
MVAPACK: A Complete Data Handling Package for NMR
Metabolomics
Bradley Worley and Robert Powers*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States

*S Supporting Information

ABSTRACT: Data handling in the field of NMR metabolomics has
historically been reliant on either in-house mathematical routines or
long chains of expensive commercial software. Thus, while the
relatively simple biochemical protocols of metabolomics maintain a
low barrier to entry, new practitioners of metabolomics experiments
are forced to either purchase expensive software packages or craft their
own data handling solutions from scratch. This inevitably complicates
the standardization and communication of data handling protocols in
the field. We report a newly developed open-source platform for
complete NMR metabolomics data handling, MVAPACK, and
describe its application on an example metabolic fingerprinting data
set.

The biochemical procedures involved in metabolomics
experiments are potentially straightforward and inex-

pensive, depending on the biological systems and pathways
under study.1 The minimal sample handling requirements of
one-dimensional (1D) 1H NMR spectroscopy and the immense
sensitivity of multivariate statistical methods such as Principal
Component Analysis (PCA) and Partial Least Squares (PLS)
make NMR metabolic fingerprinting especially attainable. This
low barrier to entry has no doubt contributed to the rapid
growth of the field. Unfortunately, commercial software
packages available for multivariate analysis (SIMCA, PLS
Toolbox, The Unscrambler, etc.) tend to be expensive and
require more software for upstream processing and treatment
of spectral data. Furthermore, such packages provide little to no
domain-specific functionality, requiring a user to first open and
preprocess NMR data in ACD/1D NMR Manager (Advanced
Chemistry Development) or Mnova NMR (Mestrelabs
Research) and perform further statistical pretreatment in
MATLAB (The MathWorks, Natick, MA) or Microsoft Excel.
This results in an unnecessarily cumbersome and time-
consuming data handling pipeline by forcing the user to pass
data between multiple software packages. As a result, the field
of metabolomics research is littered with unpublished “in-
house” software solutions created for processing or modeling
NMR data sets.2−8 This continued reinvention of the wheel
impedes progress in the field and complicates the tasks of
standardization and communication of protocols that the
metabolomics community is attempting to achieve.9,10

Unfortunately, these in-house solutions are far less likely than
their commercial counterparts to include proper means of
validating supervised multivariate models, further contributing
to the general lack of model validation currently present in the
field.11 While the community has released several official

software packages for metabolomics,12−18 none provide a
complete, well-validated data path. To our knowledge, no single
software package exists to bring raw NMR data along its
complete journey to validated, interpretable multivariate
models.
We have developed a free and open-source software package,

MVAPACK, that provides a complete pipeline of functions for
NMR chemometrics and metabolomics. MVAPACK is written
in the GNU Octave mathematical programming language,19

which is also open-source and nearly syntactically identical to
MATLAB. Thus, the installation of GNU/Linux, Octave, and
MVAPACK onto a commodity workstation provides a uniform
environment in which a data analyst may truly work “from FIDs
to models” in a few minutes using a set of well-documented,
open-source, high-level processing functions.
The functions available in MVAPACK span the following

general categories: data loading, preprocessing, pretreatment,
modeling, and validation.9 Loading of Bruker data is available
using either a high-performance DMX-format loading routine
or NMRPipe20 as a backend, and loading of Agilent data is
available using an NMRPipe backend. Additionally, data in a
variety of text formats may be read into MVAPACK using
standard GNU Octave routines. The preprocessing functions in
MVAPACK follow the traditional paradigm of NMR processing
and include methods for apodization, zero-filling, Fourier
transformation, manual and automatic phase correction,21,22

region of interest selection, peak picking,23 integration, and
referencing. Functions for data pretreatment in MVAPACK
include scaling,24 normalization,4,25,26 binning and align-
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ment,27−29 and denoising.30 Finally, MVAPACK provides
complete support for building PCA, LDA (Linear Discriminant
Analysis), PLS, and OPLS (Orthogonal Projections to Latent
Structures) models from processed and treated data sets.31−35

All models are validated as they are built based on Monte Carlo
n-fold internal cross-validation,11,36−39 which is also utilized to
determine the number of significant model components.
Further validation of supervised models is available in the
form of CV-ANOVA40 and response permutation11 significance
testing.
This work describes the structure of MVAPACK and an

application of MVAPACK to a use-case that is representative of
many metabolomics studies: the NMR metabolic fingerprinting
of coffee for discrimination of four roasts based on either
general spectral trends or caffeine concentration.

