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Abstract Metabolomics datasets are commonly acquired

by either mass spectrometry (MS) or nuclear magnetic

resonance spectroscopy (NMR), despite their fundamental

complementarity. In fact, combining MS and NMR data-

sets greatly improves the coverage of the metabolome and

enhances the accuracy of metabolite identification, pro-

viding a detailed and high-throughput analysis of metabolic

changes due to disease, drug treatment, or a variety of other

environmental stimuli. Ideally, a single metabolomics

sample would be simultaneously used for both MS and

NMR analyses, minimizing the potential for variability

between the two datasets. This necessitates the optimiza-

tion of sample preparation, data collection and data han-

dling protocols to effectively integrate direct-infusion MS

data with one-dimensional (1D) 1H NMR spectra. To

achieve this goal, we report for the first time the optimi-

zation of (i) metabolomics sample preparation for dual

analysis by NMR and MS, (ii) high throughput, positive-

ion direct infusion electrospray ionization mass spectrom-

etry (DI-ESI–MS) for the analysis of complex metabolite

mixtures, and (iii) data handling protocols to simulta-

neously analyze DI-ESI–MS and 1D 1H NMR spectral data

using multiblock bilinear factorizations, namely multiblock

principal component analysis (MB-PCA) and multiblock

partial least squares (MB-PLS). Finally, we demonstrate

the combined use of backscaled loadings, accurate mass

measurements and tandem MS experiments to identify

metabolites significantly contributing to class separation in

MB-PLS-DA scores. We show that integration of NMR

and DI-ESI–MS datasets yields a substantial improvement

in the analysis of metabolome alterations induced by neu-

rotoxin treatment.

Keywords DI-ESI–MS � NMR � Metabolomics �
Multivariate statistics � Multiblock PCA � Multiblock PLS

1 Introduction

The analysis of metabolomics samples is routinely carried

out using either mass spectrometry (MS) (Dettmer et al.

2007) or nuclear magnetic resonance (NMR) spectroscopy

(Nicholson et al. 1999). However, NMR and MS have

distinct, complementary sets of strengths and limitations.

The advantages of NMR for metabolomics include rela-

tively high-throughput, non-destructive data acquisition,
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minimal sample handling, simple methods for quantitation

of metabolite alterations, and redundant spectral informa-

tion to improve the accuracy of metabolite identification

(Pan and Raftery 2007; t’Kindt et al. 2010; Zhang et al.

2013). However, one-dimensional (1D) 1H NMR is limited

by low sensitivity (C1 lM), low information content

(*0.02 ppm resolution over a *10 ppm spectral width)

and low dynamic range, all of which reduce the observable

set of metabolites. These deficiencies of NMR are strengths

of MS (Lenz and Wilson 2007; Pan and Raftery 2007). For

instance, MS has a much higher sensitivity compared to

NMR, readily measuring concentrations in the nanomolar

(nM) range. MS also boasts higher resolution (*103–104)

and dynamic range (*103–104). As a result, MS-based

metabolomics studies can potentially detect a much greater

subset of the metabolome than NMR.

More often than not, MS metabolomics relies on

hyphenated analytical platforms, such as GC–MS (Kuehn-

baum and Britz-McKibbin 2013) or LC–MS (Crockford

et al. 2006), to reduce peak overlap and improve coverage of

the metabolome. Peak overlap in the mass spectrum occurs

because of the relatively narrow molecular-weight distribu-

tion of the metabolome (Kell 2004). Ion suppression is also a

significant concern given the complexity and heterogeneity

of metabolomics samples. The competition for charge

between co-eluting analytes may lead to altered or missing

metabolite signals (Metz et al. 2008). While the coupling of

a chromatographic separation to MS potentially alleviates

these issues, it also increases analysis time and requires

additional sample preparation in comparison with NMR.

The extra sample processing required by chromatogra-

phy may lead to variations in the observed metabolome not

relevant to the biological system under study (Canelas et al.

2009). As an example, the chemical derivatization step

required by GC–MS may individually bias metabolite

concentrations. The derivatization yields may differ for

each metabolite, and no derivatizing agent exists that will

universally and efficiently label all metabolites in any

given biological sample (Kanani et al. 2008). Compound

decomposition during derivatization or separation may also

contribute to this bias (Xu et al. 2009), and co-eluting

matrix compounds may further suppress the ionization of

true analytes in LC–MS (Taylor 2005). In fact, there is now

a growing body of evidence suggesting that, with a judi-

cious choice of instrumental conditions, direct infusion

electrospray MS (DI-ESI–MS) may achieve equal or

greater ion transmission efficiency in metabolic finger-

printing relative to LC–MS (Draper et al. 2014). DI-ESI–

MS requires less sample pre-treatment and allows for

shorter instrument cycle times than LC–MS and GC–MS,

and does not require post-acquisition alignment of reten-

tion times (Kopka 2006; Lange et al. 2008). Thus, DI-ESI–

MS is an attractive choice of analytical platform to

complement NMR for high-throughput metabolic finger-

printing and profiling.

