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Abstract
Introduction Failure to properly account for normal systematic variations in OMICS datasets may result in misleading 
biological conclusions. Accordingly, normalization is a necessary step in the proper preprocessing of OMICS datasets. In 
this regards, an optimal normalization method will effectively reduce unwanted biases and increase the accuracy of down-
stream quantitative analyses. But, it is currently unclear which normalization method is best since each algorithm addresses 
systematic noise in different ways.
Objective Determine an optimal choice of a normalization method for the preprocessing of metabolomics datasets.
Methods Nine MVAPACK normalization algorithms were compared with simulated and experimental NMR spectra modi-
fied with added Gaussian noise and random dilution factors. Methods were evaluated based on an ability to recover the 
intensities of the true spectral peaks and the reproducibility of true classifying features from orthogonal projections to latent 
structures—discriminant analysis model (OPLS-DA).
Results Most normalization methods (except histogram matching) performed equally well at modest levels of signal vari-
ance. Only probabilistic quotient (PQ) and constant sum (CS) maintained the highest level of peak recovery (> 67%) and 
correlation with true loadings (> 0.6) at maximal noise.
Conclusion PQ and CS performed the best at recovering peak intensities and reproducing the true classifying features for 
an OPLS-DA model regardless of spectral noise level. Our findings suggest that performance is largely determined by the 
level of noise in the dataset, while the effect of dilution factors was negligible. A minimal allowable noise level of 20% was 
also identified for a valid NMR metabolomics dataset.
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Abbreviations
NMR  Nuclear magnetic resonance
PCA  Principal components analysis
OPLS-DA  Orthogonal projections to latent structures—

discriminant analysis
PQ  Probabilistic quotient
HM  Histogram matching

SNV  Standard normal variate
MSC  Multiplicative scatter correction
Q  Quantile
CSpline  Natural cubic splines
SSpline  Smoothing splines
CS  Constant sum
ROI  Region of interest
PSC  Phase-scatter correction
LOESS  LOcally Estimated Scatterplot Smoothing
ROC  Receiver operating characteristic curve
1D  One-dimensional
SD  Standard deviation

1 Introduction

High-throughput facilities continue to improve the acquisi-
tion and throughput of OMICS experiments (e.g., genom-
ics, transcriptomics, proteomics, and metabolomics), which 
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has resulted in the rapid accumulation of large amounts of 
data (Berger et al. 2013). These massive datasets have ena-
bled the detection and quantification of thousands of genes, 
proteins, and metabolites across various biological samples 
(Chawade et al. 2014). Accordingly, OMICs data has signifi-
cantly contributed to a variety of fields including drug dis-
covery (Butcher et al. 2004), personalized medicine (Chen 
et al. 2012), nutrition (Wishart 2008) and environmental 
studies (Aardema and MacGregor 2002). Perturbations or 
variance are inherent to all experimental datasets and come 
from a variety of sources such as biological variability, 
instrument instability, and inconsistency in sample handling 
and preparation. For example, the number of cells harvested, 
the mass of tissue collected, or the amount of urine produced 
may vary significantly across all of the biological replicates. 
These unavoidable variations may mask the real biological 
signals present in the samples, which, in turn, complicates 
the reliability and accuracies of all downstream quantitative 
analyses (Kohl et al. 2012). Accordingly, the preprocess-
ing of OMICs data is a critical step and involves minimiz-
ing undesirable noise to make all subsequent analyses more 
robust, accurate, and precise (Dieterle et al. 2006). One cru-
cial preprocessing step is the normalization of data, which 
has been shown to effectively reduce systematic noise in 
OMICs datasets (Chawade et al. 2014).