■ METHODS
Data Sets. To illustrate the capabilities of MVAPACK on a real

experimental data set, four roasts of brewed coffee were purchased
from a local coffee shop, and replicate samples were made from each
roast. A final set of 64 1H NMR spectra (N = 64, K = 16384) was
obtained and used for PCA, LDA, and OPLS-R multivariate analyses.
Estimates of caffeine concentration were also obtained from liquid−
liquid extractions of each roast into CH2Cl2 followed by UV−vis
spectroscopy.41 See the Supplementary Methods for detailed
information about the processing of the Coffees 1H NMR and UV−
vis data sets.
Software Implementation. The MVAPACK software package is

written in GNU Octave, an open-source mathematical programming
language that uses MATLAB syntax. Every function available in
MVAPACK is realized as a single Octave function file that may be
examined or changed using any text editor. Most functions in
MVAPACK follow a similar input-to-output template, where an input
data matrix A is modified and returned as an output data matrix B.
Other required input arguments may accompany A, and extra output
values may accompany B, depending on the requirements of the user.
Furthermore, models produced by PCA, PLS, OPLS, and LDA are all
similarly organized into Octave structures that all follow scalar, vector,
and matrix notations of Wold et al.35 Thus, functions in MVAPACK
are highly modular, often allowing drop-in replacement of one
processing or modeling algorithm for another by a simple change of
function name and arguments.
Data may be handled by MVAPACK in either interactive mode, in

which the user types commands into the Octave interpreter one at a

time, or as a script, where a complete processing scheme has been laid
out in an Octave script to be executed noninteractively. Once an ideal
set of processing commands and parameters is determined by
interactive manipulation of the data, it may be immortalized in an
Octave script, thus providing documentation of procedures and
allowing for rapid recalculation of all associated results.

Figure 1 illustrates a simple MVAPACK script capable of taking 1D
1H NMR data from free induction decays to validated PCA and OPLS-
DA models. In section 1, a binary class matrix Y and an accompanying
set of class labels are built, and the time-domain data is loaded into the
data matrix F. In section 2, the time-domain data matrix F is zero-filled
once and Fourier transformed to produce the spectral data matrix S.
Section 3 automatically phase corrects the spectra in S, normalizes and
corrects between-spectrum phase differences, and corrects the
chemical shift abscissa to center the reference peak at 0 ppm. In
sections 4 and 5, processing splits into two pathways, where icoshift
alignment27 is used to generate a data matrix fit for full-resolution
OPLS-DA (A) and optimized binning28 is used to generate a data
matrix for PCA (B). In section 6, a PCA model is built and assigned
classes and labels, and a model quality plot and a scores plot are
produced. In section 7, similar functions are used to build an OPLS-
DA model and produce summary plots. Finally, section 8 performs
CV-ANOVA40 and response permutation11 significance tests to fully
validate the supervised OPLS-DA model. While Figure 1 is complete,
it is still an extremely bare-bones approach to metabolic fingerprinting.
MVAPACK provides countless other functions and schemes for
processing data. Detailed information about all MVAPACK function-
ality is available in the MVAPACK manual online.

Software Validation. Validation of the proper operation of the
NMR processing functions of MVAPACK was performed by visually
comparing the MVAPACK-processed 1D 1H NMR spectra from the
Coffees data set (Figure 2) with the processed NMR spectra produced
by ACD/1D NMR Manager (Advanced Chemistry Development).

