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ScienceDirect
The two leading analytical approaches to metabolomics are

mass spectrometry (MS) and nuclear magnetic resonance

(NMR) spectroscopy. Although currently overshadowed by MS

in terms of numbers of compounds resolved, NMR

spectroscopy offers advantages both on its own and coupled

with MS. NMR data are highly reproducible and quantitative

over a wide dynamic range and are unmatched for determining

structures of unknowns. NMR is adept at tracing metabolic

pathways and fluxes using isotope labels. Moreover, NMR is

non-destructive and can be utilized in vivo. NMR results have a

proven track record of translating in vitro findings to in vivo

clinical applications.
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Introduction
The metabolic state of an organism depends on its

genome, transcriptome, proteome, epigenome, micro-

biome, and exposome (environment). Thus, metabolo-

mics, the study of small molecules (<1500 Da) in living
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systems, provides information with a high potential for

accurately describing the physiological state of an organ-

ism. The two most successful approaches to determining

the metabolic state of an organism have been mass

spectrometry (MS) and nuclear magnetic resonance

(NMR) spectroscopy. Several years ago, the number of

publications utilizing the two approaches were compara-

ble; more recently, however, MS-based metabolomics has

clearly overtaken NMR-based metabolomics. This state

of affairs prompted the organization of a workshop to

review the current state of NMR-based metabolomics, to

assess its strengths and weaknesses, and to envision its

future potential. As reported here, this workshop (‘NMR-

Based Metabolomics,’ held in the Discovery Building,

Morgridge Institute for Research, Madison, Wisconsin,

USA, on June 10, 2016) highlighted a number of benefits

of NMR-based metabolomics that appear to be currently

underappreciated. MS and NMR offer different

strengths, which can be used synergistically. The work-

shop stressed the need for more extensive small molecule

databases and improved standards at each step of a

metabolomics study.

The metabolome
The two major fields of chemical research on biological

small molecules, metabolomics and natural product dis-

covery, have the similar goals of identifying and charac-

terizing small molecules, either in their isolated active

state (natural product chemistry) or as mixtures (meta-

bolomics) [1]. The number of small molecules of impor-

tance to humans is far greater than those currently

represented on metabolic charts, with the excess consti-

tuting current ‘metabolic dark matter’ (Figure 1). The

swapping of metabolites between pathways in humans

and those of organisms in the human microbiome

increases the network of relevant reactions by a stagger-

ing amount. The HMDB [2] lists 42 000 metabolites and

the number of lipid variants is on the order of 100 000;

thus, a lower limit of expected endogenous and exoge-

nous human metabolites is around 150 000, but the actual

number of metabolites could be much higher. Of this vast

number of metabolites, only 1500 may be identified from

global profiling, 200–500 from targeted profiling, and far

fewer are routinely subjected to quantitative analysis.

NMR and its advantages
Despite its lower sensitivity, NMR spectroscopy offers

many unparalleled advantages over MS [3��,4��]. NMR
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Figure 1
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Schematic representation of metabolic (blue shaded area).
offers a window into observing and rigorously quantifying

all of the more abundant compounds present in biological

fluids, cell extracts, and tissues without the need for

elaborate sample preparation or fractionation. NMR

offers advantages for compounds that are difficult to

ionize or require derivatization for MS. NMR allows

the identification of compounds with identical masses,

including those with different isotopomer distributions.

NMR is the mainstay for determining structures of un-

known compounds. Through the use of stable isotope

labels, NMR can be used to elucidate the dynamics and

mechanisms of metabolite transformations and to explore

the compartmentalization of metabolic pathways. NMR

has advantages in drug screening [5]. Finally, site-specific

NMR imaging and spectroscopy offer approaches for

metabolic studies in living organisms.

Strategies for the identification of metabolites in complex

mixtures from NMR data have been reviewed recently

[6��]. The most important nuclei in biomolecular NMR

studies are 1H (proton), 13C, 15N, and 31P. Of these, 1H is

the most sensitive followed by 31P; both are present at

near 100% natural abundance. 31P NMR is useful for

studies of cellular energy states in vivo and ex vivo, but a
www.sciencedirect.com 
limitation is that the 31P signals from most phosphorylat-

ed compounds overlap. One-dimensional (1D) 1H NMR

is the most widely used NMR approach in metabolomics.

