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Multivariate Analysis in Metabolomics 
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Abstract: Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological flu-
ids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high informa-
tion content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclu-
sions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding 
meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis 
(PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation 
or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a 
panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and miscon-
ceptions. 
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INTRODUCTION 
 Metabolomics is defined [1] as “the quantitative meas-
urement of the multiparametric metabolic response of living 
systems to pathophysiological stimuli or genetic modifica-
tion.” Such a definition implies that metabolomic studies 
offer the finest-grained detail available in the nascent field of 
systems biology: a molecular-level convolution of all up-
stream genomic, transcriptomic and proteomic responses of 
an organism to a given stimulus or change [2-4]. Metabolites 
are the end product of all cellular processes, and are a direct 
outcome of enzymatic and protein activity. Thus, metabolites 
are more proximal to a phenotype or disease than either ge-
netic or proteomic information [5, 6]. This occurs because a 
simple change in the expression level of a gene or protein 
does not necessarily correlate directly with a variation in the 
activity level of a protein, but an alteration in a metabolite 
only occurs through such a change [7]. Consequently, me-
tabolomics has been used to identify disease biomarkers [8, 
9], to aid in the drug discovery process [10, 11], and to study 
plants [12], bacteria [13, 14], nutrition [15], and the envi-
ronment [16], among numerous other applications [17].  
 However, metabolomics experiments are plagued with 
difficulty. The number of small-molecule metabolites in a 
biofluid, cell lysate, tissue or organ differs wildly depending 
on the organism studied, ranging from several hundred to 
hundreds of thousands [18]. Metabolomics is also a rela-
tively new discipline and as a result a complete catalog of the 
human metabolome and the metabolomes of other organisms 
is not available [19]. Therefore, it is common to encounter 
unknown metabolites, a complication in the analysis and 
interpretation of metabolic changes. Similarly, the lack of  
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reference NMR or MS spectra for all known metabolites 
makes proper identification of metabolites challenging [20-
22]. Further, the exhibited diversity of chemical and physical 
properties of compounds within the metabolome makes true 
metabolomics (simultaneous quantification of all metabo-
lites) unattainable with current instrumental capabilities [1, 
18, 23]. As an illustration, the limited molecular-weight dis-
tribution of the metabolome prohibits a comprehensive and 
detailed analysis by mass spectroscopy and generally re-
quires the additional use of chromatography [2, 24].  
 The analysis of metabolomic data is further complicated 
by the inherent variability in each sample. Every single cell, 
tissue, organ or organism is fundamentally unique [25], de-
spite any defining feature they share in common, such as 
being the same species, infected with the same disease or 
receiving the same drug treatment. As such, the overall goal 
of metabolomics is to identify the few chemical features 
against a large and complex background of metabolites that 
uniquely define the system [20, 26]. These few chemical 
features or metabolites should be directly related to the de-
fining characteristic of the system. But, unfortunately, all 
biological systems are easily perturbed by any number of 
experimental or environmental factors, such as age, diet, 
growth phase, media, nutrients, pH, sex, and temperature 
[27, 28]. Similarly, cell lysis, enzyme quenching and me-
tabolome extraction techniques, and the storage of the me-
tabolomics samples can also induce undesirable variations. 
There are also unavoidable fluctuations in spectral data, such 
as changes in peak position or peak width that are caused by 
instrument instability and variability in sample conditions. 
As a result, the analysis of metabolomic data requires a ro-
bust methodology to expose underlying trends in these 
highly complex and variable data sets.  
 One class of methods, appropriately termed “metabolic 
fingerprinting,” aims to retain much of the promised unbi-
ased, global nature of the metabolomics experiment by dif-
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ferentially analyzing spectral information acquired from 
normal and perturbed systems [29]. Again, a perturbed sys-
tem may result from a disease state, a drug treatment, the 
presence of a pest or parasite, an environmental stimulus 
(pH, temperature, toxin, or nutrient change), a temporal, spa-
tial, or species difference. Metabolic fingerprinting is also 
amenable to high throughput data collection and analysis, 
since global metabolite profiling can be accomplished with 
minimal samples and rapid spectral acquisitions [30]. The 
goal of metabolic fingerprinting experiments is to determine 
the relative differences between the metabolomes of two or 
more systems to infer a biological relationship. Thus, a hall-
mark of metabolic fingerprinting is the use of multivariate 
analysis methods to identify those biologically relevant spec-
tral features for further targeted analyses [1, 23, 31], with 
two of the most popular methods being principal component 
analysis (PCA) [32, 33] and partial least squares projection 
to latent structures (PLS) [34, 35]. In essence, PCA and PLS 
aim to differentiate between classes in highly complex data 
sets, despite within class variability. These multivariate 
analysis methods will be briefly described, along with a dis-
cussion of their application to metabolomics, with an empha-
sis on common errors and misconceptions. 