Verification of icoshift alignment performance was performed using
the Wine 1H NMR data set42 available from the University of
Copenhagen. As this data set contains large amounts of chemical shift
dispersion due to differences in chemical properties of each wine, it is
an ideal basis for assessing the performance of NMR peak alignment
algorithms (Figure 3).

Validation of the proper operation of PCA, PLS and OPLS
multivariate decompositions was performed by comparing the scores
produced by analysis of the Coffees NMR data set in MVAPACK with
those produced by SIMCA-P+ 13.0 (Umetrics AB, Umea, Sweden)
(Figures 4 and 5).

Figure 1. An example NMR metabolic fingerprinting data handling flow diagram (A) and its associated MVAPACK commands (B). This
minimalistic data handling script is a simple starting point for using MVAPACK; much more flexibility and functionality are present in the software
than can be shown here. All functions in boldface are provided in MVAPACK.
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■ RESULTS AND DISCUSSION
Results. Use of MVAPACK during analysis of the coffees

data set arguably facilitated rapid identification of ideal
processing and modeling parameters during data handling.
Use of automatic phase correction,21 optimized binning,28 and
PQ normalization4 yielded a data set in which three principal
components were sufficient to fully separate all classes in scores
space, and subsequent LDA modeling resulted in complete
class separation in only two components (Figure 4). During the
process of optimizing the data handling, modifying the
procedure required nothing more than changing a few
commands in a GNU Octave script, not unlike changing

processing parameters in an NMRPipe script, although
considerably more human-readable.
As opposed to the PCA modeling, which utilized binned

spectra, OPLS-R modeling was performed on full-resolution 1D
1H NMR spectra in order to reap the interpretive advantages of
full-resolution backscaled loadings3 and greater support for
each loading ‘peak’ in S-plots8 (Figures 5 and 6). The
availability of icoshift alignment27 in MVAPACK effectively
makes the modeling of full-resolution NMR spectra possible by
correcting positional noise in the spectra that corrupts the
bilinear nature of the data (Figure 3). By regressing the NMR
data against estimates of caffeine concentration obtained by
UV−vis spectroscopy (Supplementary Figure 1S), a loadings
pseudospectrum of caffeine was obtained that matched almost
perfectly with spectral data deposited in the Biological
Magnetic Resonance Bank (Figure 6).43 It is conceivable that
spectral features coextracted with caffeine in the loadings
correspond to coffee bean metabolites lost alongside caffeine
during roasting or decaffeination.
Notably, the UV−vis-estimated caffeine concentration of the

dark roast coffee was slightly higher than that of the medium
regular roast, which is contrary to expectation given that the
coffees were brewed using equal volumes of grounds. However,
OPLS-R of the NMR data using the estimated caffeine
concentrations correctly ranked the roasts according to
expectation. When more orthogonal components were allowed
into the OPLS-R model, the dark roast again shifted to a higher
caffeine concentration, beautifully indicating the presence of
slight overfitting (data not shown). Therefore, an OPLS-R
model having only a single orthogonal component was chosen,
given the fact that it more faithfully modeled the underlying

Figure 2. Representative processed 1D 1H NMR spectra for each
analyzed coffee roast, acquired using the water-suppressed CPMG-z
pulse sequence and processed in MVAPACK. To reach this point, free
induction decays were simply Fourier transformed and automatically
phased. No manual phase corrections were applied after autophasing.

Figure 3. Comparison between the raw (upper) and Interval Correlation Optimized Shifted (icoshif t, lower) alignment of the wines data set,
showing the resulting alignment of the three major spectral features (ethanol HC2, left; ethanol HC1, middle; residual water, right).
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NMR data at the expense of contradicting the more uncertain
UV−vis measurements.
Finally, no discernible difference was observed between the

1D 1H NMR spectra acquired with and without T2-filtering.

Spectra collected on in-house brewed coffee exhibited high
levels of protein background signal, which were readily
suppressed using the CPMG-z pulse sequence element. On
the other hand, the spectra of the four purchased roasts showed
no such background signal, possibly due to more correct
brewing technique.

