used to produce a classification model that differentiate wines based on vineyard, 
AVA region or vintage. 
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2.6. NMR sample preparation 

For each of the fifteen wine samples, eight analytical replicate NMR 
samples were created. Each sample was prepared by adding 150 µL of 
wine to 15 µL of 50 mM phosphate buffer prepared in D2O at pH 7.2 
(uncorrected). Deuterated sodium-3-trimethylsilypropoinate (TMSP, 
50μM) was used as an internal chemical shift standard. 

2.7. NMR data collection and processing 

The NMR experiments were collected on a Bruker AVANCE III 700 
MHz spectrometer equipped with a 5 mm quadrupole resonance QCI-P 
cryoprobe™ (1H, 13C, 15N and 31P) with a 2H lock and decoupling. A 
SampleJet automated sample changer with Bruker ICON-NMR™ soft
ware was used to automate data collection. 1D 1H NOESY experiments 
with a presaturation pulse were collected for each sample by using a 
Bruker automation program, Multisupp, to suppress the multiple solvent 
peaks from water and ethanol. 1D 1H NMR spectra were collected with 
65 K points, a spectral width of 14705 Hz, 128 scans, 4 dummy scans, 
and 4 s relaxation delay. 1D 1H NMR spectra were batch processed and 
analyzed using the NMR metabolomics toolbox, MVAPACK (Worley & 
Powers, 2014). The 1D 1H NMR spectra were Fourier transformed, auto 
phased with manual phase adjustment as needed, and TMSP was 
referenced to 0 ppm. Regions of the spectra containing water and 
ethanol peaks were removed. 

2.8. Multivariate data analyses 

The 1D 1H NMR spectra were normalized using probabilistic quo
tient (PQ) normalization and Pareto scaled. The full resolution NMR 
spectroscopy dataset was then used to create PCA models and dendro
grams based on the Mahalanobis distance between each group (Worley, 
Halouska, & Powers, 2013). Each dendrogram node is labeled with a p- 
value indicating the statistical significance of the group separation. DS 
array data was first batch corrected using a PLSfit correction. The 
resulting data matrix was Pareto scaled and then used to generate PCA 
models and dendrograms. The NMR spectroscopy and DS array datasets 
were also combined with equal contributions of each block (i.e., dataset) 
to generate multiblock principle component analysis (MB-PCA) models 
and dendrogram representations (Marshall et al., 2015). PCA models 
with four components were used to create linear discriminant analysis 
(PCA-LDA) models (Worley et al., 2013). Models were separately 
generated for the vineyard data, AVA region data, and vintage years. 

2.9. Univariate analyses 

To carry out univariate analyses, adaptively binned data of the 1D 1H 
NMR datasets were exported from MVAPACK (Worley & Powers, 2015). 
DS array data and NMR bins were then combined to create a complete 
data matrix. The subsequent data analysis was performed in Metab
oAnalyst 4.0 (https://www.metaboanalyst.ca/) (Xia, Sinelnikov, Han, & 
Wishart, 2015). Multivariate ROC curves were obtained for two-group 
comparisons between each wine and all other groups of wine. The 
two-group comparison was repeated for the AVA regions. ROC curves 
were generated using Monte-Carlo cross validation (MCCV) with 
balanced subsampling. Each MCCV utilized two-thirds of the samples as 
the training subset, while the remaining one-third was reserved for the 
testing subset. The dataset was Pareto scaled and the ROC curves were 
generated using a support vector machine algorithm. The RF algorithm 
in MetaboAnalyst 4.0, randomForest package (Liaw & Wiener, 2002), 
was utilized to classify the Pinot noir wines according to vineyard, re
gion, and year. The RF algorithm used an ensemble of 500 decision trees. 
Each decision tree was grown through random feature selection 
(maximum of 7 predictors) using a bootstrap sample at each branch. 
Classification was assigned by majority vote within the ensemble. Two- 
thirds of the samples was used to construct the training subset, while 

one-third was reserved for the testing subset. 