Ion sources such as direct analysis in real time (DART)

and desorption electrospray ionization (DESI) have also

been utilized for MS analysis of metabolomics samples

(Chen et al. 2006; Gu et al. 2011). DESI and DART are

ambient ionization methods and provide an abundance of

reproducible data (Chen et al. 2006; Gu et al. 2011).

However, DESI and DART are not nearly as widely

accessible as DI-ESI, which is nearly universally available

in modern instrumentation facilities. DI-ESI–MS is also

easily automated and can be performed with minimal

sample preparation, which is indispensable to high-

throughput studies (Draper et al. 2014).

The combination of NMR and MS techniques for met-

abolic fingerprinting and profiling is a growing trend (Pan

and Raftery 2007) and has been shown to improve me-

tabolome coverage (Barding et al. 2013). A number of

metabolomics studies combine 1D 1H NMR experiments

with LC–MS (Atherton et al. 2006; Jung et al. 2013) or

GC–MS (Barding et al. 2013). In these cases, samples and

data for each instrumental platform are handled in effective

isolation. Most importantly, such studies require the prep-

aration of separate sets of metabolite samples that meet the

specific needs of NMR and MS instrumentation (Beltran

et al. 2012). Nevertheless, such parallel approaches greatly

enhance the structural characterization and quantitation of

metabolites (Dai et al. 2010). An alternative approach is to

use MS as the primary analytical tool, relying on NMR to

validate the results or confirm the identification of key

metabolites (Mullen et al. 2012). To date, a limited number

of metabolomics studies actually integrate NMR spectral

data with information obtained from direct infusion ion

sources.

The combined multivariate statistical analysis of data

from multiple instrumental platforms is a nascent and un-

derutilized practice in the metabolomics field. Most studies

that integrate NMR and DI-ESI–MS data still perform

separate analyses of their respective data matrices and

combine the results in an attempt to enhance the total

information content. For example, Chen et al. performed

independent principal component analyses (PCA) on NMR

and MS datasets and combined the scores from each ana-

lysis into a three dimensional (3D) scores plot (Chen et al.

2006). While the resulting combined scores yielded greater

between-class separations than the original NMR or MS

scores, such an analysis completely ignores the highly

informative correlations that exist between the two data-

sets. Similarly, Gu et al. (2011) replaced binary class

designations in an orthogonal projections to latent struc-

tures (OPLS) analysis of MS data with scores from a PCA

of the corresponding NMR spectra. While the resulting

OPLS-R class separations were greater than the original
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OPLS-DA separations, such an analysis carries no statis-

tical guarantee of success for any other dataset.

Multiblock bilinear factorizations such as Consensus

PCA (CPCA), Hierarchical PCA, Hierarchical PLS and

Multiblock PLS provide a powerful framework for ana-

lyzing a set of multivariate observations from multiple

analytical measurements containing potentially correlated

variables (Smilde et al. 2003; Westerhuis et al. 1998; Wold

1987). Such algorithms provide analogous information to

classical PCA and PLS in situations where extra knowledge

is available to subdivide the measured variables into mul-

tiple ‘‘blocks’’. As a result, the correlation structures of

each block and the between-block correlations may be

simultaneously utilized. Due to the existence of trends

common to each block, this use of between-block corre-

lations during modeling will ideally bring the model

loadings (latent variables) into better agreement with the

true underlying biology (hidden variables). In short, mul-

tiblock algorithms provide an ideal means of integrating

1D 1H NMR and DI-ESI–MS datasets for metabolic fin-

gerprinting studies (Xu et al. 2013).

The successful integration of DI-ESI–MS data with 1D
1H NMR data for metabolic fingerprinting and profiling

necessitates improving sample preparation, data collection

and data processing protocols. Our described optimization

of sample preparation protocols enabled the utilization of a

single sample for both NMR and MS analysis. To further

diminish the impact of sample handling, samples were

infused directly into the mass spectrometer without pre-

source separation. Electrospray source conditions were

then optimized in order to maximize the performance of

DI-ESI–MS and minimize ion suppression and/or

enhancement (matrix effects). Multiblock PCA (MB-PCA)

and multiblock PLS (MB-PLS) were used to analyze the

collected NMR and mass spectral data, allowing the

identification of key metabolites that significantly con-

tributed to class separation from the resulting scores and

loadings. Finally, NMR, accurate mass and MS/MS data

were collected to enhance the accuracy and efficiency of

metabolite identification. Our resulting protocol for com-

bining DI-ESI–MS with 1D 1H NMR for metabolic fin-

gerprinting and profiling is summarized in Fig. 1.

