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NMR metabolic fingerprinting methods almost exclusively rely upon the use of one-dimensional (1D) 1H NMR
data to gain insights into chemical differences between two or more experimental classes. While 1D 1H NMR
spectroscopy is a powerful, highly informative technique that can rapidly and nondestructively report details
of complex metabolite mixtures, it suffers from significant signal overlap that hinders interpretation and quanti-
fication of individual analytes. Two-dimensional (2D)NMRmethods that report heteronuclear connectivities can
reduce spectral overlap, but their use inmetabolic fingerprinting studies is limited. We describe a generalization
of Adaptive Intelligent binning that enables its use on multidimensional datasets, allowing the direct use of nD
NMR spectroscopic data in bilinear factorizations such as principal component analysis (PCA) and partial least
squares (PLS).

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

By and large, the phrase “NMRmetabolic fingerprinting” implies the
use of one-dimensional (1D) 1H NMR spectroscopic methods, due in no
small part to the ease and speed of 1D data collection and the large
natural abundance of NMR-active protons found in metabolomics
samples [1,2]. Before processed spectra are submitted to multivariate
statistical algorithms like principal component analysis (PCA) or partial
least squares (PLS) for modeling, they are often subdivided into bins
to simplify multivariate analyses [2]. Spectral binning reduces the
dimensionality of the data matrix and masks chemical shift variability
between samples at the expense of decreased model interpretability:
any given bin in a 1D 1HNMR spectrummay contain several overlapped
signals from multiple distinct metabolites [3]. Thus, without utilizing
computationally intensive methods of deconvolution to tease apart sig-
nal contributions of individualmetabolites [4,5], the resultingmetabolic
fingerprint from a binned 1D dataset is usually limited to high-level
inference about metabolic trends.

By leveraging the connectivities between 1H and 13C nuclei in
metabolites, two-dimensional (2D) heteronuclear NMR methods re-
duce spectral overlap by spreading 1H information over a second (13C)
chemical shift dimension [6]. Heteronuclear single quantum coherence
(HSQC) experiments are commonly performed in NMR metabolic pro-
filing studies, and provide an NMR singlet or multiplet for each directly
bonded 1H–13C pair in the sample. Developments in NMRhardware and
coln, Department of Chemistry,
ates. Tel.: +1 402 472 3039;
acquisition techniques have brought natural abundance 1H–13C HSQC
experiment times down to values compatible with high-throughput
metabolic fingerprinting studies [7,8]. However, multivariate analysis
of 2D NMR datasets is still a nontrivial undertaking that requires either
vectorization [9], which breaks the inherent structure of the data, or the
use of multilinear factorizations [10], which are more computationally
intensive and difficult to cross-validate.

Spectral binning is another potential means of preparing 2D NMR
datasets for multivariate analysis that holds several advantages over
binning 1D spectra. First, multiple integration of bins maps each spec-
trum to an observation vector regardless of its original dimensionality,
allowing bilinear PCA and PLS algorithms to be used without concern
for loss of the inherent structure of the data. Second, binning of 2D
spectral data yields more well-conditioned data matrices than simple
vectorization. Finally, because signals are better resolved in 2D spectra,
each bin contains substantially fewer signals from distinct metabolites.
Multiple different algorithms have been developed to bin 1D NMR
data [11–15], and the use of uniform binning on 2D NMR data has also
been reported [16]. However, to our knowledge, no methods exist to
intelligently bin multidimensional data for use in multivariate analysis.
Therefore, we propose a generalization of Adaptive Intelligent (AI)
binning [14] to spectral data of any dimensionality, called Generalized
Adaptive Intelligent (GAI) binning (Fig. 1).

2. Calculation

2.1. AI-binning

Generalized AI-binning (GAI-binning) is a logical extension of
AI-binning to two or more dimensions. In the AI algorithm (Fig. 1A),
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Fig. 1. Illustration of the GAI-binning bin subdivision procedure for one-dimensional and two-dimensional spectral fragments. (A) In the one-dimensional case, the bin containing regions
1 and 2 is optimally subdivided (asterisk) when the sum of the objective values in regions 1 and 2 is greater than the original bin's objective value. (B) In the D-dimensional case, there are
now D possible dimensions along which an optimal subdivision may exist. The optimal subdivision along the 1H dimension (triangle) occurs when the sum of the objective values in
regions 3 + 6 and 4 + 5 exceeds that of the original bin. Similarly, the optimal subdivision along the 13C dimension (circle) occurs when the sum of the objective values in regions
3 + 4 and 5 + 6 exceeds the original value. A comparison between all possible optimal subdivisions along all dimensions yields the best possible subdivision (circle).
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bins are recursively subdivided until a stopping criterion or minimum
bin width is reached [14]. For a 1D dataset containing N spectra, the
following objective function is used to assess the quality of each bin:

Vb ¼ 1
N

XN

n¼1
maxn;b−In;b;1
� �

maxn;b−In;b;end
� �� �R=2 ð1Þ

where maxn,b is the maximum intensity inside the bin b in spectrum n,
and In,b,1 and In,b,end are the bin edge intensities. The exponent R in the
AI objective function is referred to as a ‘resolution parameter’, which
offers a means of tuning the binning result based on signal-to-noise
and peak resolution of a dataset. By replacingRwithR/2 in the exponent
of equation 1, we have chosen a slightly modified interpretation of
the resolution parameter as a relaxed form of a geometric mean of
the differences between the bin edge intensities and the maximum
bin intensity. At each subdivision step, new bin edges are chosen to
maximize the combined (summed) objective values of the two
resulting bins over the objective value of the original bin. If no bin
subdivision exists with a combined objective function greater than
that of the original bin, recursive subdivision within that bin is termi-
nated, and the AI algorithm terminates once all bins may no longer
be subdivided.

2.2. GAI-binning

In two or more dimensions, the set of bin boundary points expands
to include all points that lie on the edges (or faces, hyperfaces, etc.) of
Fig. 2. Processed 1H–13C HSQCmean spectrum of the liver data tensor, with overlaid uniform (A
and 13C of 0.025 ppm and 2.5 ppm, respectively. Retained bins all have maximum intensities n
the bin. By denoting the set of all edge points in bin b as Eb, a new
objective function may be constructed:

Vb ¼ 1
N

XN

n¼1
∏e∈Eb maxn;b−Ie

� �h iR= Ebk k
: ð2Þ

Thus, the GAI algorithm computes the ‘relaxed’ geometric mean of
the differences between the binmaximum and all points on the bound-
ary. In the case of one-dimensional data, it is apparent that Eq. (2)
reduces to Eq. (1), and GAI-binning operates identically to AI-binning.
As dimensionality increases, the risk of floating-point overflow or
underflow increases due to the larger bin edge set Eb. To avoid this,
the following ‘log-objective’ may be used in lieu of Eq. (2):

Vb;ln ¼ R
N Ebk k

XN

n¼1

X
e∈Eb

ln maxn;b−Ie
� �

: ð3Þ

Like AI-binning, GAI-binning initializes a bin around the entire
dataset and proceeds to recursively subdivide each bin until aminimum
bin size is reached or no bin may be divided to yield an increase in the
objective value. Because the number of ways to subdivide each bin
increases with dimensionality, all possible dimensions are tested, and
the new bin boundary that maximizes the objective over all possible
subdivision dimensions is selected (Fig. 1B). Therefore, the GAI
algorithm may be considered a form of binary space partitioning (BSP)
which limits its partition hyperplanes to lying orthogonally to the
basis vectors of the coordinate system [17].
) and GAI (B) bin boundaries. The dataset was binnedwithminimumbin widths along 1H
o less than three times the standard deviation of the noise floor.



Table 2
OPLS-DA cross-validation p values.

Integration Vectorization

Permutation CV-ANOVA Permutation CV-ANOVA

Liver Unif. b0.001 3.24 × 10−11 b0.001 4.70 × 10−11

N = 24 GAI b0.001 3.34 × 10−10 b0.001 9.74 × 10−11

MEF Unif. b0.001 3.56 × 10−10 b0.001 1.73 × 10−9

N = 17 GAI b0.001 1.37 × 10−9 b0.001 2.34 × 10−9

Table 1
Data matrices and PCA/OPLS model statistics.