Discussion. We have presented MVAPACK, a completely
free and open-source data handling environment for NMR
chemometrics targeted toward 1D 1H NMR metabolic
fingerprinting applications, and described its use on a
representative data set of four coffee roasts to identify
discriminating spectral features and chemical trends. Unlike
data handling tool chains composed of multiple commercial
software packages, MVAPACK is free to use, modify, and
distribute according to the GNU General Public License and
provides a single consistent data handling environment.
Because MVAPACK is written for GNU Octave, researchers
already familiar with MATLAB syntax will also be familiar with
MVAPACK without a considerable learning curve. Data sets
and results obtained using MVAPACK are readily saved and
exchanged using GNU Octave built-in support for the
MATLAB MAT-file format.
A recent review44 of software packages targeted at

metabolomics highlights the piecemeal nature of 1D 1H
NMR data handling in the field, where no single software

Figure 4. PCA (A) and LDA (B) scores of the four coffee roasts. Red points represent dark roast, green points represent light roast, cyan points
represent medium decaffeinated roast, and violet points represent medium regular roast. Ellipsoids and ellipses enclose the 95% confidence intervals
estimated by the sample means and covariances of each class. Note that the axis labels in panels A and B indicate scores in PCA and LDA bases,
respectively, and not the same set of scores. The PCA internal cross-validation results are summarized in Supplementary Figure 2S, and the LDA
response permutation testing results are summarized in Supplementary Figure 4S.

Figure 5. OPLS-R scores plot (A) and S-plot (B) of the four coffee roasts, where each coffee roast was regressed against its caffeine concentration
estimated by UV−vis. Points and ellipses in the scores plot follow the same color scheme to those in Figure 4. Spectral variables in the upper right
quadrant of the S-plot correspond to caffeine NMR resonances. The internal cross-validation results are summarized in Supplementary Figure 3S,
and the response permutation testing results are summarized in Supplementary Figure 5S.

Figure 6. Backscaled OPLS-R predictive loadings of the four coffee
roasts regressed according to estimated caffeine concentration. The
pseudospectral nature of backscaled loadings facilitates analysis of
model results by any spectroscopist. The four most intense positive
peaks in the loadings pseudospectrum correspond directly to caffeine
NMR resonances archived in the BMRB, indicating a fairly successful
regression against caffeine concentration.
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package is capable of performing all the tasks required by the
analyst (Supplementary Table S1). MVAPACK addresses this
need by providing a complete pipeline that is tuned for
metabolic fingerprinting. Use of MVAPACK reduces data
analysis time in metabolic fingerprinting from days to minutes,
simply by collecting all the required processing and modeling
functions into a single scriptable environment. In fact, the
example script in Figure 1 would execute in under 5 min on a
modern GNU/Linux or Mac OS X computer system.
The routine processing of any 1D NMR spectral data may be

readily done with MVAPACK. As illustrated in Figure 2, the
processing of the Coffees NMR data set with MVAPACK
yielded an outcome consistent with any commercial or
standardized NMR processing suite. Moreover, processing
routines are easily batched. The MVAPACK script written to
automate the rapid processing and modeling of the Coffees
NMR data set was composed of intuitive, modular commands
that logically subdivide the script into recognizable tasks like
automatic phase correction, referencing, etc. Furthermore, aside
from physical memory limitations of the host computer,
MVAPACK does not impose any limit in the number of NMR
FIDs that may be simultaneously processed.
NMR spectral data presents a unique challenge to multi-

