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Catabolite Control Protein E (CcpE) Is a LysR-type
Transcriptional Regulator of Tricarboxylic Acid Cycle
Activity in Staphylococcus aureus*
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Background: The TCA cycle is a central metabolic pathway that facilitates the adaption of bacteria to a nutrient-limited
environment.
Results: Inactivation of CcpE in Staphylococcus aureus resulted in a decreased transcription of the aconitase encoding gene citB,
and reduced TCA cycle activity.
Conclusion: CcpE affects the TCA cycle via direct transcriptional control of citB.
Significance: This is the first positive regulator of TCA cycle activity identified in this pathogen.

The tricarboxylic acid cycle (TCA cycle) is a centralmetabolic
pathway that provides energy, reducing potential, and biosyn-
thetic intermediates. In Staphylococcus aureus, TCAcycle activ-
ity is controlled by several regulators (e.g. CcpA, CodY, and
RpiRc) in response to the availability of sugars, amino acids, and
environmental stress. Developing a bioinformatic search for
additional carbon catabolite-responsive regulators in S. aureus,
we identified a LysR-type regulator, catabolite control protein E
(CcpE), with homology to the Bacillus subtilis CcpC regulator.
Inactivation of ccpE in S. aureus strain Newman revealed that
CcpE is a positive transcriptional effector of the first two
enzymes of the TCA cycle, aconitase (citB) and to a lesser extent
citrate synthase (citZ). Consistent with the transcriptional data,
aconitase activity dramatically decreased in the ccpEmutant rel-
ative to the wild-type strain. The effect of ccpE inactivation on
citB transcription and the lesser effect on citZ transcription
were also reflected in electrophoreticmobility shift assayswhere
CcpE bound to the citB promoter but not the citZ promoter.
Metabolomic studies showed that inactivation of ccpE resulted in
increased intracellular concentrations of acetate, citrate, lactate,
and alanine, consistent with a redirection of carbon away from the

TCA cycle. Taken together, our data suggest that CcpE is a major
direct positive regulator of the TCA cycle gene citB.

Carbon catabolite repression (CCR)8 in bacteria is a wide-
spread, regulatory phenomenon that represses transcription of
genes and operons involved in the catabolism of non-preferred
carbon sources when the preferred carbon source(s) are pres-
ent. CCR has been studied extensively in Bacillus subtilis and
serves as the prototype of CCR-regulated gene expression in
Gram-positive bacteria (reviewed inRefs. 1 and 2). InB. subtilis,
the catabolite control protein A (CcpA) acts in concert with the
small phosphocarrier proteins histidine-containing protein
(HPr) and catabolite repression HPr (Crh) to regulate tran-
scription in response to carbohydrate availability. In addition,
the metabolite-activated bifunctional HPr kinase/phosphory-
lase is involved in CCR through its action of phosphorylating
and dephosphorylating HPr (3, 4). There are several other pro-
teins in B. subtilis that contribute to CCR either in cooperation
with, or independently of CcpA, including CcpC (5, 6), CcpN
(7), CitR (8), Crh (9), CodY (10), andGlcU (11) (reviewed in Ref.
1). In Staphylococcus aureus, homologs of CcpA and CodY reg-
ulate the transcription of numerous metabolic and biosynthetic
genes and virulence determinants; thereby, linking staphylococcal
carbonmetabolismwith pathogenicity (reviewed in Ref. 12).
To identify additional CCR elements in S. aureus, we com-

pared the genomes of S. aureus strain Newman with that of B.
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subtilis strain 168 and found that S. aureus had uncharacterized
homologs of B. subtilis genes that are known to affect the reg-
ulation of carbon catabolism. Here we report the identification
of a putative carbon catabolite responsive regulator, CcpE
(NWMN_0641), that affects the central metabolism by regulat-
ing tricarboxylic acid (TCA) cycle activity via transcriptional
control of the aconitase-encoding gene citB.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Culture Conditions—The bacterial
strains and plasmids used in this study are listed in Table 1. S.
aureus strains were grown in Luria-Bertani Lennox (LB-L)
medium (BD,Heidelberg, Germany) andB. subtilis strainswere
grown in TSS minimal medium supplemented with 0.2% (w/v)
glutamine and 0.5% (w/v) glucose (6). All strains were grown at
37 °C and aerated at 230 rpm with a flask-to-medium volume
ratio of 10:1. Antibiotics, when used, were added to themedium
at the following concentrations (per milliliter): 10 �g of chlor-
amphenicol, 50 �g of kanamycin, and 8 �g of tetracycline.
Construction of a S. aureus �ccpE Mutant—1-Kilobase frag-

ments, containing the flankingregionsof the ccpE (NWMN_0641)
gene were amplified by PCR from chromosomal DNA of S.

aureus strain Newman using primer pairs MBH154/MBH155
and MBH152/MBH153, respectively (primer sequences are
listed in Table 2). The PCR products were digested with KpnI/
XhoI and BamHI/SacI, respectively, and cloned together with
the XhoI/BamHI-digested lox66-aphAIII-lox71 resistance cas-

TABLE 1
Strains and plasmids used in this study

a Abbreviations: Cmr, chloramphenicol resistant; Kanr, kanamycin resistant; Spcr,
spectinomycin resistant; Tcr, tetracycline resistant; ORF, open reading frame.

TABLE 2
Primers used in this study

a Small letters represent nucleotides that do not fit with the target sequence.
Restriction sites used for cloning are underlined.
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sette (obtained from pBT2-arcA) into suicide vector pBT to
generate plasmid pTH2 (Fig. 1). Plasmid pTH2 was electropo-
rated into S. aureus strain RN4220 to obtain strain THa, in
which the ccpE gene was replaced by the lox66-aphAIII-lox71
cassette by allelic replacement. THa was then used as a donor
for transducing the ccpE deletion into other S. aureus strains.
The marker-free �ccpEmutant TH01 of S. aureus strain New-
man was constructed by treatment with the Cre recombinase
expressed from the temperature-sensitive vector pRAB1 (13),
which was subsequently removed from TH01 by culturing the
strain at 42 °C. The deletion of ccpE in TH01 was confirmed by
PCR, pulsed-field gel electrophoresis of total genome SmaI
digests, and DNA sequencing.
Construction of the S. aureus ccpE cis-complementation