Integration Vectorization

PCA OPLS OPLS

K R2
X Q2 R2

Y Q2 K R2
Y Q2

Liver Unif. 248 0.82 0.71 0.993 0.938 ± 0.002 11,160 0.993 0.929 ± 0.003
N = 24 GAI 113 0.89 0.75 0.991 0.928 ± 0.003 10,474 0.994 0.933 ± 0.003
MEF Unif. 334 0.48 0.40 0.994 0.974 ± 0.004 18,348 0.994 0.963 ± 0.005
N = 17 GAI 93 0.71 0.56 0.994 0.973 ± 0.005 18,789 0.996 0.962 ± 0.006
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2.3. Noise bin elimination

It is important that noise bins be removed from the datamatrix prior
tomultivariate analysis, as their presence is known to negatively impact
the interpretability and reliability of multivariate models [18,19].
Because the integration of a noisy space of increasing dimensionality
(i.e. double or triple integration) results in a random variable having a
similarly increasing variance, the importance of noise removal is
compounded in multidimensional binning. Therefore, a noise bin re-
moval step based on spectral intensity was added to the GAI algorithm.
A runningmean and variance calculationwas performed to estimate the
noise floor of each spectrum. The initial mean μn and standard deviation
σn of the noise were computed using the first 32 points on one edge of
the spectrum, which were assumed to contain only baseline noise.
Every other data point was then classified as signal or noise based
on whether its intensity exceeded the current running noise floor,
μ n + 3σn. Upon inclusion of a new noise data point, the mean and
standard deviation of the noise were appropriately updated. Once the
estimated noise floor was determined for each spectrum in the dataset,
a threshold for bin removal was computed as the median noise floor of
all the spectra:

Ith ¼ medn μn þ kσnð Þ ð4Þ

where k is a user-selectable parameter to adjust the noise threshold.
Only bins whose maximum intensity fell above the threshold were
retained in the final data matrix.

3. Methods

3.1. Human liver dataset

Two independently collected 1H–13C HSQC NMR datasets from
ongoing metabolomics studies were used as test cases for the GAI-
binning algorithm. For the first dataset, twenty-four 1.0 mL samples of
SK-Hep1 human liver cells were provided for metabolic fingerprinting,
half of which were treated with 50 μM tetrathiomolybdate (TTM). The
cells were extracted into 80:20 methanol:water to collect the water-
soluble metabolites, spun in a rotary evaporator for 2 h, lyophilized at
−50 °C and 0.02 mBar for 24 h, and finally redissolved in 600 μL of
50.0 mM phosphate buffer in 99.8% D2O (Isotec, St. Louis, MO) adjusted
to pH 7.4. The redissolved, pH-adjusted samples were then collected
into NMR tubes.

Experiments were collected on a Bruker Avance III HD 700 MHz
spectrometer equipped with a 5 mm inverse quadruple-resonance
(1H, 13C, 15N, 31P) cryoprobe with cooled 1H and 13C channels and a
z-axis gradient. A Bruker SampleJet and ICON-NMR were used to auto-
mate NMR data collection. A 2D gradient-enhanced 1H–13C HSQC with
improved sensitivity [20,21] (hsqcetgpsi) was collected for each sample.
Spectra were collectedwith 4 scans and 16 dummy scans over a uniform
grid of 512 and 64 complex points along the 1H and 13C dimensions,
respectively. Spectral windows were set to 3285 ± 4545 Hz along 1H
and 12,677± 14,620 Hz along 13C. All spectra were collected at a sample
temperature of 298.0 K.
3.2. Mouse embryonic fibroblast dataset

A second set of samples from kinase suppressor of Ras 1 (KSR1)
knockout mouse embryonic fibroblast (MEF) cells was also provided
to generate a test 1H–13C HSQC dataset for GAI-binning. For this second
dataset, ten cell samples from ksr1−/− MEFs and ten samples from
KSR1-rescued ksr1−/− MEFs were used to produce metabolite extracts.
The cells were washed, extracted into 80:20 methanol:water, spun in a
rotary evaporator, lyophilized and redissolved according to the proce-
dures used to extract metabolites from the liver cell samples.

Experiments were collected on a Bruker Avance DRX 500MHz spec-
trometer equipped with a 5 mm inverse triple-resonance (1H, 13C, 15N)
cryoprobe with a z-axis gradient. A Bruker BACS-120 sample changer
and ICON-NMR software were used to automate data collection. A 2D
gradient-enhanced 1H–13C HSQC (hsqcetgp) was collected for each
sample. Spectra were collected with 128 scans and 16 dummy scans
over a uniform grid of 1024 and 32 complex points along the 1H and
13C dimensions, respectively. Spectral windows were set to 2359 ±
2367 Hz along 1H and 8174 ± 8803 Hz along 13C. All spectra were
collected at a sample temperature of 293 K.