Normalization of OMICS datasets can be accomplished 
using a variety of methods (Giraudeau et al. 2014; Hochrein 
et al. 2015). But, the proper choice depends on data charac-
teristics and the sources of variation that needs correcting. 
How well a specific normalization technique performs in 
reducing these extraneous biases is still an open question. 
Accordingly, identifying an optimal normalization technique 
is still a common issue encountered throughout the OMICs 
fields. For example, in genomics, differences in sequencing 
length (library size), gene length, or guanine–cytosine con-
tent may lead to data variance and a false interpretation of 
gene expression variability (Zyprych-Walczak et al. 2015). 
Thus, an appropriate normalization method needs to elimi-
nate these sources of variance to ensure an accurate measure 
of gene expression levels. To address this issue, Choe et al. 
examined four popular normalization methods routinely 
used in genomics that included: constant sum, rank-invari-
ant, LOcally Estimated Scatterplot Smoothing (LOESS), and 
quantile (Choe et al. 2005). The normalization algorithms 
were compared using RNA-microarray data. The LOESS 
normalization algorithm assumes a non-linear relationship 
and uses a local regression approach to adjust signal inten-
sity and noise. Incorporating LOESS normalization into the 
analysis of the RNA-microarray data yielded superior results 
relative to the other normalization techniques. LOESS 
improved the detection of true differentially expressed 
genes as evident by the largest area under the receiver oper-
ating characteristic (ROC) curve. Similarly, Callister et al. 

evaluated four normalization techniques routinely used in 
proteomics (Callister et al. 2006). Central tendency, linear 
regression, locally weighted regression, and quantile nor-
malization algorithms were compared using three sets of 
samples representing different levels of data complexity. The 
linear regression normalization algorithm was identified as 
the top performer since it exhibited the largest reduction 
in extraneous variability while also maintaining the highest 
reproducibility as measured by both pooled estimate of vari-
ance and a median coefficient of variance.

Metabolomics characterizes both the identity and the 
quantity of metabolites present in a biological sample (Kohl 
et al. 2012). Since metabolites are a direct product of cellular 
processes, the metabolome is able to accurately capture the 
current state of the system. Thus, even subtle changes in 
metabolite concentrations may provide important insights 
into disease progression (Cuykx et al. 2018), drug resistance 
(Thulin et al. 2017), or a response to numerous stress fac-
tors (e.g., environmental toxins, nutrient limitation, genetic 
mutation, etc.) (Doran et al. 2017; Fukushima et al. 2017; 
Jung et al. 2017). Unfortunately, like genomics and proteom-
ics, these metabolite differences are easily obscured by the 
natural variance that occurs between biological replicates 
or by inconsistencies in sample sizes. Furthermore, since 
nuclear magnetic resonance (NMR) spectroscopy (Kohl 
et al. 2012) is routinely used to monitor the metabolome, 
instrument instability and experimental factors such as 
changes in pH, temperature, ionic strength or even sample 
composition may lead to unintended signal variance (Diet-
erle et al. 2006). Such non-biologically induced perturba-
tions are likely to mask the true biological signals in the data 
and complicate the data analysis process. Again, normaliza-
tion is a necessary requirement to minimize these undesir-
able variations and to increase the accuracy and reliability 
of all subsequent data analyses.

A variety of procedures are currently available to normalize 
NMR metabolomics data (Fukushima et al. 2017; Hochrein 
et al. 2015). Since each algorithm addresses systematic varia-
tions in a different manner, the correct choice of a normaliza-
tion scheme can be challenging. For example, some normaliza-
tion algorithms aim to remove unwanted noise by minimizing 
inter-sample variation such as probabilistic quotient (Dieterle 
et al. 2006) and cubic splines methods (Workman et al. 2002), 
while others such as unit variance or Pareto (often referred to 
as scaling), aim to adjust the variance of spectral features so 
that all peaks are equally weighted when used to construct 
multivariate models such as principal components analysis 
(PCA). Since these algorithms were developed with differ-
ent underlying assumptions, each method confers a unique set 
of advantages and disadvantages. For example, Craig et al. 
(2006), demonstrated that while constant sum normalization 
adequately preserves signal quality, it can change the underly-
ing correlations between peaks and generate artifacts. Thus, 
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constant sum may confound interpretations when used incor-
rectly. A comparative analysis of normalization schemes by 
Kohl et al. (2012) determined that quantile normalization sig-
nificantly outperforms other approaches in both minimizing 
inter-sample standard deviation and accurately preserving fold 
change information. However, it was also noted that the per-
formance of quantile normalization was only truly realized for 
large datasets (n ≥ 50) and offers no significant performance 
benefits on more modestly sized datasets.

