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Methods of multiblock bilinear factorizations have increased in popularity in chemistry and biology as recent in-
creases in the availability of information-rich spectroscopic platforms have made collecting multiple spectro-
scopic observations per sample a practicable possibility. Of the existing multiblock methods, consensus PCA
(CPCA-W) and multiblock PLS (MB-PLS) have been shown to bear desirable qualities for multivariate modeling,
most notably their computability from single-block PCA and PLS factorizations. While MB-PLS is a powerful ex-
tension to the nonlinear iterative partial least squares (NIPALS) framework, it still spreads predictive information
across multiple components when response-uncorrelated variation exists in the data. The OnPLS extension to
O2PLS provides a means of simultaneously extracting predictive and uncorrelated variation from a set of matri-
ces, but is more suited to unsupervised data discovery than regression.We describe the union of NIPALSMB-PLS
with an orthogonal signal correction (OSC) filter, called MB-OPLS, and illustrate its equivalence to single-block
OPLS for regression and discriminant analysis.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The method of nonlinear iterative partial least squares (NIPALS) has
firmly entrenched itself in the field of chemometrics. Implementations
of principal component analysis (PCA) and projections to latent struc-
tures (PLS) that utilize NIPALS-type algorithms benefit from its numer-
ical stability, as well as its flexibility and simplicity [1–3]. Only a few
subroutines from level 2 of the basic linear algebra subprograms
(BLAS) specification are required to construct a complete NIPALS-type
algorithm [4,5], making it an attractive means of constructing PCA and
PLS models of high-dimensional spectroscopic datasets.

One particularly recent addition to the NIPALS family of algorithms,
called orthogonal projections to latent structures (OPLS), integrates an
orthogonal signal correction (OSC) filter into NIPALS PLS [6,7]. By
extracting variation from its computed PLS components that is uncorre-
lated (orthogonal) to the responses, OPLS produces a more interpret-
able regression model compared to PLS. In fact, when trained on the
same data and responses, an OPLS model and a PLS model with the
same total number of components will show no difference in predictive
ability [8]. Despite its relative novelty to the field, the enhanced inter-
pretability of OPLS over PLS has made it a popularmethod in explorato-
ry studies of spectroscopic datasets of complex chemical mixtures
coln, Department of Chemistry,
ates. Tel.: +1 402 472 3039;
(e.g., metabolomics [9], food and soil science [10], and chemical process
control [11]).

Extensions of NIPALS PCA and PLS to incorporate blocking informa-
tion that partitions the set of measured variables into multiple ‘blocks’
of data have recently gained attention in the field as more experimental
designs involve the collection of data frommultiple analytical platforms
per sample. In such experiments, referred to as ‘class II’ multiblock
schemes by Smilde et al. [12], correlated consensus directions are
sought from the blocks that maximally capture block variation and
(optionally) maximally predict a set of responses. Of the available ex-
tensions of NIPALS to multiblock modeling, a class of methods exists
that bears attractive computational qualities, namely computability
from single-block bilinear factorizations. When both super weights
and block loadings are normalized in consensus PCA (i.e., CPCA-W),
the obtained super scores are equivalent to those obtained from PCA
of the concatenated matrix of blocks [13]. Likewise, scores obtained
from PLS of the concatenated matrix are equivalent to super scores
frommultiblock PLS (MB-PLS) when super scores are used in the defla-
tion step [13,14]. As a result, these multiblock bilinear factorizations in-
herit many of the useful properties of their single-block equivalents.

A second class of multiblock methods exists in which every block is
predicted in a regressionmodel by every other block. In the first of such
methods, known as nPLS, the MAXDIFF criterion [15] is optimized one
component at a time (i.e., sequentially) to yield a set of predictive
weight vectors for each block [16]. The recently described OnPLS algo-
rithm also falls within this class [16]. OnPLS extends O2PLS to three or
more matrices and may be considered a prefixing of nPLS with an OSC
filtering step. OnPLS deflates non-globally predictive variation that
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may or may not be orthogonal to all blocks from each matrix, and then
computes an nPLS model from the filtered result [16]. While fully sym-
metric OnPLS is a powerful and general addition to the existing set of
multiblock modeling frameworks, it is arguably an over-complication
when the regression of a single responsematrix onmultiple data blocks
(i.e., MB-PLS) is sought. For such situations, a novel algorithm termed
MB-OPLS for multiblock orthogonal projections to latent structures is
introduced that embeds an OSC filter within NIPALS MB-PLS, thus solv-
ing an inherently different problem from OnPLS. It will be shown that
MB-OPLS, in analogy to CPCA-W and MB-PLS, is computable from a
single-block OPLS model of the matrix of concatenated data blocks.
Thus, MB-OPLS forms a bridge between this special class of consensus
component methods and the highly general symmetric regression
framework of OnPLS.