3.3. NMR processing and multivariate analysis

All processing, treatment and statistical modeling were performed in
GNU Octave 3.6 [22] using routines currently available in the MVAPACK
toolbox for NMR chemometrics [23]. The 2D raw serial files were loaded
[24], apodized with a squared-sine window, zero-filled once along 1H
and twice along 13C, and Fourier-transformed. Spectra from the liver cell
extracts were manually phase-corrected and cropped (1.0–6.6 ppm
along 1H; 16–112 ppm along 13C), and spectra from the MEF extracts
were similarly phase-corrected and cropped (1.25–6.2 ppm along 1H;
8–102 ppm along 13C). Both uniform and GAI-binning were performed
on each data tensor using minimum 1H and 13C bin widths of
0.025 ppm and 2.5 ppm, respectively, and a GAI resolution parameter of
0.1. Binned regions identified to be less intense than three times the stan-
dard deviation of the spectral noise (k=3) were removed after binning.
The mean spectrum of the entire processed liver dataset, superimposed
with bins identified by both uniform and GAI-binning, is shown in Fig. 2.

The applicability of GAI-binning to bilinear factorizations was dem-
onstrated by modeling the data tensors using both PCA and OPLS-DA.
For PCA modeling of the data, the spectral regions identified by each
binning method were doubly integrated. Scores and loadings were
then calculated using the Nonlinear Iterative Partial Least Squares
(NIPALS) algorithm [25]. Internal leave-one-out cross-validation
(LOOCV) of each computed PCA model was performed to yield model



Fig. 3. Principal component analysis scores resulting from modeling the GAI-binned
1H–13C HSQC data matrix, indicating a high degree of separation between experimental
groups.Model fit (R2

X) and predictive ability (Q2)were 0.68 and 0.64 for thefirst principal
component (t1) and 0.12 and 0.09 for the second (t2). Class separations of this magnitude
are readily achievable using data matrices generated by GAI-binning, due in large part to
the low variable counts it generally produces.
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fit (R2
X) and predictive ability (Q2) statistics [26,27]. For OPLS-DA, spec-

tral data pointswithin the identified binswere vectorized row-wise into
a data matrix as previously described [9]. During vectorization, all data
pointswithin each binned region are stacked into an observation vector,
and data points not within bins are excluded. The use of vectorization
prior to supervised modeling facilitates the creation of backscaled
pseudospectral OPLS loadings, which hold greater ease of interpretation
over binned loadings [28]. Modeling by an OSC-filtered NIPALS
algorithm [29] and 100 rounds of seven-fold Monte Carlo internal
cross-validation (MCCV) [30] were performed to compute data fit
(R2

X), response fit (R
2
Y) and predictive ability (Q2) statistics. The binned

data matrices produced via double integration were also subjected to
OPLS-DA modeling in the same manner as the vectorized data. All
OPLS-DA models were further validated using CV-ANOVA [31] and
1000 iterations of response permutation testing [32] to rigorously
ensure model reliability. Backscaled predictive OPLS loadings were
computed from the vectorized bins according to previously published
works [9,33]. During backscaling, OPLS loading vectors were scaled
by the inverse of their original Pareto scaling coefficients and then
unstacked into a two-dimensional pseudospectrum using bin informa-
tion. Data points not included in the vectorized loadings were set
to zero in the backscaled pseudospectrum. All data matrices were nor-
malized using Probabilistic Quotients (PQ) [34] and then Pareto scaled
[35] prior to modeling.
Fig. 4.Backscaled full-resolution pseudospectral loadings fromOPLS-DAmodeling of theGAI-re
are represented by red and blue contours, respectively. (For interpretation of the references to
4. Results and discussion

Processing of the liver extract spectra yielded a real data tensor of 24
1H–13C HSQC spectra having 442 × 149 points each, and processing
of the fibroblast spectra yielded a tensor of 17 spectra having
1071 × 172 real data points each. The observation counts (N), variable
counts (K) and PCA/OPLS cross-validation statistics (R2, Q2) for each
dataset and variable reduction method are summarized in Table 1.
Further validation results from the OPLS models, all of which indicate
varying degrees of high model reliability, are also summarized in
Table 2. Through examination of the variable counts within Table 1, it
is readily apparent that GAI-binning is dramatically more effective
than uniform binning at discriminating between signal and noise
regions within spectral data. On average, GAI-binning segmented each
data tensor into less than half the number of bins produced by uniform
binning, and produced PCA models with markedly higher R2