The diversity of normalization algorithms and the lack 
of a clear consensus has provided the motivation to con-
duct a thorough and quantitative evaluation of normalizing 
methods currently available to the metabolomics commu-
nity through our MVAPACK software package (Worley and 
Powers 2014a). MVAPACK is open source software (http://
bionm r.unl.edu/mvapa ck.php) that includes a complete set 
of functions for data loading, preprocessing, modeling, and 
validation of NMR metabolomics datasets. MVAPACK also 
includes the following normalization methods: probabilis-
tic quotient (PQ) (Dieterle et al. 2006), histogram matching 
(HM) (Torgrip et al. 2008), standard normal variate (SNV) 
(Barnes et al. 1989), multiplicative scatter correction (MSC) 
(Windig et al. 2008), quantile (Q) (Kohl et al. 2012), natural 
cubic splines (CSpline) (Workman et al. 2002), smoothing 
splines (SSpline) (Fujioka and Kano 2005), constant sum 
(CS) and region of interest (ROI) (Dieterle et al. 2006). Our 
phase-scatter correction (PSC) algorithm is also available in 
MVAPACK, but was not included in this comparison since 
PSC was previously discussed in detail (Worley and Powers 
2014b). The normalization methods were compared using 
simulated and experimental NMR datasets with various lev-
els of added noise and dilution factors (Worley and Powers 
2016). Their performances were evaluated based on an abil-
ity to recover the intensities of the true spectral peaks and 
the reproducibility of true classifying features from orthogo-
nal projections to latent structures—discriminant analysis 
(OPLS-DA) model (Worley and Powers 2013). In this man-
ner, the normalization methods were evaluated based upon 
expected outcomes for routine metabolomics study: (i) the 
ability to eliminate irrelevant signal variance due to dilution 
factors and noise; and (ii) the ability to produce a predic-
tive model that correctly identifies the real group-dependent 
variants. Our analysis indicates that of the normalization 
algorithms evaluated, PQ and CS performed the best in the 
analysis of noisy one-dimensional (1D) NMR metabolomics 
datasets.

2  Materials and methods

The performance of each normalization method was 
assessed using two distinct datasets: (i) simulated spectral 
data and (ii) a previously described experimental data set of 

1D 1H NMR spectra of various coffee samples (Worley and 
Powers 2016). All of the analyses were conducted using our 
MVAPACK software package (Worley and Powers 2014a). 
All of the figures were generated using the R software pack-
age (R Development Core Team 2017).

2.1  Simulated 1D 1H NMR metabolomics dataset

The simulated dataset consisted of 50 spectra in which each 
spectrum contained 901 spectral features. The set of spectra 
were divided into two separate groups. Each group consisted 
of 25 spectra that were randomly generated from a reference 
spectrum. The reference spectrum for each group was inde-
pendently simulated from the Cauchy distribution (Weis-
stein 2017), but with different parameters. Each reference 
spectrum contains four peaks located at chemical shifts of 
3, 3.2, 3.5, and 8 ppm, respectively. The peak intensities 
differ between the four peaks and between the two reference 
spectra as illustrated in Fig. 1.

The 25 spectra per group were generated from the ref-
erence spectrum by the addition of a minimal amount of 
Gaussian noise (Mean = 0, SD = 0.001). These two sets 
of 25 spectra, which correspond to group 1 and group 2, 
were combined to define the simulated reference dataset X0 
(N = 50, K = 901). The simulated reference dataset X0 was 

Fig. 1  The simulated reference spectrum used for a group 1 and b for 
group 2. The two spectra contain the same number of peaks at the 
same chemical shifts. The only difference between the spectra is the 
relative peak intensities

http://bionmr.unl.edu/mvapack.php
http://bionmr.unl.edu/mvapack.php
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then used to generate eight noise-added simulated sets (Xi) 
(Fig. S1) with i = 1, 2,… , 8 (Table 1) according to Eq. (1):

where Fi is a 50 × 1 vector of dilution factors generated from 
a uniform distribution for the ith set, Ei is a matrix of inde-
pendent Gaussian noise distributed with mean 0 and stand-
ard deviation �i for the ith set, and * presents element-wise 
multiplication. The value of �i ranged from 0.1 to 5 which 
produced a systematic increase in noise for the dataset.

The CS, PQ, HM, SNV, MSC, ROI, Q, CSpline, and 
SSpline normalization methods were then separately applied 
to each noise-added set ( Xi ) to obtain normalized set ( X̃i ). 
An OPLS-DA model was then generated from each nor-
malized set ( X̃i ). Two-component OPLS-DA models were 
calculated to obtain the first component loadings to compare 
the performance of the normalization approaches.