2. Theory

MB-OPLS belongs to a set of multiblock methods that exhibit an
equivalence to their single-block equivalents. A short discussion on
these methods follows, in which the optimization criterion of each
method is shown to belong to theMAXBET family of objective functions.
This is contrasted to nPLS and OnPLS, which have been shown to opti-
mize a MAXDIFF objective. The principal difference between MAXBET
and MAXDIFF is one of explained variation: while MAXBET captures
between-matrix covariances and within-matrix variances, MAXDIFF
only captures the former [15,17]. Finally, the equivalence of MB-OPLS
and OPLS is demonstrated, which highlights its differences from OnPLS.

In all following discussions, it will be understood that there exist n
data matrices X1 to Xn, each having N rows (observations) and Ki col-
umns (variables). The matrix X= [X1|… |Xn] of all concatenated blocks
will be used in cases of single-blockmodeling. Finally, a responsematrix
Y having N rows and M columns will be assumed to exist for the pur-
poses of regression (i.e., PLS-R, MB-PLS-R, etc.) or discriminant analysis
(i.e., PLS-DA, MB-PLS-DA, etc.).

2.1. nPLS and OnPLS

In their initial description of the OnPLS modeling framework [16],
Löfstedt and Trygg introduced nPLS as a generalization of PLS regression
to cases where n N 2, and a model is sought in which each matrix X1 is
predicted by all other matrices Xj ≠ i. The nPLS solution involves identi-
fying a set of weight vectors wi that simultaneously maximize covari-
ances between each pair of resulting scores ti = Xiwi via the following
objective function:

Xn

i; j ¼ 1
i≠ j

tiT t j ¼
Xn

i; j ¼ 1
i≠ j

wi
TX i

TX jw j ð1Þ

subject to the constraints ‖wi‖=1. This objectivewas subsequently rec-
ognized to be a member of the MAXDIFF family of functions, whose so-
lution is obtainable using a general algorithm from Hanafi and Kiers
[17]. After the identification of a set of weight vectors, the scores

ti ¼ X iwi

and loadings

pi ¼
X i

T ti
tiT ti

may be computed for each matrix, which is then deflated prior to the
computation of subsequent component weights:

X i←Xi−tipi
T ¼ I−

titiT

tiT ti

� �
X i: ð2Þ
This deflation scheme follows the precedent set by two-block PLS re-
gression. Because their described approach used a distinct deflation
scheme from single-component (sequential) MAXDIFF, it was given
the name “nPLS” by the authors to distinguish it fromMAXDIFF [16,18].

OnPLS extendsnPLS by decomposing eachmatrix into a globally pre-
dictive part and a non-globally predictive (orthogonal) part using an or-
thogonal projection. By removing orthogonal variation from each block
prior to constructing an nPLS model, OnPLS optimizes the following
MAXDIFF-type objective function:

Xn

i; j¼1
i≠ j

tiT t j ¼
Xn

i; j¼1
i≠ j

wi
TX i

TX jw j ð3Þ

where Zi represents the orthogonal projector identified by OnPLS for
matrix i:

Zi ¼ I−To;i To;i
TTo;i

� �−1
To;i

T

where To;i ¼ ½to;i;1j…jto;i;Ao �, the concatenation of all orthogonal score
vectors for the block, and to,i,a = Xiwo,i,a. In OnPLS, each orthogonal
weightwo,i,a is chosen such that its score to,i,a contains maximal covari-
ance with the variation in Xj≠i that is not jointly predictive of X1. The
OnPLS framework provides a powerful set of methods for unsupervised
data mining and path modeling [16,19–21].