METABOLOMICS DATASETS 

 The choice of analytical method used for metabolic fin-
gerprinting experiments is limited primarily by its ability to 
reveal metabolic differences due to system perturbations. 
Other desirable features include minimal sample prepara-
tions or requirements, and the ability to analyze the sam-
ples in a high-throughput manner. High-resolution 1H NMR 
spectroscopy is especially suited for probing biofluids, cell 
lysates and tissues with almost no sample treatment and 
without bias [36, 37]. Mass spectrometry is similarly em-
ployed for metabolic fingerprinting and is typically favored 

for its sensitivity in more global metabolic profiling appli-
cations, but generally requires upstream chromatographic 
separations due to the limited molecular-weight diversity of 
metabolites [37-39]. Raman and Fourier-transform infrared 
(FT-IR) spectroscopies have also been successfully utilized 
[31, 40] for metabolomic studies, and capillary electropho-
resis has recently been shown to provide useful data [41, 
42] in fingerprinting experiments. 
 The remarkable diversity of instrumental approaches 
used in metabolic fingerprinting experiments is traceable in 
large part to the flexibility of the multivariate analysis tech-
niques used to analyze the collected data. A data matrix X, 
containing N observation row vectors of K variables each, is 
almost universally common [34, 43, 44], and very few 
mathematical constraints are placed on the values it holds. 
Correspondingly, NMR, MS, FT-IR, or any other source of 
spectral data can be used as input into the data matrix X. 
However, as discussed below, preprocessing of the data ma-
trix is essential to yield interpretable results. This data matrix 
X can be immediately decomposed using unsupervised di-
mensionality reduction methods, such as PCA, or it can be 
paired with a matrix Y of N corresponding M-dimensional 
outputs for use in supervised dimensionality reduction, in the 
case of PLS regression (PLSR) and its descendants. An out-
put may range from a simple class membership designation 
[35] to a range of observables [45], such as patient histories 
(age, sex, weight, etc.). While the same mathematical flexi-
bility also applies to outputs, metabolic fingerprinting data 
typically stores binary (or n-ary) class membership informa-
tion in Y, in which case the applicable supervised methods 
are forms of discriminant analysis (PLS-DA, OPLS-DA). A 
graphical representation of the data (X) and response (Y) 
matrices, along with their PCA/PLS decomposition, is 
shown in Fig. (1). 

 

 

 

 

 

 
 
 
 

Fig. (1). Canonical example of the data (X) and response (Y) matrices and decompositions thereof used by projection-based multivariate 
analysis algorithms. In metabolic fingerprinting applications, the data matrix will contain spectral information on its rows, such that every 
column will represent a single spectral frequency or bin. For supervised projections, each row of data is paired with a corresponding row in 
the response matrix that holds either continuously varying outputs or binary (n-ary) class memberships. The data is then decomposed into a 
small number of score vectors (t) and loading vectors (p), with a corresponding weight vector (w) used to transform rows of X to scores 
space. Responses are similarly decomposed into scores (u) and loadings (c), where t is an effective estimator of u. Adapted with permission 
from reference [35], (Copyright 2001 Elsevier). 
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 Simply, the primary goal of PCA and PLS is to identify 
class differences from a multivariate dataset. A class can 
refer to any biologically relevant classification, such as 
humans treated with a specific diet or drug; or cells ex-
posed to particular environmental stress (temperature, pH, 
osmolality, etc.), or different genetic modification to an 
organism. An NMR, MS, or FT-IR spectrum of a biofluid 
or metabolome extract is an observation: a vector of  K  
variables, where each spectrum represents an individual 
cell culture, tumor or organism. The entire collection of N 
observations forms the data matrix X. PCA and PLS then 
identify a combination of the  K  variables or spectral fea-
tures that defines the class separation. 

 A key characteristic of metabolic fingerprinting datasets 
is an excess of observed variables (K) in comparison to the 
number of observations (N), belonging to the so-called 
‘large K, small N’ class of problems in statistics [46]. This 
feature makes traditional linear regression methods infeasi-
ble, as X is no longer invertible (i.e. it is singular) and no 
unique least-squares solution exists. Consequently, analysis 
of metabolomics data requires the use of multivariate 
analysis methods capable of dealing with significant 
amounts of collinearity in X, of which PCA and PLS are 
prime examples. 

LINEAR TRANSFORMATIONS 

 The ultimate goal of the multivariate dimensionality re-
duction algorithms discussed herein is to find a K-by-P ma-
trix A that optimally transforms the data matrix X into a new 
matrix of P-dimensional scores given by T: 

 T = XA             (1) 

 Thus, each row of T is a transformation of the corre-
sponding row of X. Alternately, expressing the i-th row of X 
as a column vector xi and the corresponding row of T as a 
column vector ti  shows that the so-called ‘weights’ matrix 
AT defines a linear transformation from the input data space 
occupied by X to the output space of T, termed the ‘scores’ 
space: 

  ti = AT xi             (2) 

 In the case where P is less than K, the dimensionality of 
the scores space will be less than that of the input data space 
and the above transformation has achieved dimensionality 
reduction. This is a key characteristic of multivariate analysis 
in metabolic fingerprinting. Finally, the optimal transforma-
tion by matrix A depends on the chosen algorithm, such as 
PCA, PLS, or OPLS. 