2.2  Experimental 1D 1H NMR metabolomics dataset

A data matrix of 32 1D 1H NMR spectra from a publicly 
available coffees dataset was used to further evaluate the 
normalization algorithms (Worley and Powers 2016). The 
coffees dataset contains two groups defined as light and 
medium decaffeinated coffee consisting of 16 1D 1H NMR 
spectra per group. Each spectrum contains 284 spectral 
features.

We applied the same procedures as described above to 
generate the noise-added experimental dataset. Specifically, 
the original coffees dataset of 32 1D 1H NMR experimental 
spectra was designated as the reference data set Y0 (N = 32, 
K = 284). The reference data set Y0 was then used to gener-
ate seven simulated sets ( Yi ) with i = 1, 2,… , 7 (Table 2) 
according to Eq. 2:

(1)Xi = Fi ∗ (X0 + Ei)

where Fi is a 32 × 1 vector of dilution factors generated from 
a uniform distribution for the ith set, Ei (N = 32, K = 284) is a 
matrix of independent Gaussian noise distributed with mean 
0 and standard deviation �i for the ith set, and * presents 
element-wise multiplication. The value of �i ranged from 
2.3 × 10−7 to 10−5 which produced a systematic increase in 
noise while also mimicking the relative variance in the noise 
present in the coffees dataset.

2.3  Summary of normalization procedures

2.3.1  Constant sum

Each spectrum of the data matrix was divided by its own 
integral (Dieterle et al. 2006).

2.3.2  Probabilistic quotient

The normalization factor was the most probable quotient 
between the signals of the corresponding spectrum and the 
reference spectrum (Dieterle et al. 2006). The reference 
spectrum was chosen as the median spectrum of the spec-
tral set. Each spectrum in the dataset was divided by this 
normalization factor to obtain the normalized spectrum.

2.3.3  Histogram matching

Raw spectra were log transformed prior to normaliza-
tion. Similar to PQ, the target reference spectrum was the 
median spectrum of the dataset. Histograms for each sample 
spectrum and target spectrum were obtained on prespeci-
fied intensity intervals. A dilution factor was then chosen 
to minimize the differences between each sample spectrum 

(2)Yi = Fi ∗ (Y0 + Ei)Table 1  Parameters used to generate the noise-added simulated spec-
tra

a A dilution factor was randomly selected from the indicated range of 
values
b The value of standard deviation used to generate a Gaussian distribu-
tion of noise

Set Dilution factors (F)a Standard devia-
tion ( �)b

Percent 
added noise 
(%)

S1 ∼ Unif (0.9, 1.1) 0.1 5
S2 ∼ Unif (0.9, 1.1) 0.2 10
S3 ∼ Unif (0.8, 1.2) 0.4 20
S4 ∼ Unif (0.5, 1.5) 1 50
S5 ∼ Unif (0.3, 1.7) 1.4 70
S6 ∼ Unif (0.1, 1.9) 1.8 90
S7 ∼ Unif (0.01, 2.5) 2.5 100
S8 ∼ Unif (0.001, 5) 4 200

Table 2  Parameters used to generate the noise-added coffees dataset

a A dilution factor was randomly selected from the indicated range of 
values
b The value of standard deviation used to generate a Gaussian distribu-
tion of noise

Set Dilution factors (F)a Standard devia-
tion ( �)b

Percent 
added noise 
(%)

C1 ∼ Unif (0.9, 1.1) 2.3 × 10−7 5
C2 ∼ Unif (0.8, 1.2) 4.6 × 10−7 10
C3 ∼ Unif (0.5, 1.5) 9.3 × 10−7 20
C4 ∼ Unif (0.3, 1.7) 2.3 × 10−6 50
C5 ∼ Unif (0.1, 1.9) 5 × 10−6 100
C6 ∼ Unif (0.01, 2.5) 8 × 10−6 170
C7 ∼ Unif (0.001, 5) 10−5 200
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histogram and the target histogram (Torgrip et al. 2008). 
The new normalized spectrum was generated by multiplying 
each original spectrum by the corresponding dilution factor.

2.3.4  Standard normal variate

Each sample spectrum in the dataset was centered prior to 
normalization. The standard deviation of each spectrum was 
calculated as a normalization factor (Barnes et al. 1989). A 
new normalized dataset was then obtained by dividing each 
original spectrum by its corresponding normalization factor.