2.2. CPCA-W and MB-PLS

The consensus PCA method, introduced by Wold et al. as CPCA and
modified by Westerhuis et al. as CPCA-W, identifies a set of weights pi
that maximally capture the within-block variances and between-block
covariances of a set of n matrices [13]. It was further proven by
Westerhuis, Kourti and MacGregor that the results of CPCA-W comput-
ed on matrices X1 to Xn are identical to those from PCA of the
concatenated matrix X = [X1| … |Xn]. It immediately follows from this
equivalence that the CPCA-W algorithm optimizes the following objec-
tive function:

tT t ¼ pTXTXp ¼
Xn

i; j¼1
tiT t j ¼

Xn

i; j¼1
pi

TXi
TX jp j ð4Þ

subject to the constraint ‖p‖ = 1, where pT ¼ ½p1
T j…jpn

T �. Maximizing
the above function yields a set of super scores t that relate the N obser-
vations inX to each other based on the extracted consensus directions in
p, as well as block scores ti and loadings pi that describe each block. This
objective function is of theMAXBET variety, in contrast to theMAXDIFF
objective of nPLS and OnPLS. As a result, the CPCA-W NIPALS algorithm
may be considered a special case of the general algorithm from Hanafi
and Kiers [17].

The multiblock PLS (MB-PLS) method, when deflation is performed
using super scores [14], shares an equivalence with single-block PLS as
proven by Westerhuis et al. [13]. Therefore, the MB-PLS objective
takes on a similar form as in CPCA-W, with the addition of a weighting
matrix:

tTYYT t ¼ wTXTYYTXw ¼
Xn

i; j¼1
tiTYY

T t j

¼
Xn

i; j¼1
wi

TXi
TYYTX jw j ð5Þ

where once again ||w|| is constrained to unity. In analogy to
Höskuldsson's interpretation of PLS as a regression on orthogonal com-
ponents, where YYT is used to weight the covariance matrix, the above
function corresponds to a MAXBET objective with an inner weighting
of YYT [2]. Alternatively, Eq. (5) could be interpreted as a MAXBET com-
puted on the n cross-covariance matrices YTX1 to YTXn.
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2.3. MB-OPLS

Extension of prior multiblock NIPALS algorithms to incorporate an
OSC filter rests on the observation that, in both the case of CPCA-W
and MB-PLS, deflation of each computed component is accomplished
using super scores. For any super score deflationmethod, a loading vec-
tor is computed for each block:

pi ¼
X i

T t
tT t

and the super scores t and block loadings are then used to deflate their
respective block:

X i←Xi−tpi
T ¼ I−

ttT

tT t

� �
X i ð6Þ

Eq. (6) differs from Eq. (2) used in nPLS and OnPLS, which uses
block-specific scores and loadings during deflation. This method of
super score deflation ensures that the super scores are an orthogonal
basis, while allowing scores and loadings to become slightly correlated
at the block level, and is a necessary condition for the equivalences be-
tween CPCA-W and MB-PLS and their single-block counterparts [13].
We shall employ this condition in MB-OPLS by deflating each matrix
by a set of orthogonal super scores To, which shall be shown to be
equal to the orthogonal scores obtained from single-blockOPLS. By con-
structing an MB-PLS model on the set of matrices after deflation by To,
we effectively arrive at another MAXBET objective:

tTYYT t ¼ wTXTZYYTZXw ¼
Xn

i; j¼1
tiTYY

T t j

¼
Xn

i; j¼1
wi

TX i
TZYYTZX jw j ð7Þ

where w is constrained to unit norm and Z is the orthogonal projector
for the super scores To:

Z ¼ I−To To
TTo

� �−1
To

T

2.3.1. The MB-OPLS model
MB-OPLS constructs an OPLS model for each matrix Xi, where the

predictive and orthogonal loadings for each matrix are interrelated by
a set of predictive and orthogonal super scores, respectively:

X i ¼ TPT
i

⏟
Xp;i

þ ToPo;i
T

⏟
Xo;i

þ Ei ð8Þ

where each Ei is a data residual matrix that holds all variation in Xi not
explained by the model. Concatenation of all block-level matrices to-
gether in Eq. (8) results in a top-level consensus model, which is in
fact equivalent to an OPLSmodel trained on the partitioned data matrix
X:

X ¼ X1 …j jXn½ � ¼ T PT
1 …j jPT

n

h i
⏟

Xp

þ To Po;1
T …j jPo;n

T
h i
⏟

X
o

þ E1 …j jEn½ �
⏟

E

: ð9Þ

Like PLS andMB-PLS, anMB-OPLSmodel contains a second equation
that relates the predictive super scores and responses:

Y ¼ TCT þ F ð10Þ

where C is the response loadings matrix that relates the super scores to
the responses, and F is the response residual matrix that holds Y-
variation not captured by the model.
2.3.2. The MB-OPLS algorithm
The proposed MB-OPLS algorithm described herein admits a matrix

of responses Y, but also supports vector-y cases. Direct and normed as-
signmentwill be indicated by “←” and “∝”, respectively. All assignments
to block-specific structures (e.g., wi) that are to be performed over all
values of i from 1 to n are suffixed with “∀ i ϵ {1, …, n}”.

1. For each m ∈ {1,…, M} do
a. vi;m←Xi

Tym � ðymTymÞ−1 ∀i ϵ f1;…;ng
b. Vi ← [Vi|vi,m] ∀ i ϵ {1, …, n}
2. Initialize u to a column of Y
3. wi∝Xi

Tu ∀i ϵ f1;…;ng
4. ti ← Xiwi ∀ i ϵ {1, …, n}
5. R ← [t1| … |tn]
6. wT ∝ RTu
7. t ← RwT

8. c ← (YTt) ⋅ (tTt)−1

9. u ← (Yc) ⋅ (cTc)−1

10. If ‖u − uold‖/‖uold‖ N ε, return to step (3).
Otherwise, continue to step (11).

11. pi←ðX i
T tÞ � ðtT tÞ−1

∀i ϵ f1;…;ng
12. To compute an orthogonal component, continue to step (13).

Otherwise, proceed to step (21).
13. wo,i ← pi ∀ i ϵ {1, …, n}
14. For each m ∈ {1,…, M} do
a. φ←ð∑n

i¼1vi;m
Two;iÞ � ð∑n

i¼1vi;m
Tvi;mÞ−1

b. wo,i ← wo,i − φvi,m ∀ i ϵ {1, …, n}
15. wo;i←wo;i � ð∑n

i¼1wo;i
Two;iÞ−1=2

∀i ϵ f1;…;ng
16. to,i ← Xiwo,i ∀ i ϵ {1, …, n}
17. to ← ∑i = 1

n to,i
18. po;i←ðX i

T toÞ � ðtoT toÞ−1
∀i ϵ f1;…;ng

19. Xi←X i−topo;i
T ∀i ϵ f1;…;ng

20. Return to step (2).
21. Xi←X i−tpi

T ∀i ϵ f1;…;ng
22. To compute another component, return to step (2).

Otherwise, end.

In the above algorithm, the value of ε is set to a very small number,
e.g., 10−9. For each predictive component in the model, a set of orthog-
onal components is extracted. After the computation of a new orthogo-
nal component, the current predictive component is updated to reflect
the removal of orthogonal variation from the matrices Xi. The MB-
OPLS algorithm closely follows the matrix-Y OPLS algorithm presented
by Trygg and Wold [6], but replaces the standard PLS computation
(steps 4–10 in OPLS) with an MB-PLS computation (steps 2–11
above). However, as described below, themechanism bywhich orthog-
onal variation is removed (steps 13–19 above) is identical to that of
OPLS.

2.3.3. Equivalence to OPLS
In both the vector-y and matrix-Y OPLS algorithms proposed by

Trygg and Wold [6], a basis V for the response-correlated variation
in X is constructed by regressing the data onto each column of
responses:

vm←
XTym
ymTym

∀m ∈ 1;…;Mf g ð11Þ

where ym and vm denote the m-th columns of Y and V, respectively.
When X is partitioned into multiple blocks, the computed basis also
bears the same partitioning, i.e., VT ¼ ½V1

T j…jVn
T �, where each of

the n submatrices corresponds to the regression of its respective
block Xi onto the responses:

vi;m←
X i

Tym
ymTym

∀m ∈ 1;…;Mf g ð12Þ
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where vi,m is the m-th column of Vi. Given a single-block PLS loading
vector p, the OPLS algorithm computes an orthogonal weight wo by
orthogonalizing p to the columns of V:

wo←wo−
vmTwo

vmTvm

� �
vm ∀m ∈ 1;…;Mf g ð13Þ

after wo has been initialized to p. From the proof of Westerhuis et al.
[13], it is known that the single-block PLS loading p equals the concate-
nation of all block loadings fromMB-PLS, i.e., that pT ¼ ½p1