2 Materials and methods

2.1 Samples and reagents

All standard reagents and isotopically labeled chemicals

were obtained from Sigma Aldrich (St. Louis, MO),

b Fig. 1 A flow chart illustrating our protocol for combining NMR and

MS datasets for metabolomics. 2.0 mL of a single metabolite extract

was split into 1.8 and 0.2 mL for NMR and MS analysis, respectively.

Spectral binning of the NMR data used adaptive intelligent binning.

First, the background is subtracted from the MS spectrum followed by

spectral binning. Spectral binning of the MS data used fixed binning

with a set bin width of 0.5 m/z. Baseline noise removal and

normalization separately applied to the NMR and MS data sets. The

NMR and MS datasets were modeled by MB-PCA and MB-PLS. The

resulting block scores and loadings were analyzed for significantly

contributing metabolites
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Fischer Scientific (Fair Lawn, NJ) and Cambridge Isotopes

(Andover, MA). A standard metabolite mixture was pre-

pared by mixing six compounds together: caffeine, L-his-

tidine, b-alanine, L-glutamine, (S)-(?)-ibuprofen, and

L-asparagine at concentrations of 10 mM in double distilled

water (ddH2O)/methanol/FA (49.75:49.75:0.5). The solu-

tion was diluted by a factor of 1000 for MS analysis.

Metabolite extracts from Escherichia coli Mach1 were

prepared as previously described in detail (Zhang et al.

2013). To generate analytical replicates, each of the

metabolite extracts were separated into three aliquots of

100 lL and then diluted ten-fold with ddH2O/methanol/FA

(49.75:49.75:0.5) containing 10 lM caffeine as an internal

mass reference. A complete description of the preparation

of standard samples is available in the supporting

information.

2.2 Preparation of metabolomics samples from human

dopaminergic neuroblastoma cells

Human dopaminergic neuroblastoma cells (SK-N-SH) with

different neurotoxin treatments were used as a metabolomics

test system for developing the methodology for integrating

NMR and MS data. SK-N-SH cell lines were cultured in

DMEM/F12 medium consisting of 100 units/mL penicillin–

streptomycin and 10 % fetal bovine serum. 1.5 9 106 SK-N-

SH cells were plated on a 10 cm dish for overnight incubation

with 5 % CO2 at 37 �C. The cells were then treated

with 2.5 mM 1-methyl-4-phenylpyridinium (MPP?), 50 lM

6-hydroxydopamine (6-OHDA), 0.5 mM paraquat or 4.0 lM

rotenone for 24 h. The cells were washed twice with 5 mL

PBS washes. 1.0 mL of cold methanol (-80 �C) was imme-

diately added to simultaneously lyse and quench the cells,

which were then incubated at -80 �C for 15 min to facilitate

cell lysis and metabolite extraction. The cells were detached

from each dish using a cell scraper and cellular detachment

was confirmed using an inverted microscope. The methanol

and detached cell debris were transferred to 2.0 mL micro-

centrifuge tubes, which were centrifuged for 5 min at

15,294 g at 4 �C to separate the metabolite extract from the

cell debris. The cell debris was then washed with 500 lL of

80 %/20 % methanol/water and then with 500 lL of 100 %

ddH2O. Supernatants from each of the three extractions were

finally combined into 2.0 mL microcentrifuge tubes.

Cell extract samples were then split into two portions:

1.8 mL for NMR analysis and 200 lL for MS analysis. The

MS portions were diluted tenfold with a solution of H2O/

methanol/FA (49.75:49.75:0.5) containing 20 lM reser-

pine as an internal mass reference. The NMR portions were

placed in a RotoSpeed vacuum to remove the organic

solvent, followed by freezing and lyophilization. Lyophi-

lized NMR-bound metabolite extracts were then

resuspended in 600 lL of 50 mM deuterated potassium

phosphate buffer at pH 7.2 (uncorrected) containing 50 lM

of 3-(trimethylsilyl)propionic acid-2,2,3,3-d4 (TMSP-d4)

and transferred to 5 mm NMR tubes.

2.3 NMR data acquisition and preprocessing

The NMR data was collected and processed according to

our previously described protocol (Zhang et al. 2013).

A Bruker Avance DRX 500 MHz spectrometer equipped

with a 5 mm triple-resonance cryogenic probe (1H, 13C,
15N) with a z-axis gradient, BACS-120 sample changer,

and an automatic tuning and matching accessory was uti-

lized for automated NMR data collection.