variate statistical algorithms due to chemical shift variations
between spectra caused by differences in temperature, pH, ionic
strength, chemical exchange, etc. These variations “blur” true
spectral correlations across multiple variables, resulting in lower
quality models from linear methods like PCA and PLS.3,45 To
address this problem, chemometric treatments of NMR data
include either a binning or alignment procedure to numerically
mask or synthetically correct, respectively, peak misalignment.
MVAPACK provides tested implementations of both an
optimized binning algorithm (OBA) as described by Sousa et
al.,28 an adaptive binning method described by De Meyer et
al.,29 and the icoshift alignment algorithm.27 The OBA and AI-
binning methods minimize the splitting of peaks between
multiple bins and significantly reduce the size of the data
matrix, thus reducing PCA computational time. Conversely,
icoshift maintains the original dimensionality of the data set and
allows for the possibility of generating backscaled OPLS
loadings that greatly enhance overall model interpretability
(Figure 6). The implementation of the icoshift algorithm within
MVAPACK was evaluated against the Wine 1D 1H NMR data
set,42 which exhibits substantial peak position variability due to
pH and ionic strength differences between each wine. Figure 4
shows the results of MVAPACK icoshift alignment of the major
spectral features present in the Wine data set. It is evident that
the MVAPACK implementation of icoshift performs on par
with published results from the existing implementation by
Savorani et al.27 Similarly, MVAPACK includes a wide variety
of normalization, scaling, and denoising methods routinely used
by the metabolomics community for pretreatment of NMR
data sets. This includes our recently described phase scatter
correction (PSC) normalization method, which has been
shown to outperform previous methods in applications
requiring PCA or PLS decomposition of NMR spectral data.46

While no two metabolomics data sets are created equally, we
have identified and highlighted a core set of functions in
MVAPACK that serves as an optimal starting point when
processing and modeling 1D 1H NMR data sets (Figure 1). Use
of minimal time-domain processing functions, automatic phase
correction combined with PSC normalization, and basic
referencing can often yield a routinely reproducibly processed

data set without any analyst intervention. Furthermore, PCA of
OBA-binned data combined with OPLS-DA of icoshift-aligned
spectra produces an effective balance when both general
chemical trends and class-discriminating spectral features are
sought. Rigorous validation of supervised models, in the form
of CV-ANOVA and permutation testing, adds a necessary level
of confidence in the interpretation and reuse of supervised
models. In our hands, this core function set provides a sane
starting point during the handling of new data sets, from which
optimization of processing and treatment is a simple matter of
tweaking a script file.
A major advantage of MVAPACK is the seamless transfer of

the processed and treated NMR data to multivariate statistical
analyses. The PCA, PLS, OPLS, and LDA linear modeling
algorithms, now ubiquitous in the metabolomics community,
are all implemented in MVAPACK. Model results may be
visualized and interpreted using MVAPACK routines that
provide scatter and line plots of model scores and loadings in a
variety of forms. Critically, MVAPACK automatically ensures
that all produced models are valid using n-fold Monte Carlo
internal cross-validation37,38 routines and provides further
means of validating supervised models in the forms of CV-
ANOVA40 and response permutation11 significance testing
(Supplementary Figures 2S−5S). The Coffees NMR data set
was used to provide a demonstration of the capabilities of
MVAPACK when applied to real metabolomics data. The
resulting PCA, LDA and OPLS-R scores and the OPLS-R S-
plot are depicted in Figures 4 and 5. SIMCA-P+ was also used
to generate the same set of scores from the Coffees NMR data
set. A comparison of the PCA and OPLS-R scores between
MVAPACK and SIMCA-P+ is shown in Supplementary
Figures 6S and 7S. Exact agreement was found between all
models’ scores to within the numerical precision available from
SIMCA-P+. Because it implements well-established algorithms
available from peer-reviewed chemometrics literature, MVA-
PACK generates identical results compared to an expensive
commercial software package (SIMCA-P+) that is arguably the
standard in multivariate data analysis.
In short, MVAPACK provides a complete platform for NMR

chemometrics data handling that is ideal for both routine
handling of metabolomics data sets and development of novel
chemometrics algorithms. Unlike its closed-source predeces-
sors, the modular, open-source design of MVAPACK readily
accepts new functionality, allowing it to grow and maintain
pace with the state-of-the-art in the chemometrics field.
MVAPACK is freely available for download at http://bionmr.
unl.edu/mvapack.php. Detailed documentation of MVAPACK
and the presented Coffees data set and all its associated
processing scripts and results are also available for download.

■ ASSOCIATED CONTENT
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Supplementary figures and data handling methods related to
the coffees data set. Table that compares the NMR and
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