T j…jpn
T �. Ex-

pansion of all vector terms in the above equation into their partitioned
forms results in the following new assignment rule:

wo;i←wo;i−

Xn

i¼1
vi;mTwo;iXn

i¼1
vi;mTvi;m

0
@

1
Avi;m ∀m ∈ 1;…;Mf g ð14Þ

The scalar term in Eq. (14) should be recognized asφ in theMB-OPLS
algorithm. By the same reasoning, step (15) in the algorithm is equiva-
lent to scalingwo to unit norm. In effect, by computingφ as the fraction
of orthogonal variation to remove from its loadings, MB-OPLS yields the
same orthogonal weights (wo) as OPLS of the concatenated matrix.
Therefore, because wo equals the column-wise concatenation of all
weights wo,i, it is then apparent that the orthogonal super scores ex-
tracted byMB-OPLS are identical to those from OPLS of the concatenat-
ed matrix X, as illustrated in the following equation:

to ¼ Ewo ¼ E1 …j jEn½ �
wo;1
⋮

wo;n

2
4

3
5 ¼

Xn

i¼1
Eiwo;i ¼

Xn

i¼1
to;i ð15Þ

From this equivalence, and the fact that steps (2–11) and (21) in
MB-OPLS constitute an MB-PLS iteration, we arrive at the equivalence
between MB-OPLS and OPLS. Thus, orthogonality between the re-
sponses and orthogonal super scores to computed by MB-OPLS is also
ensured. However, because the computation of orthogonal weights in-
volves all blocks, the resulting orthogonal block scores to,i are not guar-
anteed to be orthogonal to the responses.

2.3.4. Computation from an OPLS Model
The equivalence between MB-OPLS super scores and OPLS scores

may be leveraged to generate an MB-OPLS model from an existing
OPLS model of a partitioned data matrix, saving computation time dur-
ing cross-validated model training. The following algorithm details the
extraction of MB-OPLS block scores and loadings from an OPLS model:

1. Initialize a = 1, b = 1
2. to ← [To]a
3. wo,i ← [Wo]i ∀ i ϵ {1,…, n}
4. to,i ← Xiwo,i ∀ i ϵ {1, …, n}
5. po;i←ðX i

T toÞ � ðtoT toÞ−1
∀i ϵ f1;…;ng

6. To,i ← [To,i|to,i] ∀ i ϵ {1, …, n}
7. Po,i ← [Po,i|po,i] ∀ i ϵ {1, …, n}
8. Wo,i ← [Wo,i|wo,i] ∀ i ϵ {1, …, n}
9. If another orthogonal component exists, increment a and return to

step (2).
Otherwise, continue to step (10).

10. X i←X i−ToPo;i
T ∀i ϵ f1;…;ng

11. u ← [U]b
12. t ← [T]b
13. wi∝Xi

Tu ∀i ϵ f1;…;ng
14. ti ← Xiwi ∀ i ϵ {1,…, n}
15. pi←ðX i

T tÞ � ðtT tÞ−1
∀i ϵ f1;…;ng

16. Ti ← [Ti|ti] ∀ i ϵ {1, …, n}
17. pi ← [Pi|pi] ∀ i ϵ {1,…, n}.
18. Wi ← [Wi|wi] ∀ i ϵ {1,…, n}
19. X i←X i−tpi

T ∀i ϵ f1;…;ng
20. If another predictive component exists, increment b and return to
step (1).Otherwise, end.

The keen observer will recognize the equivalence between steps
(10–19) above and the procedure outlined by Westerhuis et al. for
extracting MB-PLS block components from a PLS model [13]. By using
the above algorithm to compute MB-OPLS models, the analyst avoids
the unnecessary computation of block components during cross-
validated model training. For example, a G-fold Monte Carlo cross-
validation having R iterations requires the construction of RG models
in order to yield R cross-validated response matrix estimates. In each
of these RGmodels, MB-PLS requires 2Nn additional floating-pointmul-
tiplications (per power iteration) over PLS. In addition, computation of
multiblock components from single-block models ensures greater sta-
bility of super scores and loadings, especially in cases of missing data
[13].