Following acquisition, the 1D 1H NMR spectra were

processed in our MVAPACK software suite (http://bionmr.

unl.edu/mvapack.php), which provides a uniform data han-

dling environment that is highly tuned for NMR chemo-

metrics (Worley and Powers 2014a). A 1.0 Hz exponential

apodization function and a single round of zero-filling were

applied prior to Fourier transformation. Spectra were then

automatically phased and normalized using phase-scatter

correction (PSC) (Worley and Powers 2014b). Finally,

chemical shift regions containing spectral baseline noise or

solvent signals were manually removed. Binning of the

processed NMR spectra was performed using an adaptive

intelligent binning algorithm that minimizes splitting signals

between multiple bins (De Meyer et al. 2008).

2.4 Direct infusion ESI-Q-TOF–MS acquisition

and preprocessing

2.4.1 Standard metabolite mixture and E. coli metabolome

extracts

The standard metabolite mixtures were used to initially

optimize DI-ESI–MS source conditions. DI-ESI–MS data

were collected on a Synapt G2 HDMS quadrupole time-of-

flight MS instrument (Waters, Milford, MA) equipped with

an ESI source. All MS experiments were carried out at a

flow rate of 10 lL/min for 1 min and mass spectra were

acquired over a mass range of m/z 50 to 1200.

2.4.2 Human dopaminergic neuroblastoma cell extracts

Mass spectra of the SK-N-SH samples were acquired in

positive ion mode over a mass range of m/z 50–1,200.

Spectra were acquired for 0.5 min using the following

optimized source conditions: 2.5 kV for ESI capillary

voltage, 60 V for sampling cone voltage, 4.0 V for

extraction voltage, 80 �C for source temperature, 250 �C

for desolvation temperature, 500 L/h for desolvation gas,

and 15 lL/min flow rate of injection.
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The initial stages of mass spectral data processing were

performed using MassLynx V4.1 (Waters Corp., Milford,

MA). A background subtraction was performed on all

spectra: reference spectra of either paraquat, MPP?,

rotenone, or 6-OHDA in ddH2O/methanol/FA (49.75:

49.75:0.5) at 10 ppm were used as backgrounds. Back-

ground subtraction of each spectrum was performed in a

class-dependent manner (e.g. the MPP? MS reference

spectrum was used as background for MPP? treated cells).

As a result, mass spectral signals from the drugs them-

selves are guaranteed to not influence subsequent analyses.

The background-subtracted mass spectra were then loaded

into MVAPACK for binning and normalization. All mass

spectra were linearly re-interpolated onto a common axis

that spanned from m/z 50–1,200 in 0.003 m/z steps,

resulting in 383,334 variables prior to processing. Based on

the low probability of observing a metabolite in the mass

range m/z 1,100–1,200 (Fig. S1 in Supplementary mate-

rial), the region was removed prior to binning. Mass

spectra were uniformly binned using a bin width of 0.5 m/z,

resulting in a data matrix of 2,095 variables. Finally, the

MS data matrix observations were normalized using

probabilistic quotient (PQ) normalization (Dieterle et al.

2006).

2.5 Multivariate statistical analysis

Using functions available in the latest version of MVA-

PACK, the NMR and mass spectral data were joined into a

single multiblock data structure and modeled using MB-

PCA and MB-PLS. More specifically, the CPCA-W algo-

rithm (Westerhuis et al. 1998) was used to generate the

MB-PCA model. MB-PLS with super-score deflation

(Westerhuis and Coenegracht 1997) was used to generate

the MB-PLS model. Both blocks were scaled to unit vari-

ance prior to modeling, and equal contribution of each

block to the models (fairness) was ensured by further

scaling each block by the square root of its variable count

(Smilde et al. 2003). For the purposes of comparison, PCA

and PLS models of the independent NMR and MS data

matrices were also constructed. All PLS models were

trained on a binary discriminant response matrix (i.e., PLS-

DA), in which untreated cells were assigned to one class

and all drug-treated cells were assigned to a second class.

2.6 Cross validation of multivariate models

All PCA and MB-PCA models were cross-validated using

a leave-one-out (LOOCV) procedure in MVAPACK dur-

ing model fitting (Lei et al. 2014). PLS-DA and MB-PLS-

DA models were cross-validated using a Monte Carlo

leave-n-out (MCCV) procedure (Bove et al. 2005). The

results of cross-validation were summarized by per-

component Q2 values, where the number of model com-

ponents was chosen such that cumulative Q2 was a strictly

increasing function of component count. Response per-

mutation tests of all supervised models were performed

with 1,000 permutations each to assess the statistical sig-

nificance of model RY
2 and Q2 values (Kamel and Hoppin

2004). CV-ANOVA significance tests (Eriksson et al.

2008) were also performed to supplement the results of the

permutation tests. Results of all permutation tests, along

with cross-validated scores plots of all supervised models,

are provided in the supplementary information (Figs. S6–

S11 in Supplementary material).