2.10. Univariate analysis of ROC feature frequency selection 

The top features from all vineyard and AVA region ROC curves were 
cataloged into a frequency map according to the number of times each 
feature (DS array or NMR) was selected by the ROC curve analysis. A 
total of 101 unique NMR features (from 210 available features) were 
selected a total of 571 times. In the same ROC analysis, 27 unique DS 
array features (from 27 available features) were selected a total of 229 
times. NMR chemical shift features were binned using a 0.1 ppm bin 
width. The most frequently selected NMR features for vineyard (≥ 10) 
and AVA region (≥ 8) were utilized to putatively assign group- 
differentiating metabolites. Putative metabolite assignments were 
based on a set of previously published 1D 1H NMR spectra for 55 known 
wine metabolites (Gougeon et al., 2019; Hu, Cao, Zhu, Xu, & Wu, 2019; 
Hu, Gao, Xu, Zhu, Fan, & Zhou, 2020; Mascellani et al., 2021). Assign
ments were based on consistency with known chemical shifts and 
coupling patterns. A chemical shift error of 0.1 ppm was used to account 
for chemical shift variability due to differences in pH, ethanol concen
trations, and chemical compositions between the wines and reference 
1D 1H NMR spectra. A similar protocol was used to annotate the single 
ROC curve comparison of the 2015 and 2016 vintage years. A catalog of 
feature usage was omitted from the ROC curve analysis of vintage since 
only one comparison was possible. 

3. Results and discussion 

3.1. Combining multiple analytical techniques to classify the vintage, 
vineyard, and the region of Pinot noir wines 

As shown in Fig. 1, two complementary techniques were utilized to 
classify Pinot noir wines derived from the same scion clone (Pinot noir 
667). In this regard, an expanded view of the chemical composition of 
each wine sample could be obtained by combining an untargeted NMR 
approach with a targeted DS array. The same level of coverage would 
not be possible with only one of these analytical techniques because they 
each detect a different set of metabolites. A 1D 1H NMR spectrum was 
acquired for each wine sample to provide a global chemical profile or 
metabolic fingerprint. Each peak in the NMR spectrum identifies a 
particular metabolite, where its relative abundance is indicated by the 
peak intensity. Thus, each 1D 1H NMR spectrum will vary as the 
chemical composition of the wine changes. Nonetheless, NMR will only 
detect the most abundant (>1 μM) metabolites, so it does not provide a 
complete picture of the overall chemistry. A DS array was also obtained 
for each wine sample. In contrast to the NMR data, the DS array was 
applied to classify only the phenolic composition of each wine sample. 
An array of nine sensing ensembles (Table S1) was used to identify the 
unique phenolic profile through the displacement of colorimetric in
dicators. The NMR spectroscopy and DS array datasets were then sub
jected to multivariate and univariate statistical analysis. Chemometric 
analysis was used to identify dataset features that characterized signif
icant differences between the wines (Fig. 2) grown in fifteen different 
vineyard sites, eight distinct AVAs, and two vintage years (2015 and 
2016). 

3.2. Multivariate analysis highlights unique vineyard and vintage 
classification 

While all Pinot noir grapes share the same genetic ancestors, the age 
of the vine and environmental influences lead to vine evolution that 
plays an important role in the structure of the resulting wine (Smith, 
2003). PCA was used to capture maximal group differences in Pinot noir 
wines from both the NMR and DS array multivariate datasets. For the 
purpose of analysis, individual PCA models and dendrograms were 
created for the NMR spectroscopy and DS array data, as well as both the 
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2015 and 2016 vintage data. The NMR and DS array datasets were then 
combined with equal contribution to create MB-PCA models, which 
generated a unified model that captured the maximum variation be
tween the groups and identified the key group-differentiating variables. 

Throughout the creation of these PCA and MB-PCA models, specif
ically with the NMR spectroscopy datasets, it was difficult to display the 
maximal separation between groups in a two-dimensional (2D) PCA 
scores plot. The data encompassed more information and complexity 

Fig. 2. Demographics of the Pinot noir Wine across the Pacific Coast of the United States. Samples displayed by vineyard code, AVA code, and vintage year. The AVA 
region locations are shown along the coast of California and Oregon. n(a) denotes the number of analytical replicates and n(r) denotes the number of samples from 
the same AVA region for each vintage year. 

Fig. 3. Vineyard Multivariate Scores Plots. 
LDA-MB-PCA scores plots and associated 
dendrograms generated from the com
bined NMR spectroscopy and DS array 
datasets from the (A) 2015 (R2 0.78, Q2 

0.53) and (B) 2016 (R2 0.67, Q2 0.54) wine 
samples. LDA-MB-PCA scores plots and 
dendrograms are displayed with color- 
coded groups labels, symbols and ellipses 
as defined in Fig. 2. Ellipses represent the 
95% confidence interval from a normal 
distribution. Each node of the dendrogram 
is labeled with a p-value based on Maha
lanobis distances between the groups. LDA 
models were generated from the first four 
components of the MB-PCA model.   
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than could be explained by two components. Some NMR PCA models 
required upwards of twelve components. Thus, PCA-LDA models were 
generated using four components of the respective PCA or MB-PCA 
models to capture the maximal separation within the model (Fig. 3 
and S1A, B). This was not a concern for the DS array dataset where a 2D 
PCA scores plot (Figs. S1C, D) was sufficient to display group variation. 
The resulting PCA-LDA scores plots (Fig. 3A and 3B) successfully 
demonstrated that the classification of Pinot Noir wines produced from 
an identical Pinot noir clone grown in different geographic regions along 
the Pacific Coast can be uniquely classified. The corresponding den
drograms display the relative similarity and/or differences between the 
individual wines with a p-value assigned to each node indicating the 
statistical significance of these differences. 