3. Datasets

Two datasets will be described to illustrate howMB-OPLS effectively
integrates an OSC filter into an MB-PLS decomposition of a set of nma-
trices. The first synthetic dataset contrasts the mixing of predictive in-
formation in MB-PLS with its separation in MB-OPLS using a contrived
three-block regression example similar to that introduced by Löfstedt
and Trygg [16]. The second dataset, a joint set of nuclear magnetic reso-
nance (NMR) andmass spectrometry (MS) observations [22,23], is used
to demonstrate the enhanced interpretability of MB-OPLS models over
MB-PLS in a real example of discriminant analysis. All modeling and val-
idation were performed using routines available in the MVAPACK
chemometrics toolbox (http://bionmr.unl.edu/mvapack.php) [24].

3.1. Synthetic example

In the first dataset, three matrices (all having 100 rows and 200 col-
umns)were constructed to hold one y-predictive component (tpi

T) and
one y-orthogonal component (topo;i

T ). The score vectors were non-
overlapping (orthogonal) Gaussian density functions, and all block
loading vectors were mutually overlapping Gaussian density or square
step functions. The true synthetic block loadings are illustrated in
Fig. 1A. A two-component MB-PLS-R regression model was trained on
the synthetic three-block example dataset, as well as a 1 + 1 (one pre-
dictive, one orthogonal) component MB-OPLS-R regression model.
Block loadings extracted by MB-PLS-R and MB-OPLS-R are shown in
Figs. 1B and C, respectively.

3.2. Joint 1H NMR and DI-ESI-MS datasets

The second dataset is a pair of processed and treated data matrices,
collected on 29 samples of metabolite extracts from human dopaminer-
gic neuroblastoma cells treatedwith various neurotoxic agents [23]. The
first matrix, collected using 1H NMR spectroscopy, contains 16,138 col-
umns and the second, collected using direct injection electrospray ioni-
zation mass spectrometry (DI-ESI-MS), contains 2095 columns. Prior to
all modeling, blockweightingwas applied after Pareto scaling to ensure
equal contribution of each block to the models (fairness) [12].

In previously performedwork, a two-component, two-class (vector-
y) multiblock discriminant analysis (MB-PLS-DA)model was trained on
the dataset in order to discriminate between untreated and neurotoxin-
treated cell samples. To highlight the improved interpretability of MB-
OPLS over MB-PLS, a 1 + 1 MB-OPLS-DA model was trained on the
data using an identical vector of class labels. Block componentswere ex-
tracted from an OPLS-DA model of the concatenated matrix X =
[XNMR|XMS] using the above algorithm. For both models, fifty rounds of
Monte Carlo seven-fold cross-validation [25,26] were performed to
compute per-component Q2 statistics [3], in addition to the R2 statistics

http://bionmr.unl.edu/mvapack.php


Fig. 1. Block loadings in the synthetic multiblock example dataset. (A) True predictive loadings (solid) and orthogonal loadings (dashed) used to construct the three-block dataset. First,
second and third block loadings are colored in red, green and blue, respectively. (B) First component (solid) and second component (dashed) loadings identified by MB-PLS modeling of
the three data blocks. (C) Predictive (solid) and orthogonal (dashed) block loadings identified by MB-OPLS, illustrating the separation of y-uncorrelated variation accomplished by the
integrated OSC filter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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available from model training. CV-ANOVA significance testing was also
applied to further assess model reliability [27].

4. Results and discussion

In both the contrived dataset and the real spectroscopic dataset, the
interpretative advantage offered by MB-OPLS over MB-PLS is strikingly
apparent. In the synthetic example, MB-OPLS capably identifies the
true predictive and orthogonal loadings in the presence of y-
orthogonal variation that clouds the interpretation of MB-PLS loadings
(Fig. 1). By design, this comparison between MB-OPLS and MB-PLS is
highly similar to the first example presented by Löfstedt and Trygg to
compare nPLS and OnPLS for general data discovery [16]. However, as
is evidenced by the differences between Eqs. (3) and (7) above, MB-
OPLS solves an inherently distinct problem from OnPLS: the identifica-
tion of consensus variation inmultiple blocks of data that predicts a sin-
gle set of responses.