Strain TH01c—For cis-complementation of the ccpEmutation
in strain TH01, a 2-kb fragment containing the wild-type
ccpE allele and 1 kb of the upstream region including the
NWMN_0640 open reading frame, was amplified by PCR from
chromosomal DNA of S. aureus strain Newman using the
primer pair MBH225/MBH226. The resulting PCR product
was digested with BamHI/KpnI, and subsequently cloned into
BamHI/KpnI-digested vector pBT to generate the suicide plas-
mid pTH2c (Fig. 1). The plasmid was transformed into and
purified out of dam- and dcm-negative Escherichia coli strain
SCS110 (Stratagene), and electroporated into S. aureus strain

TH01 to obtain the cis-complementation strain TH01c
(TH01�ccpE::pTH2c). Restoration of the ccpE wild-type gene
was verified by sequencing of the respective DNA fragment.
Construction of the B. subtilis ccpC Promoter-B. subtilis ccpC

and B. subtilis ccpC promoter-ccpE Trans-complementation
Plasmids—Nucleotide sequences covering the B. subtilis ccpC
promoter and gene were amplified by PCR from B. subtilis
strain AF21 using the primer pairs MBH341/MBH255 and
cloned intoXbaI/KpnI-digested shuttle vector pBus1 (14). Sim-
ilarly, the ccpE gene from S. aureus strain Newman was ampli-
fied by PCR using primers MBH239/MBH226 and the ccpE
fragment was digested with SalI/KpnI and cloned into pBus1
that was digested with the same restriction enzymes. ccpC pro-
moters P1 and P2 were amplified by PCR using primer pair
MBH341/MBH338 and B. subtilis strain AF21 DNA. The PCR
product was digested with XbaI/SalI and cloned into pre-di-
gested pBus1 harboring the S. aureus ccpE open reading frame.
The resulting plasmids, pTH3 (Bs ccpC P1/2-ccpC) and pTH4
(Bs ccpC P1/2-Sa ccpE fusion), were used to transform compe-
tent cells of CJB9 or to electroporate RN4220. The resulting
derivatives of RN4220 were then used as a donor for transduc-
ing it into S. aureus strain TH01.
Measurement of Glucose, Acetate, and Ammonia Concentra-

tions in Culture Supernatants—Bacteria were cultivated in
LB-L supplemented with 0.1% glucose, and aliquots of the cul-
tures (2 ml) were removed hourly over a period of 12 h, centri-
fuged for 5min at 15,000� g at 4 °C, and the culture supernatants
storedat�20 °Cuntiluse.Glucose, acetate, andammoniaconcen-
trationswere determinedwith kits fromR-Biopharm (Darmstadt,
Germany) according to themanufacturer’s directions.
Aconitase and Citrate Synthase Activity Assays—Bacteria

were cultivated in LB-L as described before, and aliquots of the
cultures (2 ml) were removed after 3, 6, 9, and 12 h of growth.
Cells were harvested by centrifugation for 5 min at 15,000 � g
and 4 °C, cell pellets were resuspended in 850 �l of lysis buffer
(90 mM Tris, pH 8.0, and 100 �M fluorocitrate), and bacteria
were mechanically disrupted in a Fast Prep instrument (Qbio-
gene, Heidelberg, Germany) at a speed of 6.0 for 30 s. Lysates
were centrifuged for 1 min at 15,000 � g and 4 °C, and total
protein concentrations of the supernatants were determined
according to themethod described by Bradford (17). Aconitase
activities were assayed in cell-free supernatants as described
previously (15).One unit of aconitase activitywas defined as the
amount of enzyme necessary for a �A240 min�1 of 0.0033 (16).
Citrate synthase activities were determined with the Citrate Syn-
thase Assay Kit (Sigma) according to the manufacturer’s recom-
mendations, with the following modifications. Cell pellets were
suspended in CelLytic M Cell Lysis Reagent, and cell-free super-
natants were obtained as described above. 10-�l aliquots of the
cell-free lysateweremixed at room temperaturewith 0.1mM5,5�-
dithiobis-(2-nitrobenzoic acid) and 0.3 mM acetyl coenzyme A
(CoA) in 1� assay buffer (Sigma). The solutions were mixed
gently, and the absorbance of the reaction mixtures at 412 nm
(A412) were followed for 1.5 min to obtain a background reading.
After the addition of 0.5 mM oxaloacetate, the absorbance of the
reactionmixturesatA412weremonitored foranadditional1.5min
to detect the formation of 5-thio-2-nitrobenzoic acid. Citrate syn-

pBT

Newman

pTH2

THa

TH01

NWMN_0640 ccpE NWMN_0642

NWMN_0640‘
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aphAIII
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NWMN_0642
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FIGURE 1. Schematic representation of the ccpE region of S. aureus and
the strategies used to obtain the �ccpE mutant TH01 and the cis-comple-
mented derivative TH01c. 1) genetic organization of the S. aureus Newman
ccpE region. Open reading frames (arrowed boxes) and promoters (vertical
arrows) are indicated. 2) a 3-kb fragment containing the lox66-aphAIII-lox71 resis-
tance cassette and the flanking regions of the ccpE gene was cloned into the
vector pBT to generate plasmid pTH2. 3) plasmid pTH2 was electroporated into S.
aureus strain RN4220 to obtain THa (RN4220 �ccpE::lox66-aphAIII-lox71), which
was used as a donor for transducing the aphAIII-tagged ccpE deletion into
other S. aureus strains. 4) a marker-free �ccpE mutant of S. aureus strain New-
man was obtained by treating a �ccpE::lox66-aphAIII-lox71 positive derivative
of strain Newman with a Cre recombinase. Dotted lines between 3 and 4 indi-
cate the region removed by Cre. 5) a 2-kb fragment covering the ccpE ORF and 1
kb of the upstream region including the NWMN_0640 ORF was cloned into the
vector pBT to generate plasmid pTH2c. 6) a dam- and dcm-methylation free ali-
quot of plasmid pTH2c was directly electroporated into TH01 to obtain Th01c.
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thase activity units were calculated as micromoles of 5-thio-2-ni-
trobenzoic acid produced (i.e. CoA-SH released) per minute per
milligram of total protein (�mol/min/mg).
Determination of Citrate by GC/MS—Lyophilized cell pellets