Signals are either binned and then analyzed or fitted to

patterns of signals corresponding to the metabolites

expected to be present in the mixture. The latter ap-

proach can be problematic in that many 1H signals overlap

in ways that offer alternative fitting solutions, a problem

that can be overcome by standardizing the analysis in

terms of biofluid, solution conditions, data collection

protocol, and by employing probabilistic fitting (Bayesil)

[7��]. 13C NMR signals cover a 200 ppm range compared

with 10 ppm for 1H and as a consequence are better

resolved; however, the low sensitivity of 13C (less by a

factor of 8 or more) is compounded by its low natural

abundance (1.1%). Two dimensional (2D) NMR methods

offer improved approaches for unambiguous identifica-

tion of metabolites in mixtures. These 2D methods

include 1H-1H COSY (correlated spectroscopy), 1H–1H

TOCSY (total correlation spectroscopy), and 1H–13C

HSQC (heteronuclear single-quantum correlation). A

widely used software package (rNMR) matches regions

of interest in spectra of standards to those in experimental

mixtures for compound identifications [8]. Software is
Current Opinion in Biotechnology 2017, 43:34–40



36 Analytical biotechnology
available for automating metabolite identification from

combined TOCSY and HSQC data [9��,10�]. By setting

tolerances for the matching of 1H and 13C signals, one can

maximize compound identification while minimizing

false positives [11]. This approach has been extended

to a calculated confidence level for compound identifica-

tions from NMR data [12]. Another approach for con-

necting signals from individual compounds in mixtures is

based on searching for statistical correlations among the

intensities of NMR signals from various samples [13].

Nuclei present at low natural abundance 2H (deuteron),
13C, and 15N serve as ideal metabolic tracers [14��].

Need for standards in NMR metabolomics
Standard NMR spectra and associated information on

small biological molecules are available from freely-

accessible databases, including HMDB [2], BMRB

[15], TOCCATA [9], and COLMAR [10], but they still

cover only a fraction of relevant compounds. A repository

has been established for results of metabolomics studies

from the NIH Common Fund Centers [16�]. The Coor-

dination of Standards in Metabolomics (COSMOS) Ini-

tiative is developing a robust data infrastructure and new

data exchange standards (http://nmrml.org) for metabo-

lomics data and metadata to support workflows metabo-

lomics applications [17�]. One of the COSMOS projects

is a website (http://metabolomexchange.org) that feder-

ates data available from the leading metabolomics data

repositories. Best practices and standards have been

published for metabolic phenotyping of biological fluids

[18��,19]. An open-source platform for complete NMR

metabolomics data handling (MVAPACK) has been de-

veloped as a step toward establishing best practices for

the analysis of metabolic fingerprinting data [20�].

Sample preparation
Certain biofluids, for example, cerebrospinal fluid, re-

quire little or no preparation for NMR. Others, such as

plasma contain proteins and lipids that interfere with

NMR spectral quality. Treatment with methanol at

solvent-to-serum ratio of 2:1 (v/v) has been shown to

remove lipoproteins and minimize the loss of metabo-

lites [21] enabling the detection of about 67 different

compounds [22��]. Another promising protocol utilizes

the removal of protein by added silica nanoparticles

[23��].

Tagging
An approach for compounds with overlapping 1H signals

or present at lower concentration is to tag them with an

NMR-active label. Nitrogen-15 with attached hydrogen

is an attractive tag because 2D 1H–15N signals can be

acquired at high sensitivity without interference from

signals from unlabeled compounds owing to the low

natural abundance of 15N [24,25�]. Such tags also provide

a permanent positive charge for MS analysis.
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Combining NMR and MS
As reviewed recently [26��], advances in NMR-based and

MS-based metabolomics, including the combination of

the two approaches, promise to greatly improve the

identification and quantitation of compounds in mixtures.

One example is the simultaneous analysis of DI-ESI-MS

and 1D 1H NMR spectral data to yield accurate mass

measurements and class separation scores [27]. Other

approaches filter data from one approach against the other

to increase the number of compounds confidently identi-

fied [28�,29�]. Another method identifies compounds by

exploiting the principle that abundance/intensity ratios

are relatively constant for the same metabolite in differ-

ent samples [30]. Combined NMR and MS has advan-

tages for isotope tracing experiments and metabolic flux

analysis. MS generally quantifies isotopic labeling distri-

butions but even with MS/MS often does not give the

specific labeling position, which is available from NMR.

Quantification
If 1D 1H NMR peaks from a compound are well resolved

with acceptable signal-to-noise, their intensities correlate

linearly with its relative concentration. To determine

absolute concentrations, one adds a standard of known

concentration. The cross peak intensities of the same 2D
1H–13C HSQC spectrum, however, do not correlate line-

arly with concentration. One can collect spectra of mix-

tures with known concentrations bracketing those of the

unknowns and use these to determine factors that trans-

late peak intensity to concentration [31]. Peak intensities

in 2D 1H–13C HSQC spectra can also be converted to

concentration from the slopes generated by spectra uti-

lizing different replicates of the pulse sequence module

and the linear extrapolation back to zero time of the peak

intensities following the delays from one and two mod-

ules yields the ‘HSQC0 spectrum’ whose peak intensities

are proportional to concentration [32]. Spectral overlaps

can be accounted for by methods such as FMLR (fast

maximum-likelihood reconstruction) [33]. A new experi-

ment (1H–13C QUIPU HSQC) aims to quantify in one

map a complex mixture composed of low concentrated

metabolites [34]. Another approach, one that requires full
13C labeling, achieves quantification through the collec-

tion of 13C–13C CT-TOCSY spectra and the application

of analytical approximations based on the known carbon-

backbone topologies [35].