2.3.5  Multiplicative scatter correction

The normalization factors were least squares estimates 
obtained by regressing each sample spectrum onto the ref-
erence spectrum (Windig et al. 2008). The reference spec-
trum was the mean spectrum. The ordinary least squares of 
the regression parameters were used to correct the spectral 
intensities.

2.3.6  Region of interest

Each sample spectrum of the dataset was normalized to a 
specified spectral region where its integral was set to one. 
Each sample spectrum was then normalized relative to the 
most intense peak in the spectrum.

2.3.7  Quantile

The goal of this quantile normalization method was to obtain 
an identical distribution of intensities for all of the spectral 
features (Kohl et al. 2012). First, the mean spectrum was cal-
culated for the data set. The intensities of all features in each 
sample spectrum were then replaced by the mean intensities 
in accordance with their quantile orders.

2.3.8  Natural cubic splines

The CSpline method normalized each sample spectrum 
to the target spectrum. The target spectrum was calcu-
lated using the non-linear arithmetic mean of the data set. 
Depending on the type of data, a geometric mean may also 
be used (Kohl et al. 2012). A set of 100 quantiles was taken 
from both the sample spectrum and the target spectrum. The 
quantiles were then fitted to a natural cubic spline to obtain 
parameter estimates, which were used for interpolations. 
The process was repeated five times. For each iteration, a 
small offset was added to the quantiles before refitting with 
a natural cubic spline to obtain new interpolations. The set 
of interpolations were averaged to obtain the normalized 
spectrum.

2.3.9  Smoothing splines

SSpline is similar to CSpline, but the SSpline algorithm 
adds more quantiles toward the tail end of the spectrum. 
The most intense spectral features are located in this region 
of the spectrum. Moreover, the quantiles are fitted with a 
smoothing spline that includes a penalty parameter to avoid 
overfitting. The predicted feature intensities were then used 
as the normalized intensities.

2.4  Evaluation criteria

Regardless of the type of approach used to address dataset 
bias or variance, an optimal normalization procedure should 
reduce any unwanted noise while still preserving the true 
biological signals. In other words, a necessary condition 
to retain the true signals is the ability to recover the origi-
nal peak intensities after removing noise. In this regards, it 
should be possible to evaluate the relative performance of 
normalization methods based on how well the algorithms 
handle increasingly noisy spectra. As the reference set is 
exposed to increasing amounts of noise, some (or all) of 
the normalization algorithms would be expected to fail to 
recover the original peaks intensities. Thus, the peak recov-
ery criteria served as a means to filter-out poorly perform-
ing normalization procedures prior to proceeding with the 
second evaluation criteria.

A multivariate statistical model, such as PCA or OPLS, 
is typically employed to identify spectral features that sepa-
rate the different groups in the dataset (Worley and Powers 
2013). These spectral features are intrinsic to the dataset. 
Accordingly, any properly normalized dataset should repro-
duce these true set of features. The first component loadings 
extracted from an OPLS-DA model contains the weights of 
the spectral features that contribute the most to separating 
the groups. Simply, the first component loadings identify the 
most-important group-dependent features. Thus, an OPLS-
DA model was generated to obtain the first component load-
ings associated with each normalization method. Only the 
top performing normalization methods were used to gener-
ate an OPLS-DA model. The top performing normalization 
methods were identified based on the peak recovery criteria. 
Pearson correlation coefficients were calculated between the 
loadings of each normalized dataset and the true loadings 
set. The Pearson correlation coefficients provide a means to 
measure the reproducibility of the true classifying spectral 
features produced by each normalization algorithm.

2.4.1  Peak recovery

After sequentially normalizing each noisy data matrix using 
the nine normalization methods, the intensity of each peak 
in each spectrum of the normalized set ( X̃i ) was compared 
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to the true original spectrum ( X0 ) to measure the recovery 
of peak intensities ( rpij

i
 ). For each spectrum from the nor-

malized data matrix ( X̃i ), the recovery of the jth peak was 
calculated according to this Eq. 3:

where Ij
i
 and Ij

0
 are the intensities of the jth peak from X̃i 

and X0 , respectively. In this manner, rpij
i
 will range from 

0 to 1 regardless of the relative magnitudes of Ij
i
 and Ij

0
 . 

This process was repeated for every peak in each spectrum. 
The mean recovery and standard error were calculated and 
reported for each normalized set.