Several conclusions may be drawn from the analysis of the PCA and 
PCA-LDA scores plots and dendrograms based on the analysis of vine
yard classification. First, the PCA-LDA scores plots and dendrograms 
showed significant differences between the 2015 and 2016 vintage years 
(Fig. 3). The relative clustering in the 2015 and 2016 dendrograms are 
essentially unique. For example, OR2 is the most unique wine in 2015 
(furthest distance from any other wine as shown in Fig. 3A, while OR2 
clusters close to SRH1 in 2016 (Fig. 3B). AS2 showed maximal separa
tion in 2016 while this vineyard clustered close to SMV2 and SRH1 in 
2015. Conversely, the wine pairs OR1-CRN1 (p-value 0.08) and AV1- 
AS1 (p-value 0.45) are not statistically distinct in 2015, but they are 
distinct in 2016 with p-values of 1.01 × 10− 4 and 1.37 × 10− 11, 
respectively (Table S3). Conversely, RRV1-AS1 (p-value 0.02) are not 
statistically distinct in 2016 but are distinct in 2015 (p-value 4.93 ×
10− 5 Table S2). A similar level of unique clustering occurs when 
comparing the NMR LDA-PCA (Fig. S1A, B), DS array PCA (Fig. S1C, D) 

and the LDA-MB-PCA (Fig. 3) scores plots. These results are consistent 
with the fact that NMR and DS array capture different chemical features, 
and these chemical features have different group discriminations. NMR 
spectroscopy captures a large breadth of information through an 
untargeted approach and exhibits small within group variation and 
larger between group variation. Conversely, the DS array specifically 
targets the phenolic profile, which has limited discrimination and leads 
to a larger within group variation. As expected, the LDA-MB-PCA is a 
hybrid of the NMR and DS array models. Now, while the within group 
variance increases from the NMR LDA-PCA to the LDA-MB-PCA models, 
both techniques show distinct areas of separation and contribute 
different features that aid in the overall separation of the wines by 
vineyard. This is further evident from the univariate analysis shown 
below. 

3.3. Multivariate analysis of regions highlights the complex nature of 
geographic location and vineyard practices 

In an effort to further demonstrate the applicability of the combined 
analytical techniques, the classification of eight AVA regions was eval
uated by multivariate analysis. While classification of wines according 
to individual vineyard sites showed distinct clustering in the PCA and 
PCA-LDA scores plots (Fig. 3), wine classification according to AVA re
gion proved to be more nuanced (Fig. 4). Vineyard sites such as those 
within the RRV AVA showed clustering of two wines, RRV1 and RRV3, 
while the third wine, RRV2, exhibited a distinct signature across both 
the 2015 and 2016 vintage years. The sub-clustering within this region 
prevented a multivariate analysis for both the NMR spectroscopy and DS 
array datasets. Alternatively, valid models with sufficient group 

Fig. 4. AVA Region Multivariate Scores 
Plots. LDA-PCA scores plots and associ
ated dendrogram models generated from 
the NMR spectroscopy region datasets 
from the (A) 2015 (R2 0.79, Q2 0.74) and 
(B) 2016 (R2 0.75, Q2 0.70) wine sam
ples. LDA-PCA scores plots and dendro
grams are displayed with color-coded 
groups labels, symbols and ellipses as 
defined in Fig. 2. Ellipses represent the 
95% confidence interval from a normal 
distribution. Each node of the dendro
gram is labeled with a p-value based on 
Mahalanobis distances between the 
groups. LDA models were generated from 
the first four components of the PCA 
model.   
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separation by region were generated upon the removal of RRV2 from the 
PCA and PCA-LDA models. The four most significant components of the 
PCA models were used to generate PCA-LDA models for both the 2015 
(Fig. 4A) and 2016 (Fig. 4B) NMR spectroscopy datasets. PCA models 
were also generated for the DS array 2015 (Fig. S2A) and 2016 datasets 
(Fig. S2B). A valid MB-PCA model could not be generated from the 
combined 2015 or 2016 region datasets. While the DS array data was a 
good predictor of vineyard signature, small variations observed in the 
region DS array datasets hindered our ability to generate valid multi
block models with the combined NMR spectroscopy and DS array 
datasets. This result suggests that the phenolic profile alone may not be 
sufficient to differentiate most of the AVA regions. 