The ability of MB-OPLS to separate predictive and orthogonal varia-
tion from multiple data matrices is further exemplified in the discrimi-
nant analysis of the real spectroscopic dataset. From the rotated
discrimination axis in the MB-PLS-DA scores (Fig. 2A), it is clear that
predictive and orthogonal variation have become mixed in the corre-
sponding block loadings (Fig. 3). Integration of an OSC filter into the
multiblockmodel in the form ofMB-OPLS-DA achieves the expected ro-
tation of super scores to place more predictive variation into the first
component (Fig. 2B). As a consequence of this rotation, spectral
Fig. 2. Super scores identified by (A) MB-PLS and (B) MB-OPLS modeling of the joint 1H NMR
ponent is clear in the MB-OPLS scores. Ellipses represent the 95% confidence regions for each
the untreated (yellow), 6-hydroxydopamine (red), 1-methyl-4-phenylpyridinium (green) and
Supplementary Figure S-1. Block scores for each model are shown in Supplementary Figs. S-2 a
ferred to the web version of this article.)
information that separates paraquat treatment from other neurotoxin
treatments is also moved into the orthogonal component. For example,
strong loadings from citrate in the 1H NMR MB-PLS block loadings
(Fig. 3A, 2.6 ppm) are substantially diminished in the predictive block
loadings from MB-OPLS (Fig. 4), as separation between paraquat and
other treatments has been isolated along the orthogonal component
in super scores. Inspection of the orthogonal block loadings from MB-
OPLS (Supplementary Fig. S-4) will reveal, as expected, that citrate con-
tributes more to separation between neurotoxin treatments than to
separation between treatments and controls. Similar patterns were ob-
served in the DI-ESI-MS block loadings at m/z 203.058 and 233.067,
which were assigned via accurate mass and tandemMS measurements
as sodium adducts of hexose and heptose, respectively [23]. These re-
sults agree with detailed prior analyses of pairwise MB-PLS-DA models
between each drug treatment and untreated cells, which indicate that
paraquat treatment uniquely alters metabolic flux through glycolysis
and the pentose phosphate pathway [22]. In contrast to the multiple
MB-PLS-DA models employed by Lei et al. to arrive at this conclusion
[22], the MB-OPLS-DA model has provided the same set of core results
in a single, substantially more interpretable model.

The partial correlation of both predictive and orthogonal block
scores inMB-OPLS is readily observed in the comparison of block scores
from MB-PLS and MB-OPLS (Supplementary Figs. S-2 and S-3). While
the super scores in Fig. 2B are rotated to separate predictive and orthog-
onal variation, block scores in Figs. S-2B and S-3B have rotated back into
alignmentwith theMB-PLS block scores. This partial correlation and re-
and DI-ESI-MS data matrices. Extraction of y-orthogonal variation from the first PLS com-
sub-class of observations, assuming normal distributions. Colors indicate membership to
paraquat (violet) sub-classes. Cross-validated super scores for each model are shown in
nd S-3. (For interpretation of the references to color in this figure legend, the reader is re-



Fig. 3.Backscaledfirst-component block loadings from theMB-PLSmodel of the (A) 1HNMRand (B)DI-ESI-MSdatamatrices. Coloring of each loading vector ranges fromblue to red based
on the amount of point-wise weighting applied during Pareto scaling. It is important to note that a second PLS component exists in the MB-PLS model that is not shown. Spectral contri-
butions from citrate in the 1H NMR MB-PLS block loadings (2.6 ppm) are indicated by a bracket, and contributions from hexose and heptose in the DI-ESI-MS loadings are indicated by
black squares and circles, respectively.
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mixing of predictive and orthogonal variation in MB-OPLS block scores
is a consequence of the use of super score deflation in the proposed al-
gorithm. When all matrices contain similar patterns of orthogonal vari-
ation, their MB-OPLS block scores will reflect this by retaining the OSC-
induced rotation captured at the consensus level by the super scores.
However, because the interpretative advantage of MB-OPLS over MB-
PLS lies in the relationship between super scores and block loadings,
the fact that orthogonal block scores have partial y-correlation is rela-
tively benign.