2.4.2  Pearson correlation coefficients

The coffees noisy data matrix ( Yi ) was only normalized 
using the top performing algorithms identified from the 
peak recovery criteria. An OPLS-DA model was generated 
for each normalized coffees data matrix ( ̃Yi ) and also the 
original coffees data set ( Yo ). The datasets were scaled with 
Pareto scaling prior to calculating the OPLS-DA models. 
The first component loadings from each OPLS-DA model 
were then used to calculate a Pearson correlation coefficient 
between the true backscale loadings vector ( po ) from the 
original coffees data set ( Yo ) and the backscale loadings 
vector ( pi ) from each normalized coffees noisy data matric 
( ̃Yi ). The Pearson correlation coefficients were calculated 
according to Eq. 4:

where K denotes the number of spectral features; p̄i is the 
mean loading of vector pi ; pki  is the kth loading of vector pi ; 
p̄0 is the mean loading of vector p0 ; and pk

0
 is the kth loading 

of vector p0 . This process was repeated 100 times. The mean 
correlation coefficients and standard error were calculated 
for each normalized set.

3  Results and discussion

The two reference NMR spectra displayed in Fig. 1 were 
used to generate eight noise-added simulated metabolomics 
datasets consisting of 25 spectra for each of the two groups 
(Fig. S1). Accordingly, each simulated dataset contained a 
total of 50 spectra. The total signal variance in each dataset 
was defined by the amount of Gaussian noise added and by 

(3)rpi
j

i
=

⎛
⎜⎜⎜⎝
1 −

���I
j

i
− I

j

0

���
max

����I
j

0

���,
���I

j

i

���
�
⎞
⎟⎟⎟⎠

(4)ri =

∑K

k=1
(pk

i
− p̄i)(p

k
0
− p̄0)�∑K

k=1

�
pk
i
− p̄i

�2 ∑K

k=1

�
pk
0
− p̄0

�2

the dilution factors listed in Table 1. The simulated NMR 
metabolomics datasets were then normalized using each 
of the nine normalization methods (i.e., CS, CSpline, HM, 
MSC, PQ, Q, ROI, SNV, and SSpline). A peak recovery 
was calculated for each dataset according to Eq. 3. The peak 
recovery compares each of the normalized dataset to the 
original reference NMR spectra (Fig. 1). The peak recover-
ies for each normalized dataset are plotted in Figs. 2 and 3.

As expected, the efficiency of peak recovery decreases 
with increasing signal variance regardless of the normaliza-
tion method. As illustrated in Fig. 2, most of the normaliza-
tion methods achieve nearly 100% peak recovery (96 to 99%) 
under conditions of modest signal variance (S1 and S2).

The most notable outlier is HM, which achieved a peak 
recovery of only 20–28%. This extremely poor performance 
suggests that HM should be avoided and not used for the 
normalization of NMR metabolomics data. While signifi-
cantly better than HM, SSpline also performed consistently 
below average with a peak recovery range of 93–95%. PQ 
was modestly below the best performers with a peak recov-
ery range of 96–97%. Conversely, ROI, CS, SNV, MSC, 
and Q, recovered at least 98% of the peak intensities under 
conditions of modest signal variance. A further separation 
in algorithm performance was apparent as the signal vari-
ance was progressively increased. SSpline continued to per-
form worse than average, but from simulated set S5 forward 
the performance of SNV had also significantly declined to 
match SSpline.

Similarly, from simulated set S6, CSpline had fallen 
below the average performance of the other normalization 

Fig. 2  A plot of the recovery of peak intensities (Eq. 3) for the 9 nor-
malization methods after being applied to the 8 (S1 to S8) simulated 
datasets listed in Table 1. The total signal variance due to the amount 
of added Gaussian noise and the magnitude of the dilution factor 
increases from S1 to S8. The horizontal dashed lines represent a full 
recovery at 100% and partial recovery at 50%. Each bar represents the 
mean peak recovery and the error bars represent ± 2 * standard error 
of the mean
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methods. In fact, as the amount of signal variance was 
increased to the highest level (S8), the peak recoveries for 
CSpline, HM, MSC, Q, and SSpline all fell below 50%. 
Conversely, CS, PQ and ROI maintained a peak recovery 
of around 70% (67–74%). Accordingly, the peak recovery 
results suggest that the CS, PQ and ROI were the most 
robust normalization methods and were able to maintain 
a maximal peak recovery as a function of signal variance 
(Fig. 3). Pairwise Student’s t tests of the mean peak recov-
ery values at the highest signal variance level (S8) yield a 
maximum p-value of < 2.8 × 10−13 between the CS, PQ, ROI 
algorithms and the other normalization methods.