2.7 Metabolite identification by DI-ESI–MS and MS/

MS

Metabolite identifications were achieved by obtaining

accurate m/z and further verified using MS/MS experi-

ments. A modified static mode nano-electrospray ioniza-

tion (nESI) source was used for metabolite identification.

Samples were loaded into home-pulled borosilicate emit-

ters fabricated from PYREX 100 mm capillary melting

point tubes (Corning, Tewksbury, MA, USA). Emitters

were pulled with a vertical micropipette puller (David Kopf

Instruments, Tujunga, CA, USA). Each emitter was

examined under a microscope (American Optical Com-

pany, Buffalo, NY, USA) in order to maintain reproducible

tip geometries. The capillary was filled with a metabolite

extract and placed in a home-made sprayer mounted to the

Synapt G2 nESI source XYZ stage such that the capillary

potential was applied by a platinum wire in direct contact

with the sample solution.

The optimum nESI source parameters were slightly

different from those of the normal DI-ESI source. The nESI

source parameters were as follows: capillary spray voltage

1.20 kV, sampling cone voltage 40 V, extraction voltage

5 V, and source temperature 80 �C. Spectra were collected

for 2 min in positive ion mode over a mass range of

m/z 50–1,200. MS/MS collision energies (CE) were opti-

mized for each metabolite to yield maximum fragmenta-

tion. Mass calibration of the instrument was performed by

external calibration with sodium acetate, which was

infused under the same conditions as the samples. The

mass signals of sodium acetate cluster ions (having the

general formula [(C2H3O2Na)n ? Na]?) occur every

m/z 82.0031. Such cluster ions were used to externally

calibrate the instrument from m/z 104.9928 (n = 1 cluster)

to m/z 1171.0328 (n = 14 cluster). All metabolite spectra

were smoothed, centroided, and internally mass corrected

relative to the [M ? H]? ion for reserpine (m/z 609.2812)

using MassLynx V4.1. Accurate m/z values were searched

against the following online metabolite MS databases:

Human Metabolome Database (HMDB, http://www.hmdb.
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ca/, 41,514 metabolites) (Wishart et al. 2007, 2009, 2013)

and the general Metabolite and Tandem MS Database

(METLIN, http://metlin.scripps.edu, 242,766 metabolites)

(Smith et al. 2005) with a threshold window of 20 ppm.

The wide window was used to guarantee a thorough search,

but a more stringent mass tolerance (*1 ppm) was used

when making the final assignment.

3 Results and discussion

3.1 Optimization of metabolomics sample preparation

and MS source conditions

Acquisition of DI-ESI–MS data of the highest reliability,

reproducibility and information content necessitated the

identification of instrumental parameters that yielded

maximal ion transmission efficiency. Using a standard

metabolite mixture, we first optimized several critical ion

source conditions, namely: SCV, ECV, desolvation tem-

perature, desolvation gas flow rate, and cone gas flow rate.

Each parameter was sequentially optimized by systemati-

cally varying its setting within a predefined range and

searching for a maximum ion intensity based on the sum of

all detectable spectral signal intensities. After an optimal

setting was identified, the parameter value was held fixed

while the next parameter was then varied. The process was

repeated until an optimized setting was achieved for all five

source parameters.

Initial optimization using the standard metabolite mixture

indicated that changes to the SCV setting had the largest

impact on ion transmission. Ion intensities increased from

5.18 9 103 to 2.69 9 105 for b-alanine, 1.83 9 104 to

1.39 9 106 for glutamine, 1.41 9 105 to 5.46 9 106 for

L-histidine, 1.28 9 104 to 6.84 9 106 for caffeine, and

7.21 9 103 to 7.26 9 105 for L-asparagine as the SCV was

reduced from 100 to 20 V. Ibuprofen was not observed in

any of the mass spectra. Changes to all of the other source

parameters were found to have a minimal impact on ion

intensity: no other parameter increased the ion intensities by

more than a factor of five. For example, the ion intensity

only varied from 7.21 9 105 to 3.03 9 105 for caffeine

when the desolvation gas flow was changed from 500 to

1,000 L/h. The optimal source parameters for the standard

metabolite mixture were determined to be: SCV of 40 V,

ECV of 6.0 V, desolvation temperature of 150 �C, desolv-

ation gas flow of 500 L/h, and a cone gas flow of 0 L/h.

Further optimization of the SCV and ECV settings was

pursued by applying DI-ESI–MS to a biological matrix of

metabolites extracted from Mach1 E. coli. Three com-

pounds from the cellular extract were randomly selected

based on their equal distribution within the typical mass

range (m/z 50–1,200) of known metabolites. These three

compounds had molecular ion peaks corresponding to

m/z 118.09, m/z 437.21, and m/z 704.53. The impact of

ECV on ion intensity was tested over a range of 2.0–10 V,

which identified an optimal ECV of 4.0 V. Importantly, the

ion intensity of these selected molecular ion peaks were not

significantly affected by varying ECV. ECV values opti-

mized against the standard metabolite mixture and the

E. coli cellular extract were found to be equivalent to

within experimental error. The impact of SCV on ion

intensity was also tested using E. coli cellular extracts.