The PCA-LDA scores plot and the associated dendrograms for the 
NMR spectroscopy dataset exhibited good group separation between the 
eight AVA regions (Fig. 4). In fact, several p-values within the dendro
gram nodes are zero, which indicates that the region classification is 
better than the vineyard classification seen in Fig. 3. Of course, it is 
inherently easier to separate eight groups compared to fifteen groups. It 
is important to note that a closer examination of the individual group 
clustering indicates some within group sub-clustering. This is particu
larly noticeable for the SNC and AS regions in 2015 and the SMV region 
in 2016. This sub-clustering may suggest that group membership within 
a given AVA region is not uniformly defined by a unique chemical 
signature. 

Similar to the vineyards, the AVA region analysis showed a unique 
clustering pattern between the 2015 and 2016 vintages. Likewise, the 
dendrograms presented a distinct set of nearest neighbors. For example, 
RRV was the most unique AVA region in 2015, but RRV clustered near 
SNC and CRN in 2016. Conversely, AS was the most unique AVA region 
in 2016, but it clustered closer to SMV in 2015. Overall, the Pinot noir 
wine clustering using the combined NMR spectroscopy and DS array 
dataset contained a stronger metabolic signature for the individual 
vineyard than for the geographic location of growth. Nevertheless, a 
classification-based AVA region was still achieved. 

3.4. Univariate analyses demonstrate an improved wine classification 
through a combination of analytical techniques 

In addition to multivariate analysis, univariate analyses were used to 
determine specific features from the NMR spectroscopy and DS array 
datasets that could be used to distinguish Pinot noir wines by vineyard 
or region. Univariate analysis was carried out with 1D 1H NMR binned 
data and raw DS array data. Specifically, NMR features corresponded to 
a given ppm bin, whereas DS array features attributed the absorbance 
(λmax 430 nm, 444 nm, or 560 nm) of a particular peptide sensor 
(MM1–MM9, Table S1). RF analysis was used to establish the classifi
cation accuracy of the Pinot noir wines across vineyard and region. As 
shown in Table 1, the vineyard classification accuracy for the NMR 
spectroscopy or DS array datasets was high with an average value of 
0.94 ± 0.10 and 0.88 ± 0.13, respectively. The classification accuracy 
ranges from 0 to 1, where a value of 1 indicates a perfect classification. 
The vineyard classification accuracy for the combined NMR spectros
copy and DS array dataset exceeded the individual results and reached 
an average of 0.98± 0.05 with p-values < 0.05 when compared to the 
results from the individual techniques. There were no notable differ
ences in vineyard classification accuracy between the 2015 and 2016 
vintages. Interestingly, the performance of the individual analytical 
techniques varied between the two vintages. The NMR spectroscopy 
dataset had a higher vineyard classification accuracy for 2016 (0.98±
0.05) compared to 2015 (0.90 ± 0.12). The opposite was observed for 
the DS array dataset where the 2015 dataset (0.92 ± 0.08) was better 
than the 2016 dataset (0.80 ± 0.15). 

A similar level of classification success was achieved using the AVA 
regions (Table 1). The AVA region classification accuracy for the NMR 
spectroscopy and DS array datasets was similarly high with an average 
value of 0.94 ± 0.10 and 0.82±0.13, respectively. The AVA region 

classification accuracy for the combined NMR spectroscopy and DS 
array datasets equaled or exceeded the individual results. The AVA re
gion classification accuracy reached an average of 0.98± 0.04. While the 
improvement was statistically significant relative to the DS array dataset 
(p-value 0.0002), it was not significant when compared to the NMR 
spectroscopy dataset (p-value 0.15). This is in part due to the limited 
AVA region variance (attributed to the DS array data described earlier). 
Overall, the NMR spectroscopy dataset showed a greater ability to 
distinguish the nuances of AVA regions. Nevertheless, there were spe
cific situations where the classification accuracy was low when only the 
NMR spectroscopy or the DS array dataset was used independently, but 
the accuracy improved significantly for the combined dataset. For 
example, in the case of the 2015 SRH region, both the NMR spectroscopy 
and DS array datasets alone were only capable of accurately classifying 
63% of the wine samples. Specifically, only five of the eight wine sam
ples were correctly classified as SRH. Conversely, the combined NMR 
spectroscopy and DS array data improved the classification accuracy to 
88%, in which seven out of the eight wine samples were correctly 
classified as SRH. Overall, the combination of analytical techniques 
improved the classification accuracy for both vineyards and AVA 
regions. 