To further investigate the individual impact of Gaussian 
noise and dilution factors on peak recovery, the simulation 
was repeated for the three top performing normalization 
methods (i.e., CS, PQ and ROI). Instead of simultaneously 
varying both Gaussian noise and the dilution factors as listed 
in Table 1, the simulation was repeated with either Gauss-
ian noise or the dilution factor held constant at S1 values. 
The combined average peak recovery values for CS, PQ and 
ROI normalized datasets are plotted as a function of added 
Gaussian noise or dilution factor in Fig. 4. This simulation 
yielded an unexpected result. The performance of the nor-
malization method was essentially unaffected by the dilution 
factor. Near perfect peak recovery was obtained even for the 
highest dilution factor. Instead, the normalization perfor-
mance was strictly dependent on the level of Gaussian noise 
added to the spectra. However, it is important to note that 
normalization methods also rely on good peak alignment, 

spectral phasing, baseline correction and solvent suppres-
sion in order to perform well. Accordingly, the simulations 
reported herein were restricted to well-behaved datasets.

While being able to accurately reconstitute peak intensity 
is an important attribute of a normalization algorithm, the 
proper identification of group-defining spectral features is 
still a vital necessity. In essence, are biologically-relevant 
metabolic differences still being correctly identified regard-
less of the natural signal variance? Does a PCA or OPLS 
scores plot yield statistically relevant group separations and 
do the loadings identify the “true” metabolic differences 
between the groups? To address this issue, the CS, PQ and 
ROI normalization methods were further evaluated based 
on the reproducibility of OPLS-DA models as a function of 
increasing signal variance. An experimental coffees dataset 
previously used to investigate PCA and OPLS model stabil-
ity (Worley and Powers 2016), was employed to generate 
OPLS-DA models using the CS, PQ and ROI normaliza-
tion methods. Specifically, the coffee dataset consists of 32 
1D 1H NMR spectra for two groups of observations (light 
and medium decaffeinated coffees). The coffees dataset was 
modified with Gaussian noise and a dilution factor (Fig. 
S2) as outlined in Table 2. Consistent with our prior obser-
vations (Worley and Powers 2016), the two coffee groups 
become indistinguishable with an increase in signal vari-
ance. Importantly, the estimated loadings from the corre-
sponding OPLS-DA model are less correlated to the true 
loadings (Fig. 5) with increasing signal variance. Notably, at 
minimal to moderate signal variance levels (C1 to C3), the 

Fig. 3  A plot of the recovery of peak intensities (Eq. 3) for the three 
top performing normalization methods after being applied to the 8 
(S1 to S8) simulated datasets listed in Table 1. The total signal vari-
ance due to the amount of added Gaussian noise and the magnitude 
of the dilution factor increases from S1 to S8. The horizontal dashed 
lines represent a full recovery at 100% and partial recovery at 50%. 
Each bar represents the mean peak recover and the error bars repre-
sent ± 2 * standard error of the mean

0.6

0.7

0.8

0.9

1

S1 S2 S3 S4 S5 S6 S7 S8

Pe
ak

 R
ec

ov
er

y

Simulated Set

Fig. 4  A plot of the average peak recovery calculated from the three 
top-performing normalization methods (CS, PQ, and ROI). Datasets 
were regenerated according to the scheme described in Table  1 but 
containing only a dilution factor (filled diamond) or the addition of 
Gaussian noise (filled square). The dilution factor or added Gaussian 
noise was held constant at S1 values when the other parameter was 
varied. The peak recovery decreases with additive noise, but is unaf-
fected by dilution factor
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PQ and ROI normalization methods perform almost identi-
cally and significantly better than CS. But, as the amount 
of signal variance increased significantly (C4 to C7), the 
OPLS-DA model was no longer valid with the ROI normali-
zation technique; and the loadings correlation, not surpris-
ingly, decreased dramatically.