SCV was varied over a range of 20–100 V (Fig. S2A in

Supplementary material), which identified an optimal SCV

range of 40–60 V by examining a subset of ion peak

intensities corresponding to m/z 118.09, m/z 437.21, and

m/z 704.53 (Fig. S2B in Supplementary material). An SCV

of 40 V, consistent with the value obtained with the stan-

dard metabolite mixture, was found to maximize the total

information content because intense signals were observed

for all metabolites.

Although ion intensity is also positively correlated with

metabolite concentrations, simply injecting a highly con-

centrated metabolite sample may increase the likelihood of

ion suppression (Annesley 2003; Skazov et al. 2006) due

mostly to increased salt concentrations. The signals from

low-mass and polar compounds are more likely to be

suppressed by other metabolites as the total sample con-

centration increases. It was therefore necessary to deter-

mine an optimal sample size for DI-ESI–MS analysis of

metabolomics samples in order to maximize both ion

intensity and information content. E. coli cellular extracts

that were optimized to maximize signal intensity in NMR-

based metabolomics (Zhang et al. 2013) were used to

determine the optimal sample size for DI-ESI–MS. A mass

spectrum (Fig. S3A in Supplementary material) was col-

lected for a series of sample dilutions (1:10, 1:25, 1:50, and

1:100) in ddH2O/methanol/FA (49.75:49.75:0.5). For each

dilution factor, the total number of spectral peaks above the

noise threshold was calculated (Fig. S4 in Supplementary

material) and the relative intensities of molecular ion peaks

at m/z 118.09, 437.21, and 705.53 were monitored. A bar

graph summarizing these results is presented in Fig. S3B

(Supplementary material). More spectral signals and higher

signal intensities for the three monitored molecular ions

were observed for the 109 sample relative to all the other

dilution factors. Thus, a ten-fold dilution of a metabolo-

mics sample previously optimized for 1D 1H NMR

experiments was deemed suitable for DI-ESI–MS in our

combined MS and NMR metabolic fingerprinting protocol.

Put simply, a single sample may be prepared and split for

NMR and MS analysis, where the preparation of the MS-

bound sample only requires a ten-fold dilution into a

compatible solvent, such as ddH2O/methanol/FA

(49.75:49.75:0.5).
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3.2 NMR and MS data pretreatment

Data preprocessing and pretreatment are critical compo-

nents of any multivariate statistical analysis and have been

extensively reviewed (Worley and Powers 2013). Our

protocols for NMR data preprocessing have been previ-

ously reported (Halouska and Powers 2006; Zhang et al.

2011, 2013) and were utilized as a basis for NMR data

handling.

A minimalistic set of pretreatment steps was pursued for

both NMR and MS data matrices. To decrease the time

required for computing PCA models, NMR spectra were

AI-binned (De Meyer et al. 2008) and mass spectra were

uniformly binned in preparation for PCA. The data were

then normalized to correct for random errors in dilution

factors or experimental parameters. Binned NMR and mass

spectra were normalized using standard normal variate

(SNV) and PQ normalization methods, respectively (Diet-

erle et al. 2006). Full-resolution NMR spectral data was

used for PLS, which permitted the creation of backscaled

pseudo-spectral loadings that greatly enhance model

interpretability (Cloarec et al. 2005a, b). However, because

the full-resolution mass spectral data matrix contained over

300,000 variables, binned mass spectra were used in PLS

modeling to reduce computation time. While the NMR

spectra were binned to mask chemical shift variations that

reduce the effectiveness of PCA, binning of the mass

spectra was performed solely to decrease the time required

for model computation. For the mass spectral data, a uni-

form bin width of 0.5 m/z was used based on the mass

distribution of all metabolites cataloged in the HMDB (Fig.

S1 in Supplementary material). As noise is known to

decrease the interpretability of scores (Halouska and

Powers 2006), all spectral regions found by manual

inspection to contain only baseline noise were removed

prior to modeling. The final NMR data matrices for PCA

and PLS contained 159 and 16,138 variables, respectively.

Likewise, the MS data matrix contained 2,095 (PCA and

PLS) variables.

Despite the marked reduction in MS variable count

incurred from uniform binning, the resulting binned data

matrix retained enough information to differentiate signals

arising from distinct metabolites. Based on available data

of accurate m/z of metabolites in the HMDB, 85 % of

metabolites have an m/z difference with their ‘‘neighbor’’

metabolites (the metabolites with the closest m/z) greater

than 0.5 m/z (Fig. S1 in Supplementary material). Also, the

number of metabolites identified from a direct-infusion MS

analysis of cell extracts generally ranges from 200 to 400

metabolites (Draper et al. 2014), which would be divided

over 2,095 bins. This implies that on average the

0.5 m/z bin size would be expected to capture no more than

one mass isotopic distribution or one metabolite per bin.