ROC curves were also generated to advance our understanding of the 
metabolic fingerprint that defined Pinot noir wines derived from grapes 
grown along the Pacific Coast. ROC curves were utilized to further 
evaluate the performance of the NMR spectroscopy and DS array data
sets, and to identify unique features that distinguished vineyards and 
AVA regions. ROC curves compare the true positive rate (1-specificity) 
with the false positive rate (sensitivity) where the AUC provides a 
measure of model performance and accuracy (Fan et al., 2006). AUC 
typically ranges from 0.5 to 1, where 1 indicates perfection and 0.5 
identifies a random outcome. For each model, the ROC curve with the 
fewest number of features and the highest AUC was chosen. Represen
tative ROC curves for vineyard SNC2 and the associated feature list are 
shown in Fig. S3. ROC curves were only generated from the combined 
NMR spectroscopy and DS array dataset. Table 1 summarizes the AUC 
for each ROC curve for the vineyards, AVA regions and vintages. An 
average AUC of 0.96±0.04 was observed for both the vineyard and AVA 
regions. Likewise, the ROC curves indicate that a high classification 
accuracy was obtained by combining the NMR spectroscopy and DS 
array datasets. 

The ratio of NMR and DS array features used to generate the ROC 
curves was also evaluated. Table 1 lists the NMR spectroscopy and DS 
array percent contribution to both the model and to the total number of 
available features. Notably, a variable amount of NMR and DS array 
features was used to define each individual ROC curve. For example, 
vineyards SNC2 2015 showed an AUC of 0.99 with a 20:80 ratio of NMR 
to DS array features. Interestingly, the ROC curve for the 2016 vintage 
exhibited a similar AUC of 0.96, but the relative feature contributions 
changed to an 80:20 ratio of NMR spectroscopy to DS array features 
(Fig. S3). The consistently high AUC values for both vineyard and region 
indicated that the combined NMR spectroscopy and DS array data 
contained distinct features for all fifteen wines and eight regions. These 
features may be used to separate each vineyard and region from the 
entire collection of Pinot noir wines. There were a few circumstances 
where all features were selected from a single dataset (i.e., NMR). These 
instances corresponded to vineyards AS2 2015, RRV1 2016, and OR2 
2016; and AVA regions RRV 2016 and AV 2016. Notably, the lower 
contribution of DS array features to the 2015 and 2016 AVA regions was 
consistent with the multivariate analysis as described above. 

ROC curves were also used to identify DS array and NMR spectros
copy features that were frequently utilized to distinguish Pinot noir 
wines by vineyard or AVA region (Fig. 5). The top features selected from 
the ROC curve analysis of the combined NMR spectroscopy and DS array 
dataset for the 2015 SNC2 vineyard are shown in Fig. 5A. The ROC 
feature selection plot in Fig. 5A identifies the specific NMR bins (i.e., 
ppm) and peptide sensors (i.e., MM1–MM9) that differentiated the 2015 
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Table 1 
Summary of Pinot noir Wines Univariate Analysis.  

Sample IDa Random Forest Classificationb NMR þ DS Array ROC Curvec 

NMR DS Array NMR þ DS Array AUC NMR Ratiod (% NMR) DS Array Ratioe (% DS) 

2015 Vineyard 
SMV1 Santa Maria Valley 0.88 1.00 1.00 0.95 0.93 (0.07) 0.07 (0.04) 
SMV2 Satna Maria Valley 1.00 0.88 1.00 0.98 0.73 (0.05) 0.27 (0.15) 
SRH1 Santa Rita Hills 0.75 0.88 0.88 0.91 0.40 (0.05) 0.60 (0.56) 
AS1 Arroyo Seco 0.63 1.00 0.88 0.81 0.88 (0.1) 0.12 (0.11) 
AS2 Arroyo Seco 0.75 0.88 1.00 0.98 1.00 (0.07) 0.00 (0.00) 
SNC1 Sonoma Coast 1.00 0.88 1.00 0.98 0.68 (0.08) 0.32 (0.30) 
SNC2 Sonoma Coast 0.75 1.00 1.00 0.99 0.20 (0.01) 0.80 (0.44) 
CRN1 Carneros 1.00 1.00 1.00 0.92 0.64 (0.08) 0.36 (0.33) 
RRV1 Russian River Valley 1.00 0.75 1.00 0.99 0.93 (0.07) 0.07 (0.04) 
RRV2 Russian River Valley 1.00 0.86 1.00 0.98 0.52 (0.06) 0.48 (0.44) 
RRV3 Russian River Valley 1.00 1.00 1.00 0.99 0.67 (0.05) 0.33 (0.19) 
AV1 Anderson Valley 0.86 0.86 0.86 0.94 0.92 (0.11) 0.08 (0.07) 
AV2 Anderson Valley 0.88 1.00 1.00 0.94 0.64 (0.08) 0.36 (0.33) 
OR1 Willamette Valley 1.00 1.00 1.00 0.99 0.80 (0.06) 0.20 (0.11) 
OR2 Willamette Valley 1.00 0.88 1.00 0.95 0.32 (0.04) 0.68 (0.63) 
Averagef 0.90 ± 0.12 0.92 ± 0.08 0.97 ± 0.05 0.95 ± 0.05   
p-valueg (individual vs combination) 0.045 0.05     