(10 mg dry weight) of Newman, TH01, and TH01c (each har-
vested after 8 h of growth in LB-L) were combined with 0.5-ml
glass beads (Roth, Karslruhe, Germany; 0.25–0.5 mm diame-
ter) and 1 ml of methanol was added. This mixture was sub-
jected to homogenizer lysis (FastPrep FP120, QBiogene; 3
cycles each of 20 s at 6.5 m/s). After cell disruption, the cell
debris and glass beadswere separated by centrifugation (10min
at 5,000 � g). The supernatant (0.5 ml) was dried under a
stream of nitrogen. The residue was dissolved in 50 �l of
methoxyamine hydrochloride (solution of 20 mg/ml of pyri-
dine) and reacted at 30 °C for 90 min. 50 �l of N-methyl-N-
(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosil-
ane (Fluka, Germany) were added and the mixture was
incubated at 37 °C for 30min. GC/MS analyses were performed
on a GC/MS Shimadzu QP 2010 Plus (Shimadzu, Duisburg,
Germany) equippedwith a fused silica capillary column (Equity
TM-5; 30 m � 0.25 mm, 0.25-�m film thickness; SUPELCO,
Bellafonte, PA) and a QP-5000 mass selective detector (Shi-
madzu, Duisburg, Germany) workingwith electron impact ion-
ization at 70 eV. An aliquot (1�l) of the solutionwas injected in
a 1:10 split mode at an interface temperature of 250 °C and a
helium inlet pressure of 76 kilopascal. The column was devel-
oped at 70 °C for 5min and then with a temperature gradient of
5 °C/min to a final temperature of 310 °C that was held for 1
min. Data were collected using the LabSolutions software (Shi-
madzu, Duisburg, Germany). Compound peaks were assigned
by comparison of the resulting mass spectra with those of a
spectral library (NIST05, Shimadzu) and with data of injected
reference samples under the same conditions.
Transcriptional Analyses—For Northern blot experiments,

overnight cultures of S. aureus were diluted to an A600 of 0.05
into fresh pre-warmed LB-L and grown at 37 °C and 230 rpm.
Samples were removed from the culture at the indicated times
and centrifuged at 9,000 � g and 4 °C for 2 min, the culture
supernatants were discarded, and the cell pellets were snap fro-
zen in liquid nitrogen. Total RNAs were isolated according to
Ref. 18, and blotting, hybridization, and labeling were per-
formed as described previously (19). Primer pairs MBH279/
MBH280 andMBH281/MBH282were used to generate digoxi-
genin-labeled NWMN_0640- and ccpE-specific probes by PCR
labeling, respectively.
For the quantification of transcripts by real-time reverse

transcription-PCR (qRT-PCR), RNA isolations and qRT-PCRs
were carried out essentially as described in Ref. 20. The
obtained cDNA was used for real-time amplification with spe-
cific primers (Table 2) and 20 ng of cDNA/reaction. mRNA
levels were normalized against themRNA level of gyrB, which is
constitutively expressed under the conditions analyzed (21).
The amounts of different transcripts were expressed as the
n-fold difference relative to the control gene (2��CT, where
�CT represents the difference in threshold cycle between the
target and control genes).

Determination of Transcriptional Start Sites of NMMN_0640
and citB—Strain Newman was grown for 3 h as described and
the bacteriawere harvested by centrifugation at 8,000� g for 10
min. RNA isolation was carried out as described above. The
transcriptional start points of NMMN_0640 and citB were
determined by rapid amplification of cDNA ends essentially as
described by Ref. 22. The reverse transcription of 8.2 �l of the
ligated RNAwas carried outwithNMWN_0640 or citB-specific
primers (Table 2) with the High Capacity cDNA Reverse Tran-
scription Kit (Invitrogen) according to the manufacturer’s
instructions. 2 �l of the cDNA was amplified by PCR using a
primer complementary to the RNA adapter sequence, and a
specific primer forNMWN_0640 or citB (Table 2) closer to the
5�-end than the primers used for the reverse transcription.
Finally, the PCR products were sequenced.
Antibody Production and Immunoblotting—Polyclonal anti-

CcpE antibodies were raised by injecting 500 �g of the His-
tagged recombinant CcpE into rabbits (Eurogentec, Liege, Bel-
gium). The resulting crude antisera were purified against the
immobilized CcpE antigen. For the determination of CcpE,
cytoplasmic protein extracts were isolated from S. aureus cell
cultures grown for 3, 6, 9, and 12 h in LB-L at 37 °C as described
previously (23), and protein fractions (20 �g/lane) were sepa-
rated using SDS-PAGE, blotted onto a nitrocellulose mem-
brane, and subjected toWestern blot analysis using the antigen-
purified polyclonal anti-CcpE antiserum.
Electrophoretic Mobility Shift Assays—The DNA probes for

electrophoretic mobility shift assays (EMSAs) were generated
by PCR using S. aureus strainNewman chromosomal DNA as a
template, and primer pairs (listed in Table 2) that amplified the
DNA regions preceding the ccpE, citB, citZ, and NWMN_0640
ORFs. The 5�-ends of the double-stranded PCR products were
labeled using [�-32P]ATP and T4 polynucleotide kinase. A typ-
ical assaymixture contained (in 20 �l) 10mMTris-HCl, pH 7.5,
50 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1 �g of nonspecific
competitor (poly(dI-dC)), 5% (v/v) glycerol, radioactive DNA
probe (2000 cpm ml�1), and various amounts (0, 15, 65, 130,
and 200 nM) of purified CcpE. After 30 min of incubation at
room temperature, 20 �l of this mixture was loaded into a
native 4% (w/v) polyacrylamide Tris borate-EDTA Ready Gel
(Bio-Rad) and electrophoresed in 1% Tris borate-EDTA (v/v)
buffer for 1 h at 100 V cm�1. Radioactive species were detected
by autoradiography using direct exposure to films.
NMR Sample Preparation—S. aureus strains were grown in