X and Q2

statistics. Moreover, even with the greatly reduced variable counts
produced by GAI-binning relative to uniform binning, the OPLS Q2 sta-
tistics between the two methods are statistically indistinguishable. In
fact, the variable counts resulting from GAI-binning these third-order
tensors are substantially lower than the few hundred variables typically
produced by binning one-dimensional spectra. Resulting scores from
PCA modeling of the GAI-binned liver data tensor are shown in Fig. 3.

Backscaled predictive OPLS-DA loadings of the vectorized 1H–13C
HSQC spectral data tensors (Fig. 4) lend further support for the use of
multidimensional binning in metabolic fingerprinting experiments.
Evenwhen vectorization is performed in place of integration to produce
a data matrix, binning offers an effective means of variable selection:
only 10,474 of 65,858 variables (16%) were retained when GAI-binning
was used as a pre-filter prior to modeling the liver data. A similar reduc-
tion was observed in the fibroblast dataset, where GAI-binning retained
18,789 of 184,212 total variables for a 90% reduction in dimensionality.
These substantially reduced variable counts offered by binning translate
to more well-conditioned bilinear modeling problems. As the dimen-
sionality of the input dataset is increased further, the reductions in
variable count afforded by multidimensional binning are expected to
become even more dramatic. While the variable counts produced by
vectorization of uniformly binned data tensors are comparable to those
from GAI-binning, it is critical to recognize that the uniformly binned
regions contain more noise data points than their GAI-binned counter-
parts, and thus offer a less efficient dimensionality reduction (cf. Fig. 2).

Spectral regions produced by GAI-binning (Fig. 2) demonstrate
several important properties of the combined binning and noise
removal processes. Because t1 noise and truncation artifacts yield phase-
incoherent negative spectral excursions after Fourier transformation,
‘unrelaxed’ GAI-binning (R = 1) tends to preferentially subdivide near
such regions, producing elongated bins along the F1 dimension.
Decreasing the resolution parameter from its maximum value shrinks
duced (A) liver and (B)fibroblast 1H–13C HSQC data tensors. Positive and negative loadings
color in this figure legend, the reader is referred to the web version of this article.)
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these bins to contain only true signals. Thus, an objective rule for
determining an optimal resolution parameter during binning is to
decrease R until all bins shrink to contain a minimal amount of noise.
Once an optimal resolution parameter has been identified, a suitable
noise threshold (k) must be determined such that all noise bins are
removed without loss of bins containing weak signals. However, once
optimal R and k have been determined for a given set of experimental
conditions, theymay be applied duringGAI-binning to any data collected
at later times under the same conditions to achieve ideal results. Our se-
lections of resolution parameter (R = 0.1) and noise threshold (k = 3)
were made according to the above criteria through a manual visual
examination of the binning results, but it is conceivable that objective
metrics of the criteria could be constructed that facilitate automated
determination of these parameters.

Finally, like AI-binning, the execution time of GAI-binning scales
quadratically with the number of spectral data points, and scales
approximately linearly with both the number of spectral dimensions
and the number of observations. Typical runtimes for binning two-
dimensional datasets range from seconds to a few minutes, depending
mostly on the data point count. Thus, while zero-filling may be used
to increase the digital resolution of data being input into GAI-binning,
it should be applied sparingly to avoid unnecessarily long computation
times during bin region determination.

5. Conclusions

Generalized Adaptive Intelligent binning is a logical extension of
the previously established Adaptive Intelligent binning algorithm [14] to
multidimensional datasets, and provides a model-free alternative to
peak-fitting andpeak-picking as ameans of variable selection inmultivar-
iate analyses. Furthermore, GAI-binning is a more intelligent method to
extract signal regions from multidimensional spectral data tensors than
uniform binning, and may be used to generate very low-dimensionality
data matrices via multiple integration or efficiently noise-filtered data
matrices via vectorization. Our C++ implementations of 1D and 2D
GAI-binning are freely available as part of the open-source MVAPACK
chemometrics toolbox [23], which may be downloaded at http://
bionmr.unl.edu/mvapack.php.
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