2016 Vineyard 
SMV1 Santa Maria Valley 1.00 0.75 1.00 0.97 0.87 (0.06) 0.13 (0.07) 
SMV2 Satna Maria Valley 0.88 0.88 1.00 0.96 0.72 (0.09) 0.28 (0.26) 
SRH1 Santa Rita Hills 1.00 1.00 1.00 0.95 0.64 (0.08) 0.36 (0.33) 
AS1 Arroyo Seco 1.00 0.88 1.00 0.95 0.47 (0.03) 0.53 (0.30) 
AS2 Arroyo Seco 0.88 0.88 0.88 0.95 0.40 (0.03) 0.60 (0.33) 
SNC1 Sonoma Coast 1.00 1.00 1.00 0.97 0.67 (0.05) 0.33 (0.19) 
SNC2 Sonoma Coast 1.00 0.75 1.00 0.96 0.80 (0.10) 0.20 (0.19) 
CRN1 Carneros 0.88 0.50 0.88 0.99 0.73 (0.05) 0.27 (0.15) 
RRV1 Russian River Valley 1.00 0.75 1.00 1.00 1.00 (0.07) 0.00 (0.00) 
RRV2 Russian River Valley 1.00 0.75 1.00 0.96 0.88 (0.10) 0.12 (0.11) 
RRV3 Russian River Valley 1.00 1.00 1.00 0.99 0.40 (0.02) 0.60 (0.22) 
AV1 Anderson Valley 1.00 0.75 1.00 1.00 0.87 (0.06) 0.13 (0.07) 
AV2 Anderson Valley 1.00 1.00 1.00 0.97 0.72 (0.09) 0.28 (0.26) 
OR1 Willamette Valley 1.00 1.00 1.00 0.99 0.80 (0.04) 0.20 (0.07) 
OR2 Willamette Valley 1.00 0.63 1.00 0.99 1.00 (0.07) 0.00 (0.00) 
Average 0.975 ± 0.05 0.83 ± 0.15 0.98 ± 0.04 0.97 ± 0.02   
p-value (individual vs combination) 0.64 0.001     

Vineyard Totals 
Average  0.94 ± 0.10 0.88 ± 0.13 0.98 ± 0.05 0.96 ± 0.04   
p-value (vineyard vs combination) 0.050 0.0002     

2015 Region 
Santa Maria Valley SMV1, SMV2 1.00 0.94 1.00 0.97 0.93 (0.07) 0.07 (0.04) 
Santa Rita Hills SRH1 0.63 0.63 0.88 0.91 0.36 (0.04) 0.64 (0.59) 
Arroyo Seco AS1, AS2 0.94 1.00 0.94 0.93 0.72 (0.09) 0.28 (0.26) 
Sonoma Coast SNC1, SNC2 0.81 0.81 1.00 0.96 0.60 (0.03) 0.40 (0.15) 
Carneros CRN1 0.83 0.83 1.00 0.87 0.53 (0.04) 0.40 (0.22) 
Russian River Valley RRV1, RRV2, RRV3 1.00 0.78 1.00 0.99 0.87 (0.06) 0.13 (0.07) 
Anderson Valley AV1, AV2 0.93 0.87 0.93 0.96 0.73 (0.05) 0.27 (0.15) 
Willamette Valley OR1, OR2 1.00 0.94 1.00 0.99 0.80 (0.04) 0.20 (0.07) 
Average 0.09 ± 0.12 0.85 ± 0.11 0.97 ± 0.05 0.95 ± 0.04   
p-value (individual vs combination) 0.147 0.018     

2016 Region 
Santa Maria Valley SMV1, SMV2 0.94 1.00 1.00 0.99 0.80 (0.04) 0.20 (0.07) 
Santa Rita Hills SRH1 1.00 0.75 1.00 0.93 0.80 (0.06) 0.20 (0.11) 
Arroyo Seco AS1, AS2 1.00 0.94 1.00 0.98 0.90 (0.04) 0.10 (0.04) 
Sonoma Coast SNC1, SNC2 1.00 0.88 1.00 0.99 0.67 (0.05) 0.33 (0.19) 
Carneros CRN1 0.88 0.50 0.88 0.99 0.80 (0.06) 0.20 (0.11) 
Russian River Valley RRV1, RRV2, RRV3 1.00 0.83 1.00 0.98 1.00 (0.05) 0.00 (0.00) 
Anderson Valley AV1, AV2 1.00 0.75 1.00 0.99 1.00 (0.05) 0.00 (0.00) 
Willamette Valley OR1, OR2 1.00 0.69 1.00 0.98 0.73 (0.05) 0.27 (0.15) 
Average 0.98 ± 0.04 0.79 ± 0.15 0.98 ± 0.04 0.98 ± 0.02   
p-value (individual vs combination) 0.736 0.005     