LB-L supplemented with 0.1% glucose as described above. For
two-dimensional 1H,13C-HSQC analysis LB-L medium con-
taining 0.1% [13C6]glucose (Cambridge Isotope Laboratories)
was used for the main cultures. NMR samples for intracellular
metabolite analysis were prepared from independent cultures
in exponential (3 h) and post-exponential (8 h) growth phase.
The extraction of the metabolome from cell lysates followed
our previously published protocols (24, 25).
NMR Data Collection, Analysis, and Interpretation—Fol-

lowed as previously published (24, 25). Briefly, NMR spectra
were collected at 293 K on a Bruker 500 MHz DRX Avance
spectrometer equippedwith a triple-resonance,Z-axis gradient
5-mm TXI cryoprobe, a BACS-120 sample changer, automatic
tune and match, and Icon NMR for automated data collection.
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The two-dimensional time 0 extrapolated 1H,13C-HSQC
(HSQC0) NMR spectra were collected as described by Hu and
colleagues (26) to measure absolute metabolite concentrations
and concentration changes. A set of three HSQC0 spectra were
collected for the six replicates for a total of 18 two-dimensional
1H,13C-HSQC spectra per class. One-dimensional 1H NMR
spectra were processed in the ACD/one-dimensional NMR
manager version 12.0 (Advanced Chemistry Development,
Inc.) and the two-dimensional 1H,13C-HSQC spectra were pro-
cessed using theNMRPipe software package (27). Peak peaking
and peak matching were performed using NMRViewJ version
8.0 (28). The metabolite assignments relied on the Human
Metabolomics Database (HMDB), Madison Metabolomics
Consortium Database (MMCD), and Biological Magnetic Res-
onance Data Bank (BMRB) (29–31). Metabolite concentration
changes between strains TH01 and Newman were calculated
relative to strain Newman using the following formula: � �
([TH01] � [Newman])/max([TH01],[Newman]). These relative
concentration changes for each of the six replicates were plot-
ted as an EnhancedHeatMap usingRwith a gplots package and
using a color-scale from �1 to 1. Metabolic network map was
generated using the Cytoscape software package (32, 33) and
verified based on consistencywith the KEGG (34) andMetaCyc
(35) databases.
50 or 500 �M 3-(trimethylsilyl)propionic acid-2,2,3,3-d4

sodium salt were used as an internal standard for the one-dimen-
sional 1Hand two-dimensional 1H,13C-HSQCNMRexperiments,
respectively. 3-(Trimethylsilyl)propionic acid-2,2,3,3-d4 was used
for chemical shift referencing and for normalization of the
NMR spectra.
The 10 replicates from each class were randomly interleaved

during the one-dimensional 1HNMRdata collection,where the
spectra were collected using excitation sculpting (36) to effi-
ciently remove the solvent and maintain a flat baseline, elimi-
nating any need for baseline collection thatmay induce artifacts
in the multivariate statistical analysis. After Fourier transfor-
mation and phase correction, residual water, and buffer peaks
were removed from the spectra, the entire one-dimensional 1H
NMR spectra were normalized using center averaging and
binned using intelligent bucketing. Noise regions were elimi-
nated and then the bins were scaled using center averaging
prior to principal component analysis (PCA) and orthogonal
projection to latent structures discriminate analysis (37).
Statistical Analyses—SIMCA12.0� (UMETRICS) was used

for PCA, orthogonal projection to latent structures discrimi-
nate analysis, and generating S-plots and loadings plots. Our
PCA/projection to latent structures discriminate analysis utili-
ties were used for statistical analysis of group separation in the
PCA and orthogonal projection to latent structures discrimi-
nate analysis scores plots (38, 39). Statistical significances for
other results were assessed using Student’s t test or Mann-
Whitney U test. p values �0.05 were considered significant.

RESULTS

Identification of Potential Carbon Metabolism Affecting Fac-
tors in S. aureus Strain Newman—Abioinformatic comparison
of the genomes of B. subtilis isolate 168 (GenBankTM number
AL009126.3) and S. aureus strain Newman (accession number

AP009351.1) suggested that the strain Newman genome might
have geneswhose products have been associatedwithCCR inB.
subtilis (reviewed in Ref. 1). One uncharacterized gene was
NWMN_0641 (renamed here as ccpE), which shared 61% sim-
ilarity and 35% identity to the B. subtilis citrate-responsive reg-
ulator CcpC, and like CcpC it was predicted to encode for a
putative transcriptional regulator of the LysR family. These
observations and the fact that CcpC is a regulator of TCA cycle
genes citZ (encoding citrate synthase) and citB (encoding aco-
nitase) (6), led us to examine the function of CcpE in S. aureus.
Transcriptional Organization of the ccpE Locus in S. aureus

Strain Newman—Our microarray analysis of �B-mediated
transcriptional changes (40) suggested that ccpE might form a
bicistronic operon with the open reading frame (ORF)
NWMN_0640. Further bioinformatic analysis of this region
suggested that both genes were likely controlled by a promoter
located upstream of NWMN_0640. To test this suggestion, we
assessed the transcription of NWMN_0640 and ccpE byNorth-
ern blotting (Fig. 2A). This Northern blot analysis revealed
ccpE-specific transcripts with sizes of �4.1, 2.9, 2.3, and 1.5 kb.
The 2.9- and 1.5-kb transcripts migrated on the gel to the same
extent as the 16 S and 23 S rRNAs; hence, they might represent
degradation products of higher molecular weight transcripts.
That being said, all transcripts were detectable throughout the
growth cycle and the transcription profiles of ccpE and
NWMN_0640were nearly identical. Based on these results, and
on the genetic organization of the ccpE locus (Fig. 2B), we
hypothesized that all transcripts originate from a single pro-
moter in front of NWMN_0640, which would give rise to a
NWMN_0640/ccpE-encoding 2.3-kb transcript, and a larger
NWMN_0640/ccpE/NWMN_0642/3-encoding 4.1-kb transcript.

To identify the transcriptional start point of NWMN_0640,
we performed a 5�-RACE experiment that identified a tran-
scriptional start point 14 bp upstream of the proposed start
point of the NWMN_0640 ORF, and immediately upstream of
the putative ribosomal binding site of this ORF (Fig. 2C). The
transcriptional start point is preceded by nucleotide sequence
ATGACA-17-TATAAT that stronglymatchedwith the�35 and
�10 hexamers identified in the promoters of genes shown to be
transcribed by S. aureus �A containing RNA polymerase (41, 42).