Similarly, the standard errors of mean loadings correla-
tion coefficients increased significantly for ROI compared to 
the negligible values observed for CS and PQ (ranged from 
0.0003 to 0.008). Interestingly, despite CS initially perform-
ing worse than PQ, there was no difference in the loadings 
correlation between PQ and CS at C4. Furthermore, CS out-
performed PQ at the highest signal variance levels (C5 to 
C7). But, the loadings correlations still decreased linearly 
with increasing signal variance following CS or PQ nor-
malization. The loss of a correlation to the true loadings was 
still substantial and would likely lead to incorrect biological 
interpretations. A similar set of results was obtained for the 
simulated dataset (Fig. S3). In total, our analysis suggest that 
CS and PQ are the most robust normalization techniques and 
are able to compensate, at least partly, for large signal vari-
ance. Both CS and PQ maintained the highest level of peak 
recovery and the highest correlation between backscaled 
loadings. Notably, PQ was the most robust normalization 
technique at low to moderate noise levels while CS was 
slightly better at compensating for larger signal variance.

A combined analysis of the peak recovery and OPLS-DA 
backscaled loadings data provides some further guidance 

for designing and executing an NMR metabolomics study. 
As we have noted previously (Halouska and Powers 2006; 
Halouska et al. 2013; Worley and Powers 2016), noise is 
detrimental to the accurate and reliable analysis of metabo-
lomics data using multivariate statistical techniques such as 
PCA and OPLS. The results reported herein further support 
the negative impact of noise on the analysis of NMR metab-
olomics data. As evident in Fig. 4, a dilution factor had no 
appreciable impact on the performance of a normalization 
method. Instead, all variance in the performance of the nor-
malization methods was due to noise. Furthermore, most 
of the normalization methods performed equally-well in 
regards to peak recovery and loadings correlation for added 
noise levels up to about 20%. The lone exception is HM, 
which should be avoided. A significant decay in performance 
occurred when > 20% of noise was added to either the simu-
lated or experimental dataset. Accordingly, an experimental 
NMR dataset that exhibits greater than 20% noise is a seri-
ous concern and the resulting chemometrics model is highly 
suspect. In essence, our analysis sets a minimum criterion 
for maintaining noise (defined by a standard Gaussian dis-
tribution) at below 20% for a valid metabolomics dataset.

4  Conclusion

The nine normalization methods available in our MVA-
PACK software package were evaluated for their ability to 
compensate for increasing signal variance. The performance 
of the normalization techniques were tested on simulated 
and experimental 1D 1H NMR datasets with the addition of 
Gaussian noise and dilution factors. However, it is important 
to keep in mind that the Gaussian noise and dilution factors 
used in model construction are only an approximation of 
non-biological variance. At low to moderate noise levels, all 
of the normalization methods, except HM, performed well in 
terms of peak recovery. Accordingly, HM should be avoided 
as a normalization technique for NMR. Notably, peak recov-
ery performance was only dependent on added Gaussian 
noise, and independent of dilution factor. At high signal vari-
ance, most normalization procedures failed to recover true 
peak intensities except for CS, PQ, and ROI. Again, PQ and 
ROI normalization algorithms performed equally-well and 
significantly better than CS at low to moderate noise levels 
in reproducing the backscaled loadings from an OPLS-DA 
model. But, ROI generated statistically invalid OPLS-DA 
models and poor backscaled loadings correlations at higher-
levels of noise. Interestingly, CS performed slightly better 
than PQ in reproducing the backscaled loadings at high noise 
levels. Thus, our results suggest that CS and PQ perform the 
best in regards to maintaining the true signal in noisy data-
sets. Consistent with our prior observations, groups become 
indistinguishable with increasing noise; and correlations 
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Fig. 5  A plot of the average Pearson correlation coefficients (Eq. 4) 
calculated by comparing the true backscaled loadings from the 
original coffee dataset OPLS-DA model relative to the backscaled 
loadings from the CS (filled diamond), PQ (filled square), and ROI 
(filled triangle) normalized coffees noisy dataset OPLS-DA model. 
The amount of signal variance introduced into the coffees dataset is 
described in Table 2. The error bars represent ± 2 * standard error of 
the mean. Please note that most of the error bars are smaller than the 
size of the symbols
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to the true loadings are lost. In other words, an increasing 
level of additive Gaussian noise masks the true signals in the 
datasets. Accordingly, if this noise is not handled properly, 
it will lead to false conclusions and biologically irrelevant 
observations. In this regards, our analysis suggests that, at 
a minimum, noise needs to remain below 20% in order for 
an NMR metabolomics dataset to provide an accurate and 
biologically-relevant chemometrics model.
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