Region Totals 
Average  0.94 ± 0.10 0.82 ± 0.13 0.98 ± 0.04 0.96 ± 0.04   
p-value (region vs combination) 0.1529 0.0002      

a list of the fifteen vineyard IDs and the associated regions. 
b RF classification accuracy ranges from 0 to 1, where 1 is perfect classification. RF classification accuracy using just the NMR or DS array data alone or using the 

combined dataset. 
c ROC - receiver operating characteristic curve, AUC-area under the ROC curve. AUC ranges from 0.5 to 1, where 1 indicates perfect classification. ROC and AUC 

were calculated using the combined NMR spectroscopy and DS array datasets . 
d NMR ratio identifies the percentage of the total features used in the ROC curve that are from the 1D 1H NMR spectrum. %NMR identifies the percentage of the total 

number of NMR features used in the ROC curve. 
e DS array ratio identifies the percentage of the total features used in the ROC curve that are from the DS array data. %DS identifies the percentage of the total number 

of DS array features used in the ROC curve 
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SNC2 vineyard from the remaining vineyards. The plot also identified 
the relative directional change in the features and how often each 
feature was selected to differentiated between the vineyards. A similar 
analysis was completed for each AVA region, where a representative plot 
of the top features is shown in Fig. 5B for the 2015 SNC AVA region. 

The top selected features from all ROC curve analyses were cataloged 
and the usage-frequency between vineyards and AVA regions are plotted 
in Fig. 5C and 5D, respectively. Notably, the DS feature selection rate 
was relatively consistent across the nine sensors, which suggests an 
equal contribution of phenols to the group classification. Conversely, the 
selection rate of the NMR features was highly variable, which suggests 
certain metabolites were preferred discriminators of the Pinot noir 
wines. Thus, the high-usage NMR features were assigned to potential 
metabolites or chemical classes using a set of reference 1D 1H NMR 
spectra of known wine metabolites. Specifically, 55 metabolites were 

previously identified from four prior NMR metabolomics studies of 
similar wines (Gougeon et al., 2019; Hu et al., 2019, 2020; Mascellani 
et al., 2021). Fig. 5C and 5D depicts several metabolite classes and pu
tative metabolite assignments that may preferentially classify Pinot noir 
wines according to vineyard or AVA region, respectively. Our analysis 
suggests that metabolites such as branched-chain amino acids, sugar 
alcohols including ethyl alcohols and phenyl alcohols, derivatives of the 
tricarboxylic acid cycle (TCA) such as malic acid and citric acid, sugars 
including fructose, and aromatic amino acids may play an important 
role in classifying Pinot noir wines across the Pacific Coast of the United 
States. It is important to note that the primary purpose of our study was 
to demonstrate the value of combining NMR and DS array features to 
classify and differentiate Pinot noir wines based on vineyard, region, 
and vintage. Assigning a metabolite to each of the group-defining fea
tures was not our original intent. As a result, the accuracy of the 

f Column averages are presented as average ± standard deviation 
g p-values are calculated from a Student’s t-test 

Fig. 5. ROC Curve Analysis and Feature Selection Frequency. Representative ROC curve feature selection charts from the combined NMR spectroscopy and DS array 
dataset for the (A) 2105 SNC2 vineyard analysis and (B) 2015 SNC region analysis. The ROC curves were generated with MetaboAnalyst 4.0 (https://www.metaboan 
alyst.ca/) (Xia et al., 2015). NMR feature usage from all of the ROC curves is plotted using an NMR bin (ppm) size of 0.1 ppm for (C) vineyard and (D) region analysis. 
2015 data are colored blue, and the 2016 data is colored red. A plot of the DS array feature (MM1 to MM9) usage from the same ROC curve analyses are displayed as 
an insert. Putative metabolite assignments correspond to 1, isobutanol; 2, malic acid; 3, phenethyl alcohol; 4, mannitol; 5, fructose; 6, ethyl acetate; 7, ethyl lactate; 8, 
tyrosine; and 9, citric acid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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subsequent metabolite identification was greatly hindered by solely 
relying on 1D 1H NMR spectra and, importantly, by the limited avail
ability of data resources consisting of reference NMR spectra specific to 
the wines and geographic locations used in this study. Accordingly, only 
the 55 known wine metabolites were used to assign the NMR frequency 
plots in Fig. 5C and 5D. The remaining unassigned NMR bins correspond 
to currently unknown or unverified wine metabolites. 