BecausemanyLysR-type of regulators display autocrine regula-
tion of their own transcription (43), we determined the capacity of
CcpE to bind to its own promoter. To do this, purified CcpE was
used inelectrophoreticmobility shift assayswith aPCRprobecov-
ering the genomic regionpreceding theNWMN_0640ORF (Fig.
2D). As expected, a clear, dose-dependent shift with CcpE and
the radioactively labeled NWMN_0640 promoter probe frag-
ment was observed, suggesting that CcpE affects its own tran-
scription. This DNA binding activity was specific, as an EMSA
using aDNAprobe covering the region preceding the ccpEORF
did not cause a mobility shift. Taken together, our data suggest
that ccpE is transcribed in a bicistronic message using a pro-
moter upstream of NWMN_0640, and that this promoter is
subjected to autocrine regulation by CcpE.
Inactivation of ccpE in S. aureus Strain Newman—Using the

cre-lox-based deletion system described for staphylococci by
Leibig and colleagues (13), we created a marker-less deletion of
ccpE in S. aureus strain Newman, giving rise to strain TH01. In
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addition, a cis-complemented derivative was created by inte-
grating the NWMN_0640/ccpE containing suicide plasmid,
pTH2c, into the deletion site of strain TH01, resulting in strain
TH01c (Fig. 1). Sequencing of the respective genome regions
confirmed that the mutations occurred as expected. Further-
more,Northern blot analysis qualitatively confirmed that strain
TH01did not produce a ccpE-specific transcript, whereas strain
TH01c expressed ccpE at a level comparable with that of the
wild-type strain (Fig. 2A). Probing total RNA from TH01 and
TH01c with a NWMN_0640-specific probe also confirmed the
deletion of ccpE in TH01, as we detected in strain TH01
NWMN_0640-specific transcripts of �3.3 and 1.5 kb. These
mRNA sizes are consistent with the deletion of 800 bp of the

ccpE locus in this mutant. Importantly, complementation
restored all NWMN_0640-specific transcripts found in the
wild-type strain and also transcripts that were identified in
TH01. This latter result was expected due to our complemen-
tation strategy that created a duplication of the NWMN_0640
gene due to the insertion of the suicide plasmid pTH2c into the
NWMN_0640 ORF (Fig. 1). Taken together, these data con-
firmed that the correct gene was inactivated and that wild-type
transcription profiles could be restored by complementation.
To assess the production of CcpE in S. aureus, rabbit poly-

clonal antibodies were generated against CcpE and used in
Western blot analyses of cytosolic protein fractions from
strains Newman, TH01, and TH01c grown in LB-L (Fig. 2E). In

NWMN_0640 ccpE
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FIGURE 2. Transcriptional organization of the ccpE locus of S. aureus Newman. A, Northern blot of NWMN_0640 and ccpE transcriptions in strains Newman,
TH01 (�ccpE), and the complemented TH01c during growth in LB-L. Approximate transcript sizes are indicated on the left. Ethidium bromide-stained 16 S rRNA
are presented to indicate equivalent RNA loading. B, schematic representation of the ccpE region of S. aureus. Proposed ORFs, promoters, terminators, and
transcripts identified by Northern analyses are indicated. ORF notations and nucleotide (nt) numbers correspond to those of the respective genomic regions
of strain Newman (GenBank accession number AP009351.1). C, nucleotide sequence of the region preceding the NWMN_0640 open reading frame. The
transcriptional start point identified by RACE (bent arrow), putative �35 and �10 boxes (boxes), terminator sequences (hatched lines), and primers used to
amplify the NWMN_0640-ccpE promoter fragment used in EMSA (horizontal arrows) are indicated. D, binding activity of CcpE to the DNA regions preceding the
NWMN_0640 and ccpE ORFs. The PCR-amplified DNA fragments were radioactively labeled and incubated with the amount of purified CcpE indicated. The
results are representative of at least two independent experiments. E, Western blot analysis of CcpE in cytosolic extracts of strains Newman, TH01, and TH01c
cells grown in LB-L to the time points indicated. The results are representative of at least two independent experiments.
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these anti-CcpEWestern blots, 33-kDa bands in both the wild-
type strain and complemented strain TH01c were observed
throughout the growth cycle and, as expected, this band was
absent in ccpEmutant strain TH01. These data were consistent
with the Northern data (Fig. 2A) and indicated that CcpE accu-
mulated in the cytosols of the wild-type and TH01c strains dur-
ing the later stages of growth.
CcpEAffects the inVitroGrowthYield of S. aureus—Todeter-

mine whether ccpE inactivation affected the physiology of S.
aureus, we assessed the growth and culturemediumpHprofiles

of strains Newman, TH01, and TH01c in LB-L medium in the
absence or presence of 0.1% supplemental glucose (Fig. 3). In
LB-L medium lacking glucose, strain TH01 displayed a slight
decrease in the growth yield relative to the wild-type and
TH01c strains (Fig. 3A). Additionally, the pH of the culture
medium for strain TH01 was less alkaline than for wild-type
and TH01c strains, indicating that the ccpE mutant was either
impaired in amino acid catabolism or that the accumulation or
depletion of organic acids has changed. Supplementation of
LB-Lwith 0.1% glucose increased the overall growth yields of all

FIGURE 3. Growth characteristics of S. aureus strain Newman (black symbols), TH01 (white symbols), and TH01c (gray symbols). Culture media pH and
A600 values during growth in LB-L medium (A) and LB-L supplemented with 0.1% glucose (B). Time points of sampling for downstream applications (enzyme
assays, qRT-PCRs) are indicated by arrows. The data presented are mean 	 S.D. of at least three independent experiments. Student’s t test *, p � 0.05; **, p �
0.01. C, glucose, acetate, and ammonia concentrations in the culture supernatants of Newman (black bars), TH01 (white bars), and TH01c (gray bars) cell cultures
grown in LB-L � 0.1% glucose. The data presented are mean 	 S.D. of at least three independent experiments done in duplicate. Mann-Whitney U test. **, p � 0.01.
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three strains relative to cultures grown in LB-L, but it did not
alter the growth rate (Fig. 3B). The similarity of the growth rates
but the differences in growth yields suggested that the expo-
nential growth phase metabolismwas similar but that the post-
exponential growth phase metabolism was altered. Consistent
with this suggestion, the pH profiles and glucose, acetate, and
ammonia accumulation in themediumwere nearly identical up
until the post-exponential growth phase (Fig. 3). In the post-
exponential growth phase, the culture medium of strains New-
man and TH01c began to alkalinize as acetate was extracted
from themedium for catabolism via the TCA cycle, and ammo-
nia accumulated due to the deamination of amino acids (Fig.
3C). In contrast to strains Newman and TH01c, alkalization of
the culture medium from strain TH01 was very slow, as both
acetate catabolism and ammonia accumulationwere repressed.
This reduced ability to catabolize acetate and amino acids was
also reflected in the decreased biomass generation and final
growth yield. As acetate catabolism and amino acid catabolism
were repressed, these data suggested that ccpE inactivation
inhibited/decreased TCA cycle activity.
Deletion of ccpE Alters the S. aureus Metabolome—The dele-