Because the MB-OPLS-DA model of the real spectral data matrices
was trained using the single-block OPLS routine already present in
MVAPACK, all readily available cross-validation metrics were available
in the model without further computational expenditure. Monte Carlo
cross-validation of the MB-PLS model produced cumulative R2

Y and
Q2 statistics of 0.903 and 0.819 ± 0.024, respectively, and validation of
theMB-OPLSmodel resulted in statistics of 0.903 and 0.736± 0.021, re-
spectively. As expected, theMB-OPLSmodel captured the same fraction
of response variation (R2

Y) as MB-PLS, reaffirming the fact that the two
methods have the same predictive ability. In addition, MB-OPLSmodel-
ing yielded R2

Xp and R2
Xo statistics of 0.378 and 0.245 for the first block,

and 0.236 and 0.083 for the second block. Monte Carlo cross-validated
super scores fromMB-PLS andMB-OPLS are depicted in Supplementary
Fig. S-1. Compared to MB-PLS scores in Fig. S-1A, MB-OPLS scores
(Fig. S-1B) exhibit an increased uncertainty during cross-validation
due to the coupled nature of predictive and orthogonal components in
OPLS models. Further validation of the MB-OPLS-DA model via CV-
ANOVAproduced a p value equal to 2.88×10−6, indicating a sufficiently
reliable model.

It is worthy of final mention that the objective solved byMB-OPLS is
but a singlemember of a superfamily ofmultiblockmethods introduced
in detail by Hanafi and Kiers [17]. In the first family, nPLS and OnPLS
maximally capture the between-matrix covariances before and after or-
thogonal signal correction, respectively, and thus serve to regress a set
of matrices against each other. Methods in the second family capture
both within-matrix variances and between-matrix covariances of a set
of matrices (CPCA-W), a set of response-weighted matrices (MB-PLS),
and a set of response-weighted OSC-filtered matrices (MB-OPLS). By
casting these methods in the light of MAXDIFF and MAXBET, we obtain
an informative picture of their characteristics, commonalities, and dif-
ferences. For example, nPLS and OnPLS force an equal contribution of
each matrix to the solution through the constraint ‖wi‖ = 1, while
CPCA-W, MB-PLS and MB-OPLS allow contributions to float based on
the “importance” of each matrix to the modeling problem at hand.
This super weight approach necessitates a block scaling procedure to
avoid highly weighting any given matrix due to size alone [12,13].

5. Conclusions

The MB-OPLS method proposed here is a versatile extension of MB-
PLS to include an OSC filter, and belongs to a family of MAXBET
optimizers that share an equivalence with their single-block factoriza-
tions (Supplementary Fig. S-5). By removing consensus response-
uncorrelated variation from a set of n data matrices, MB-OPLS expands
the scope and benefits of OPLS to cases where blocking information is
available. The ability of MB-OPLS to separate predictive and orthogonal
variation from multiple blocks of data has been demonstrated on both
synthetic and real spectral data, both in cases of vector-y regression
and discriminant analysis. Of course, while both examples were
interpreted in the light of spectroscopic datasets like those used in
metabolomics [22,23], MB-OPLS is a fully general algorithm that admits
any multiblock dataset for the purposes of regression or discriminant
analysis. For example, recent applications of MB-PLS for investigating
food spoilage [28], iron-ore content [29], chemical toxicity [30], the evo-
lution of human anatomy [31], and the assessment of cortical and mus-
cle activity in Parkinson's disease patients [32] would benefit from our
MB-OPLS algorithm. The presented algorithm admits either a vector or
a matrix as responses, and is implemented in the latest version of the
open-source MVAPACK chemometrics toolbox [24].

Notes

The authors declare no competing financial interest.



Fig. 4. Backscaled first-component block loadings from theMB-OPLSmodel of the (A) 1H NMR and (B) DI-ESI-MS datamatrices. Coloring of each loading vector is identical to that of Fig. 3.
Spectral contributions from citrate in the 1H NMRMB-OPLS block loadings (2.6 ppm) are indicated by a bracket, and contributions from hexose and heptose in the DI-ESI-MS loadings are
indicated by black squares and circles, respectively. Unlike the two-component MB-PLS model, the single predictive MB-OPLS component here fully separates observations between the
classes under discrimination. Backscaled orthogonal block loadings from the same model are shown in Supplementary Fig. S-4.
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