The ROC curves further supported the observation that the 2015 and 
2016 vintage years exhibited distinct features that were independent of 
vineyard and AVA region. This was evident by the variable number of 
NMR spectroscopy and DS array features contributing to each pair of 
2015/2016 vineyard or AVA region model (Fig. S3 and Table 1). The 
univariate analyses (RF and ROC) clearly highlighted the value and 
importance of combining multiple analytical techniques to identify 
distinct regions of the metabolic fingerprint. In addition to the improved 
accuracy of predicting vineyard or AVA region membership, the uni
variate analyses corroborate that different combinations of features 
were required to accurately classify each vineyard or AVA region. 

3.5. Vintage year analysis highlights the effects of microclimate on both 
vineyard and region classification 

Along with vineyard and AVA region classification, vintage year was 
also evaluated for a metabolic fingerprint that contributed to dis
tinguishing the various Pinot noir wines. As our results indicate, we have 
found that the AVA region, and more importantly, the specific vineyard 
site, can significantly impact the metabolic fingerprint of the Pinot noir 
wines. It is evident from the PCA (and PCA-LDA) models (Fig. 3 and 
Fig. 4) that significant differences are present between the 2015 and 
2016 vintages. The dendrograms show no consistent clustering patterns 
between the two vintage datasets. All attempts to create a unified 
multivariate model with the combined datasets proved ineffective. A 
detailed RF analysis of the entire 2015 and 2016 wine dataset further 
illustrated the uniqueness of the two vintages. Specifically, the 116 
replicates (4 outliers were excluded) from 2015 and 120 replicates from 
2016 were combined for a single RF analysis. The RF model resulted in 
97.4% and 100% classification accuracy for the 2015 and 2016 vintages, 
respectively. Again, this outcome suggests that the wine datasets can be 
readily classified according to vintage year alone. In a similar manner, a 
ROC curve was created from the entire 2015 and 2016 wine dataset. A 
resulting ROC curve consisting of 25 NMR spectroscopy and DS array 
features yielded an AUC of 0.88 for differentiating between the 2015 and 
2016 vintage years (Fig. S4). A putative annotation of the top ROC curve 
features revealed that almost all of the identified metabolites such as 
sugars, sugar alcohols, and TCA derivatives were decreased in 2015 
compared to 2016 (Fig. S4). Only one NMR feature was increased in 
2015. Together, the entirety of the univariate and multivariate statistical 
analyses described above demonstrates that Pinot noir wines along the 
Pacific Coast of the United States can be distinguished by vintage year 
with a high level of accuracy. 

4. Conclusions 

Pinot noir wines from fifteen vineyards in eight wine-producing re
gions along the Pacific Coast of the United States were evaluated for 
metabolic features that classified the wines according to vineyard, re
gion, and vintage year. A variety of biological or analytical techniques 
have previously been employed to distinguish between various types of 
wines. NMR, gas chromatography-MS, and various sensors have been 
used to identify unique fingerprints of European and American wines. 
The combination of such techniques has also been utilized to discrimi
nate wine varietals from unique geographic regions (Duley et al., 2021; 
Kioroglou, Mas, & Portillo, 2020; Wu et al., 2019). Nevertheless, little 
attention has been paid to combining multiple analytical techniques to 
improve the classification accuracy of identical Pinot noir clones grown 
across distinct geographic locations. Toward this end, we report that the 

combination of untargeted metabolomics fingerprinting using 1D 1H 
NMR spectroscopy with a targeted analysis of phenolic profiles using a 
colorimetric DS peptide-based array has proven to be a highly effective 
approach to distinguish wines produced from genetically identical 
grapevines across vineyard location, geographic region, and vintage 
year. Our analysis highlights that targeted and untargeted techniques 
can be combined to successfully classify wine varietals solely based on 
geographic location and vintage year. In this study, Pinot noir wines 
were classified according to vineyard and AVA region with an accuracy 
of 0.96 ±0.04. We have demonstrated through multivariate and uni
variate statistical techniques that the combination of NMR spectroscopy 
and DS array showed a marked improvement in distinguishing vineyards 
and regions that were at times difficult to verify by these techniques 
individually (Table 1). Together this data demonstrated that the com
bined analysis of both untargeted and targeted analytical techniques 
provides an improved and efficient method of wine variety verification 
by vineyard, region, and vintage year. 
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