tion of ccpE changed the accumulation and depletion of organic
acids in the culturemedium and the pHprofile (Fig. 3), suggest-
ing that ccpE inactivation caused significantmetabolic changes.
To test this hypothesis, strains Newman, TH01, and TH01c
were grown in LB-L medium containing 0.1% [13C]glucose and

the metabolomes were analyzed by NMR spectroscopy. The
metabolomic analysis of strains Newman, TH01, and TH01c
grown in LB-L medium containing 0.1% [13C]glucose provided
a metabolic snapshot of the exponential (3 h) and post-expo-
nential (8 h) growth phases (Fig. 4). Consistent with growth and
pH profiles for the strains (Fig. 3B), an exponential growth
phase PCA plot (Fig. 4A) revealed no significant differences in
the metabolomes of strains Newman, TH01, and TH01c. In
contrast to the exponential growth phase, ccpE inactivation had
a major effect on post-exponential growth phase metabolism
(Fig. 4, B–D, and 5A). In particular, carbon flow through the
TCA cycle was reduced as evidenced by the accumulation of
citrate and the shunting of pyruvate into fermentative path-
ways. The accumulation of citrate in strain TH01 was also con-
firmed in bacteria cultivated in LB-L without glucose, using gas
chromatography-mass spectrometry (GC-MS) (Fig. 5B). The
metabolic block in the TCA cycle created by ccpE inactivation
led to a reduction in the intracellular concentrations of gluta-
mate and glutamine, which affects the availability of nitrogen
donors. The decreased ammonia assimilation via glutamate to
glutamine may be the cause for an increased concentration of
asparagine, which is generated by amination of aspartate via
asparaginase. In summary, we can conclude that CcpE is
involved in regulating carbon flow through the TCA cycle,
independent of glucose or its catabolic products.

FIGURE 4. Effect of the ccpE deletion on the metabolome of S. aureus strain Newman. A and B, two-dimensional PCA scores plots generated from the entire
one-dimensional 1H NMR spectra of the exponential growth phase (3 h) metabolomes (A), and post-exponential growth phase (8 h) metabolomes (B) of strains
Newman (black triangles), TH01 (red triangles), and TH01c (gray triangles). C, two-dimensional 1H,13C-HSQC difference spectrum showing the post-exponential
growth phase differences between strains Newman (green) and TH01 (red). D, a heat map of six independent replicates showing the major differences in
metabolites produced in post-exponential growth phase by strain TH01 in relationship to strain Newman. Relative concentration changes were plotted as
outlined under “Experimental Procedures,” using a color-scale from �1 (red) to 1 (green). The dendrogram depicts hierarchal clustering of the metabolite
concentration changes, where metabolites exhibiting the same relative trend and magnitude changes across all replicates are clustered together (n � 6). A
Student’s t test was used to determine the statistical significance of each metabolites change between the TH01 and Newman strains (*, p � 0.05).
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FIGURE 5. CcpE-dependent changes in the metabolome of S. aureus. A, a cytoscape map showing the changes in the central metabolism associated with
ccpE inactivation. B, overlays of representative GC/MS profiles of Newman, TH01, and TH01c whole cell extracts of 8-h LB-L cultures. The elevated citrate peak
observed with TH01 is indicated.

Regulation of TCA Cycle Activity by CcpE

36124 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 50 • DECEMBER 13, 2013

 at U
N

IV
 O

F N
E

B
R

A
SK

A
 - L

incoln on January 7, 2014
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/
http://www.jbc.org/


Inactivation of ccpEAffects Transcription of TCACycle Genes
and Its Activity—The CcpE encoding ORF in S. aureus was
identified based on its homology to CcpC in B. subtilis. CcpC is
involved in the regulation of TCAcycle genes citZ and citB (5, 6,
8); hence, we hypothesized that CcpE might regulate the same
TCA cycle genes in S. aureus. To test this assumption, tran-
scription of TCAcycle genes citZ and citBwas assessed by qRT-
PCR in strains Newman, TH01, and TH01c grown in LB-L
medium (Fig. 6). In the wild-type strain Newman, citZ and citB
mRNAs were at the highest levels just prior to the post-expo-
nential growth phase (Fig. 6A). Inactivation of ccpE decreased
transcription of both citB and citZ; however, the effect on citB
was more dramatic. Complementation of the ccpE mutation
restored citZ and citB transcription to levels similar to that in
the wild-type strain. Thus, to determine whether the differ-
ences in citB and citZ transcription were reflected in enzymatic
activity changes, the activities of citrate synthase and aconitase
were measured in wild-type, TH01, and TH01c strains as well
(Fig. 6B). Consistent with the transcriptional data, citrate syn-
thase activity was decreased in strain TH01 at 3 h of growth
only, whereas aconitase activity was significantly decreased in
TH01cells inall growthphases.Alsoconsistentwith the transcrip-

tional data, complementation of the ccpE mutation restored cit-
rate synthase and aconitase enzymatic activities to those in the
wild-type strain, strongly suggesting that CcpE is a major positive
transcriptional regulator of citB in S. aureus.
CcpE Binds to the citB Promoter—To assess whether CcpE

might directly regulate transcription of citB and citZ by binding
to the respective promoters, we performed EMSAs using the
citZ and citB promoters as probes (Fig. 6C). The probe gener-
ated from the citB promoter shiftedwithCcpE in a dose-depen-
dent manner; however, the citZ promoter region was not
shifted by CcpE, suggesting that CcpE directly controls the
expression of citB but not citZ. The similarity of CcpE to CcpC
and the fact that citrate accumulated when ccpE was inacti-
vated, led us to determine whether citrate would influence
CcpE DNA binding activity. In contrast to B. subtilisCcpC, the
binding activity of CcpE was independent of the concentration
of citrate in the binding buffer. Similarly, CcpE binding was
independent of NAD� and NADH (data not shown). These
data suggest that CcpE is not a functional ortholog of CcpC, but
a newly described TCA cycle regulator.
CcpE Is Not a Functional Homolog of CcpC—In B. subtilis,