Applications of metabolomics
Applications of metabolomics include disease diagnosis,

monitoring the effects of medical interventions including

drugs, detection of adulteration of food, and analysis of

biochemical pathways and their perturbations resulting

from mutations, aging, diet, exercise, or life style. A recent

study showed how ex vivo 1D 1H NMR spectroscopy can

be used for the simultaneous identification and quantifi-

cation of co-enzymes that report on cellular function

[36��]. Another study used this approach to investigate
www.sciencedirect.com
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alterations in the energy/redox-metabolome in dopami-

nergic cells exposed to environmental/mitochondrial tox-

ins [37]. Studies of the metabolomics of model organisms

are both timely and important for understanding of their

different biology [38�]. Protocols have been described for

studies of the metabolomics of bacteria [39] and plants

[40]. Metabolomics, along with activity-guided fraction-

ation followed by structural analysis, constitutes a power-

ful approach for identifying biologically active compounds

for studies in chemical ecology [41�]. Metabolomics is

used regularly in drug discovery programs to uncover the

efficacy, specificity, or toxicity of lead compounds [42].

Metabolomics can provide information on the in vivo
mechanism of action and to eliminate compounds likely

to cause problems with side effects [43�]. Recent studies

have utilized metabolomics to search for biomarkers for

colon cancer [44] and multiple sclerosis [45].

Future technology
All technologies that increase NMR sensitivity are of

extreme importance as are improvements in sample

preparation [46��]. Approaches to high sensitivity include

NMR spectrometers with ultra-high-field magnets oper-

ating at 1H resonance frequencies of 1.2 GHz or higher.

The first such systems are scheduled for delivery in

2017. Small high-temperature superconducting coils

can maximize the signal per sample mass: a 13C-opti-

mized 1.5-mm high temperature superconducting NMR

probe has enabled novel 13C NMR studies of natural

products [47], and this has been followed up with a
1H–13C dual-optimized NMR probe based on double-

tuned high temperature superconducting resonators

[48�]. These probes take advantage of the excellent peak

dispersion of 13C spectra [49], which can be augmented

by further 2D 13C–13C experiments, such as INADE-

QUATE [50].

Hyperpolarization offers an approach for enhanced sen-

sitivity with even higher potential. The underlying phys-

ics utilizes the magnetic moment of the unpaired

electron, which is roughly 2800 times that of 13C and

6900 times that of 15N, to polarize nuclear spins. First

demonstrated by Golman and coworkers [51], studies

utilizing hyperpolarized 13C to increase sensitivity are

becoming routine. An exciting advance is the discovery

[52��] of an efficient and inexpensive method for hyper-

polarizing 15N spins at room temperature. Enhancements

are on the order of >10 000 enabling the detection of

NMR signals for over an hour [52��]. It may become

possible to use this approach to tag a range of compounds

for metabolomics studies in vivo.

Conclusions
The workshop demonstrated that NMR-based metabo-

lomics promises to continue to play an important role in

the studies of complex mixtures of small biological mole-

cules, their metabolic networks, and their interactions
www.sciencedirect.com 
with biomacromolecules. Although the development of

new and better methods continues to be an integral part,

the field needs to focus on developing standardized,

enlarged, and integrated databases of NMR data on small

molecules as well as archives representing the NMR

metabolic fingerprints of standard biological fluids and

tissue extracts from humans and model organisms. Stan-

dardization of best practices for sample preparation, data

collection and analysis should enhance the reproducibili-

ty of results within the metabolomics community, while

at the same time avoiding the risk of adhering to methods

and protocols that are suboptimal in a field that is very

much in flux. In order to overcome skepticism in omics

[53�], it will be advisable for metabolomics to build the

ideas of reproducibility and data sharing into every tool

and database. Future work is expected to build upon core

strengths of NMR spectroscopy, which includes its ver-

satility and specificity in the form of 1D and higher

dimensional spectra, its reproducibility, its quantitative

ability, its capability for following chemical reactions and

flux, its ability to identify compounds and deduce struc-

tures of unknowns, and its growing potential for collecting

metabolomics data in vivo.
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23 minutes, respectively. The approach generates >10 000-fold
enhancements with detectable nuclear MR signals that last for over an
hour from molecular tags that can be incorporated into a wide range of
biomolecules.
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waste in research design, conduct, and analysis. Lancet 2014,
383:166-175.

Potential solutions are proposed for the problems of irreproducible
scientific studies including improvements in protocols and documenta-
tion, consideration of evidence from studies in progress, standardization
of research efforts, and scientific workforce development.
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