3.3 Classical PCA and PLS modeling

PCA of the binned NMR data matrix (N = 29, K = 159)

resulted in 10 principal components having cumulative RX
2

(degree of fit) and Q2 (predictive ability) metrics of 0.95 and

0.46, respectively. Overall, no patterns were readily dis-

cernable in the NMR PCA scores (Fig. 2a) due to high

within-class variation in the data. However, scores for

paraquat treatment were found to significantly separate from

all other classes (p \ 0.002) along PC1 (Worley et al. 2013).

Scores from PCA of the binned MS data matrix (N = 29,

K = 2,095) were found to exhibit markedly less within-class

variation compared to the NMR data (Fig. 2b). Three sig-

nificant components were identified from the binned MS

data, yielding fairly low cumulative RX
2 and Q2 metrics of

0.34 and 0.16. While paraquat treatment still separated from

other drug treatments in MS PCA scores space, the greatest

separations were observed between treated and untreated

cells (p \ 1.5 9 10-9). These differing patterns of separa-

tion in NMR and MS PCA scores suggested that multiblock

analyses could provide further information, ideally separat-

ing both control and paraquat scores from all other classes.

PLS-DA of the full-resolution NMR (N = 29,

K = 16,138) and MS (N = 29, K = 2,095) data matrices

both resulted in two-component models. With the excep-

tion of the algorithmically forced separation between

control and treatment classes, similar clustering patterns

were observed when compared to the PCA scores. Leave-

n-out cross-validation metrics from the NMR (RY
2 = 0.92,

Q2 = 0.64) and MS (RY
2 = 0.99, Q2 = 0.93) PLS-DA

models indicated reasonable levels of fit and predictive

ability. Further validation by CV-ANOVA (Eriksson et al.

2008) indicated reliable models with p values of

1.5 9 10-6 and 2.9 9 10-15 for NMR and MS data,

respectively. Response permutation tests for both PLS-DA

models returned p values equal to zero, supporting the CV-

ANOVA significance test results.

3.4 Multiblock PCA and PLS modeling

Identification of consensus directions in the NMR and MS

data matrices that maximally captured data matrix variations

(MB-PCA) or data-response correlations (MB-PLS) resulted

in more informative models than those calculated against

either NMR or MS in vacuo. Using MB-PCA, five significant

components were identified (Q2 = 0.23) that cumulatively

explained comparable amounts of variation in the NMR

(RX
2 = 0.85) and MS (RX

2 = 0.50) blocks relative to the indi-

vidual PCA models. As expected, MB-PCA combined the

information from both blocks to dramatically increase class

separations in super-scores space (Fig. 2c). More specifically,

both control and paraquat classes were separated from other

drug treatments, predominantly along PC1. Furthermore,
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MPP? treatment exhibited significant separation from

6-OHDA and Rotenone treatments, which was not expected

from examination of the individual NMR or MS PCA scores.

MB-PLS of the data yielded similar improvements in

model information content. Two significant components

were identified (RY
2 = 0.98, Q2 = 0.89) that clearly

Fig. 2 Scores generated from (a) PCA of 1H NMR in vacuo, (b) PCA

of DI-ESI–MS in vacuo, and (c) MB-PCA of 1H NMR and DI-ESI–

MS. Separations between classes are greatly increased upon combi-

nation of the two datasets via MB-PCA. Symbols designate the

following classes: Control (yellow circle), Rotenone (blue circle),

6-OHDA (red circle), MPP? (green circle), and Paraquat (turquoise

colour circle). Corresponding dendrograms are shown in (d–f). The

statistical significance of each node in the dendrogram is indicated by

a p value (Worley et al. 2013) (Color figure online)
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separated untreated and paraquat treatment classes from all

other classes in scores space. CV-ANOVA testing resulted

in a p value of 1.7 9 10-12 and response permutation

testing yielded a p value equal to zero, indicating a reliable

MB-PLS-DA model.

3.5 Metabolite identification by combining NMR,

accurate mass and MS/MS

Identification of key metabolites from a metabolomics

sample is undoubtedly a nontrivial undertaking. The diffi-

culties of metabolite assignment are further compounded

by spectral overlap present in both 1D 1H NMR and DI-

ESI–MS data. However, the combination of these two

complementary forms of spectral information may aid in

overcoming the ambiguities encountered during assign-

ment. The ability of our approach to aid in metabolite

identification was demonstrated using NMR and MS data

obtained from the treatment of human dopaminergic neu-

roblastoma cells with known neurotoxic agents.