CcpC regulates transcription of TCA cycle genes in response to

FIGURE 6. Transcription and activity of citZ and citB in strain Newman and its derivatives. A, quantitative transcript analysis of citZ and citB by qRT-PCR of
strains Newman (black bars), TH01 (white bars), and TH01c (gray bars) during growth in LB-L. mRNA levels are expressed relative to gyrase B (in numbers of
copies per copy of gyrB). The data presented are mean 	 S.D. of four independent experiments each determined in duplicate. B, enzyme activities of citrate
synthase, and aconitase of strains Newman (black bars), TH01 (white bars), and TH01c (gray bars) during growth in LB-L. The data are presented as the mean 	
S.D. of three independent experiments done in duplicate. Mann-Whitney U test *, p � 0.05; **, p � 0.01. C, EMSA using purified CcpE and the DNA probes
generated from the citB and citZ promoters. The PCR-amplified DNA fragments were radioactively labeled and incubated with the amount of purified CcpE
indicated. The results are representative of at least two independent experiments.
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changes in citric acid, and inactivation of ccpC increases the
exponential growth phase transcription of citB (6). Although
ccpE inactivation decreased citB transcription, its DNAbinding
properties were not altered by citric acid; out of an abundance
of caution, we assessed whether the S. aureus ccpE gene could
complement a B. subtilis ccpCmutant and whether the B. sub-
tilis ccpC gene could complement our S. aureus ccpE mutant.
To do this, plasmids having ccpC under the control of its native
promoter (pTH3) and a fusion plasmid harboring theB. subtilis
ccpC P1 and P2 promoters fused to the S. aureus ccpE ORF
(pTH4) were constructed. These plasmids were transformed
into TH01 and the B. subtilis ccpC mutant CJB9 (6), respec-
tively, and the final transformants were tested for CcpE by
Western blotting and citB, ccpC, and ccpE transcription using
qRT-PCR (Fig. 7). As expected, citB transcriptionwas increased
in B. subtilis ccpCmutant strain CJB9 when grown in TSSmin-
imal medium supplemented with 0.2% (w/v) glutamine and

0.5% (w/v) glucose. Complementation of strain CJB9 with ccpC
under the control of its native promoter, plasmid pTH3,
restored citB transcription to wild-type levels. In contrast,
transforming strain CJB9 with plasmid pTH4, harboring the S.
aureus ccpE under control of the B. subtilis ccpC P1 and P2
promoters, failed to revert citB transcription towild-type levels.
To exclude that the inability of CcpE to restore wild-type citB
mRNA levels was due to a lack of transcription or translation,
we assessed ccpE transcription using qRT-PCR andCcpE trans-
lation by Western blotting. In strain CJB9 containing plasmid
pTH4, ccpEwas strongly transcribed andCcpEwas produced in
large quantities (Fig. 7A), demonstrating that the inability of
ccpE to complement a ccpCmutation was neither due to a fail-
ure of transcription nor translation. Similarly, transforming
strain TH01 with plasmids pTH3 (containing ccpC) or pTH4
(containing ccpE) increased citB transcription to wild-type lev-
els with ccpE but not ccpC (Fig. 7B). Taken together, these data
demonstrate that CcpE is not a functional homolog of CcpC.

DISCUSSION

Central metabolism provides S. aureus with 13 biosynthetic
intermediates fromwhich it derives all macromolecules; hence,
a central metabolism is critically important for growth and sur-
vival (44). The TCA cycle is one component of the central
metabolism that provides the bacterium with energy, reducing
potential, and three of the 13 biosynthetic intermediates. When
these 13 biosynthetic intermediates, or the amino acids, nucleic
acids, fatty acids, etc. that these intermediates produce, are exog-
enously available, TCA cycle activity is largely repressed (45). In
the presence of readily catabolizable carbohydrates, such as
glucose, transcription of TCA cycle genes is repressed
by CcpA (46). Similarly, transcription of TCA cycle genes is
repressed byCodY, a highly conservedGram-positive repressor
that responds to intracellular concentrations of branched-
chain amino acids and GTP (reviewed in Ref. 12). When nutri-
ents become growth limiting, transcription of TCA cycle genes
is de-repressed and TCA cycle activity dramatically increases,
allowing for the utilization of incompletely oxidized organic
acids that accumulated in the culture medium (47). This utili-
zation of organic acids through the TCA cycle allows S. aureus
to generate biosynthetic intermediates needed for precursor
and macromolecular synthesis by shunting carbon into gluco-
neogenesis via P-enolpyruvate. In otherwords, theTCAcycle is
an importantmetabolic pathway that facilitates S. aureus adap-
tion to a nutrient-limited environment. The importance of the
TCA cycle to the success of S. aureus as a pathogen is illustrated
bymutagenesis studies that identified TCA cycle mutants to be
attenuated in different mouse models (48, 49) and a Caenorh-
abditis elegans-killingmodel (50, 51).More recently, the signif-
icance of TCA cycle activity during the course of infection was
also suggested by a study from Chaffin and colleagues (52),
where it was observed that citB transcription increased over
time in a mouse pneumonia model.
The importance of the TCA cycle in metabolism, survival,

and virulence factor synthesis led us to search the S. aureus
genomicDNA sequence for TCA cycle regulators that are pres-
ent inB. subtilis. One such regulator that is present inB. subtilis
but undescribed in S. aureus is CcpC. We identified a homo-

FIGURE 7. Trans-complementation of B. subtilis ccpC and S. aureus ccpE
mutants. A, Western blot analysis of CcpE in cytosolic extracts of B. subtilis
strains AF21, CJB9 (AF21::ccpC), CJB9 � pTH3 (ccpC under the control of its
native promoters), CJB9 � pTH4 (ccpC P1/2-ccpE fusion), S. aureus strains
Newman, TH01, TH01 � pTH3, and TH01 � pTH4 after growth in LB-L for 6 h.
The results are representative of at least two independent experiments. B,
quantitative transcript analyses of ccpC, ccpE, and citB by qRT-PCR of B. subtilis
derivatives grown in TSS minimal medium supplemented with 0.2% (w/v)
glutamine and 0.5% (w/v) glucose, and S. aureus derivatives grown in LB-L to
the mid-exponential growth phase. The data presented are mean 	 S.D. of
four independent experiments each determined in duplicate. #, transcripts
below detection limits.
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logue of CcpC in the S. aureus genome, which we named CcpE.
At the amino acid level, CcpE is similar to the B. subtilis CcpC;
however, the similarities end there. Deletion of ccpE in S.
aureus dramatically decreased transcription of citB and to a
lesser extent citZ. This decreased transcription resulted in
decreased TCA cycle activity, causing a metabolic block in the
TCA cycle that increased the intracellular citrate concentra-
tion. The increased citrate accumulation and the inability to
effectively fully oxidize carbohydrates likely caused the
decreased growth yield. These data are in stark contrast to that
of CcpC where inactivation of ccpC in B. subtilis de-represses
citB and citZ transcription (6). Also unlike CcpC, the DNA
binding activity of CcpE is not dependent upon the concentra-
tion of citrate. In summary, CcpE is amajor positive regulator of
TCA cycle activity that binds DNA independent of the citrate
concentration.
TCA cycle activity has been also associated with virulence in

staphylococci. In S. aureus, TCA cycle activity was found to be
critical for the elaboration of a capsule (53). In contrast, TCA
cycle activity negatively affects synthesis of polysaccharide
intercellular adhesin and biofilm formation (54). Because CcpE
increases TCA cycle activity in S. aureus, it is likely that CcpE
activity will affect virulence determinant biosynthesis and
pathogenesis. Preliminary findings support this hypothesis by
indicating that CcpE influences the transcription of a number
of virulence factors, and infectivity of S. aureus in two inde-
pendent mouse models. Experiments are ongoing to address
this question in greater detail. Another yet unresolved question
is which metabolite/co-factors alter the DNA binding proper-
ties of CcpE.We know some that do not affect CcpE binding to
DNA; namely, citrate and NAD�/NADH. Last, we are in the
process of identifying the DNA binding site for CcpE.
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putative cell envelope-associated element involved in Staphylococcus au-
reus sarA attenuation. Antimicrob. Agents Chemother. 47, 2558–2564

15. Kennedy, M. C., Emptage, M. H., Dreyer, J. L., and Beinert, H. (1983) The
role of iron in the activation-inactivation of aconitase. J. Biol. Chem. 258,
11098–11105

16. Baughn, A. D., and Malamy, M. H. (2002) A mitochondrial-like aconitase
in the bacterium Bacteroides fragilis. Implications for the evolution of the
mitochondrial Krebs cycle. Proc. Natl. Acad. Sci. U.S.A. 99, 4662–4667

17. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 72, 248–254

18. Cheung, A. L., Eberhardt, K. J., and Fischetti, V. A. (1994) A method to
isolate RNA from Gram-positive bacteria and mycobacteria. Anal.
Biochem. 222, 511–514

19. McCallum, N., Karauzum, H., Getzmann, R., Bischoff, M., Majcherczyk,
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S., Bischoff, M., and Berger-Bächi, B. (2009) Effect of a glucose impulse on
the CcpA regulon in Staphylococcus aureus. BMCMicrobiol. 9, 95

47. Somerville, G.A., Chaussee,M. S.,Morgan, C. I., Fitzgerald, J. R., Dorward,
D. W., Reitzer, L. J., and Musser, J. M. (2002) Staphylococcus aureus aco-
nitase inactivation unexpectedly inhibits post-exponential-phase growth
and enhances stationary-phase survival. Infect. Immun. 70, 6373–6382

48. Coulter, S. N., Schwan, W. R., Ng, E. Y., Langhorne, M. H., Ritchie, H. D.,
Westbrock-Wadman, S., Hufnagle, W. O., Folger, K. R., Bayer, A. S., and
Stover, C. K. (1998) Staphylococcus aureus genetic loci impacting growth
and survival in multiple infection environments. Mol. Microbiol. 30,
393–404

49. Mei, J. M., Nourbakhsh, F., Ford, C. W., and Holden, D. W. (1997) Iden-
tification of Staphylococcus aureus virulence genes in a murine model of
bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26,
399–407

50. Begun, J., Sifri, C. D., Goldman, S., Calderwood, S. B., and Ausubel, F. M.
(2005) Staphylococcus aureus virulence factors identified by using a high-
throughput Caenorhabditis elegans-killing model. Infect. Immun. 73,
872–877

51. Bae, T., Banger, A. K., Wallace, A., Glass, E. M., Aslund, F., Schneewind,
O., and Missiakas, D. M. (2004) Staphylococcus aureus virulence genes
identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl.
Acad. Sci. U.S.A. 101, 12312–12317

52. Chaffin, D. O., Taylor, D., Skerrett, S. J., and Rubens, C. E. (2012) Changes
in the Staphylococcus aureus transcriptome during early adaptation to the
lung. PLoS One 7, e41329

53. Sadykov, M. R., Mattes, T. A., Luong, T. T., Zhu, Y., Day, S. R., Sifri, C. D.,
Lee, C. Y., and Somerville, G. A. (2010) Tricarboxylic acid cycle-depen-
dent synthesis of Staphylococcus aureus type 5 and 8 capsular polysaccha-
rides. J. Bacteriol. 192, 1459–1462

54. Zhu, Y., Xiong, Y. Q., Sadykov, M. R., Fey, P. D., Lei, M. G., Lee, C. Y.,
Bayer, A. S., and Somerville, G. A. (2009) Tricarboxylic acid cycle-depen-
dent attenuation of Staphylococcus aureus in vivo virulence by selective
inhibition of amino acid transport. Infect. Immun. 77, 4256–4264
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