A first-pass identification of biologically important

metabolites was performed by examination of the backscaled

NMR block loadings from MB-PLS-DA (Fig. 3a). 1H NMR

chemical shifts of loading ‘signals’ that contributed signifi-

cantly to class separation were used to query the Human

Metabolome Database (HMDB) (Wishart et al. 2013) for

matching metabolites. To confirm the NMR results, accurate

mass and MS/MS experiments were performed, guided by

information obtained from the backscaled MS block

loadings (Fig. 3b). Effectively, the MB-PLS-DA MS block

loadings identified specific masses to pursue for more

focused and detailed analyses. For accurate mass measure-

ments, reserpine was used as an internal m/z reference,

because it is located in a region containing a minimal number

of known metabolites and it can be ionized in both positive

and negative modes. Accurate masses were used to conduct

elemental composition analyses with MassLynx 4.1 based on

a restricted list of elements (C, H, O, N, P, S, Na and K),

resulting in a set of possible molecular formulas and asso-

ciated compounds. Metabolite assignments consistent with

both accurate mass and NMR chemical shifts were retained

for further study by collision-induced dissociation MS/MS.

It is noteworthy that many compounds were identified as

sodium adducts, which is expected for DI-ESI–MS (Lin et al.

2010), particularly when sample purification steps have been

kept to a minimum.

As an illustration, examination of backscaled MS block

loadings identified a significantly increased mass spectral

signal at m/z 203.0534. This accurate mass is consistent

with the molecular formula C6H12O6Na (theoretical exact

m/z = 203.0532) to within 1 ppm. The corresponding

potassium adduct of C6H12O6 was also observed at m/

z 219.0266, which is within 2.5 ppm of theoretical exact m/

z 219.0271. The molecular ion peak m/z 203.0534 was

selected for further examination by MS/MS using collision-

induced dissociation, which yielded product ions of m/z 123,

141, and 159, among others (Fig. 4). These three peaks were

assigned to [C6H12O6–CO2 ? Na]?, [C6H12O6–CO2–

Fig. 3 Backscaled MB-PLS-DA first component loadings generated

from (a) the 1H NMR block and (b) the DI-ESI–MS block that

compare control with drug treatment. The peaks in the loadings are

labeled with the same colored symbol (1H NMR, square; MS, circle)

and were assigned to the following metabolites: lactate (red square),

glutamate (lavender square), hexose (green square), citrate (blue

square), heptose (blue circle), hexose (lavender circle), phosphoas-

partate (green circle), and an ambiguous metabolite (red circle)

(Color figure online)
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H2O ? Na]? and [C6H12O6–CO2–2H2O ? Na]? respec-

tively. Together with the elemental composition suggested

by accurate mass measurement, the neutral losses of CO2

and multiple H2O indicate a likelihood that the precursor ion

was a polyhydroxy carboxylic acid. Possible structures are

inset in Fig. 4. Using these procedures, our NMR analysis of

human dopaminergic neuroblastoma cells treated with

paraquat identified an increase in metabolites associated

with the Pentose Phosphate Pathway (PPP) (Lei 2014).

4 Conclusions

We report an optimized protocol for combining 1D 1H

NMR and DI-ESI–MS datasets for the purposes of high-

throughput metabolic fingerprinting and profiling. By

splitting metabolite extracts optimized for NMR acquisi-

tion and diluting the MS-bound aliquots ten-fold in H2O/

methanol/FA (49.57:49.75:0.5), we obtained samples suit-

able for direct infusion electrospray ionization, thus

avoiding the use of pre-source chromatographic separa-

tions. We also optimized several DI-ESI–MS ion source

conditions in order to maximize the quality of the MS

metabolomics data. The optimal source parameters were

determined to be: SCV of 40 V, ECV of 4.0 V, desolvation

temperature of 150 �C, desolvation gas flow of 500 L/h,

and a cone gas flow of 0 L/h. The acquired mass spectra

were preprocessed with background subtraction, followed

by uniform binning with a 0.5 Da bin size and spectral

noise region removal. Using multiblock bilinear factor-

ization algorithms that capitalize on the availability of

blocking information, we achieved greater levels of model

interpretability with the NMR and MS data than available

from single-block PCA and PLS methods. We also dem-

onstrated the combined use of NMR and MS/MS data for

the rapid and accurate identification of metabolites signif-

icantly perturbed in backscaled MB-PLS-DA loadings. In

summary, we present a unique means of increasing me-

tabolome coverage in a high throughput manner by lever-

aging the complementary information provided by MS and

NMR without the encumbrances and liabilities of pre-

source chromatographic separations. Our protocol for using

combined NMR and MS metabolomics data was success-

fully demonstrated on a study examining the impact of

neurotoxins known to induce dopaminergic cell death, an

important model relevant to Parkinson’s disease.
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