PRINCIPAL COMPONENT ANALYSIS 

 Principal component analysis (PCA) is arguably the 
most widely used multivariate analysis method for meta-
bolic fingerprinting and, in fact, chemometrics in general. 
The objective of PCA is to arrive at a linear transformation 
that preserves as much of the variance in the original data 
as possible in the lower dimensionality output data [44]. It 
can be shown [44] that the transformation A that achieves 

this objective is a matrix whose columns are the first P ei-
genvectors of the non-singular portion of the sample co-
variance matrix S: 

   
S =

1
N !1

X T HX = Q"Q!1            (3) 

 Here, H is the N-by-N centering matrix used to center 
each variable about its sample mean. The second equality 
above describes the form of the eigendecomposition of S, 
where Q is the matrix of eigenvectors of S and Λ  is a diago-
nal matrix of the corresponding eigenvalues. When X is left 
unscaled, the eigenvalues in Λ  equal the variances of the 
newly transformed data in T, providing a means to calculate 
the ratio of variance preserved during the transformation 
relative to the original variance: 

  

Ri
2

=
!ii

j=1

N

" S jj

             (4) 

where   Ri
2  is the amount of variance in X preserved in the  

i-th principal component. Given the fact that  !ii  decreases 
monotonically with i, it can be seen that each principal com-
ponent preserves progressively less variance of the original 
data. 

PARTIAL LEAST SQUARES 

 While the unsupervised nature of the PCA algorithm 
provides a means to achieve unbiased dimensionality re-
duction, its application only reveals group structure when 
within-group variation is sufficiently less than between-
group variation. Therefore, supervised forms of discrimi-
nant analysis such as Partial Least Squares (PLS-DA; alter-
natively Partial Least Squares Projections to Latent Struc-
tures [35]) that rely on the class membership of each obser-
vation are also commonly applied in metabolic fingerprint-
ing experiments [35, 47]. When class memberships are 
coded in matrix form into Y [47] and the PLS components 
are constrained to be orthogonal, the dimensionality-
reducing transformation A is a matrix whose columns are 
the first P eigenvectors of a matrix formed by the covari-
ances between X and Y: 

   

S = Sxy Syx =
1

N !1( )
2

X T HYY T HX           (5) 

where H is again the centering matrix and the eigendecom-
position takes an identical form to that shown for PCA. 
Thus, the new ‘latent variables’ formed by this transforma-
tion are linear combinations of original variables that pre-
serve as much covariance between X and Y as possible in the 
first transformed dimensions; simply put, the low-
dimensional scores space is formed predominately by the 
predictive components of X. This casting of PLS-DA as an 
eigendecomposition problem [48] is of course, complemen-
tary to the usual description of the algorithm as an iterative 
regression problem that more closely resembles the roots of 
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PLS regression [34, 35]. However, it provides a means to 
contrast the results of PLS-DA with those of PCA. In fact, 
placing every observation into its own class, effectively set-
ting Y to the identity, yields an identical eigenvector problem 
to that of PCA. 

 It is far more common, however, to find descriptions of 
PLS-DA that do not impose orthogonality of the PLS com-
ponents; these methods require instead that the X scores be 
uncorrelated, closer to traditional PLS regression [35]. The 
popular form of PLS-DA under this condition is then: 

   X = X̂ + E = TPT
+ E            (6) 

   Y = Ŷ + G = UCT
+ G            (7) 

where T and P are the scores and loadings for X, U and C 
are the scores and loadings for Y, and E and G are the re-
sidual errors of X and Y that are left unaccounted for in the 
model. Decomposition is performed such that T and U 
share maximum covariance, in effect allowing T to serve as 
an estimator of U. These equations emphasize the fact that 
PLS finds a small set of scores and loadings – the latent 
structures – which most effectively summarize X and Y as 
well as describe their correlation. Until recently, this tradi-
tional PLS regression method was referred to as Partial 
Least Squares due to its use of Non-linear Iterative Partial 
Least Squares (NIPALS) for estimating model parameters. 
With the introduction of PLS to chemometrics, an alterna-
tive meaning of ‘Projection to Latent Structures’ has also 
been used for the methods of Partial Least Squares regres-
sion [35]. 

ORTHOGONAL PROJECTION TO LATENT STRUC-
TURES 

 The utilization of class memberships in PLS-DA allows 
the algorithm to better expose separations between classes 
in scores space. However, variation not directly correlated 
with Y is still present in the scores. This complicates inter-
pretation of PLS-DA scores and loadings plots, especially 
as the number of classes increases [43]. Orthogonal Projec-
tions to Latent Structures (OPLS) addresses this interpret-
ability problem by incorporating an Orthogonal Signal Cor-
rection (OSC) filter [49-51] into a PLS model, effectively 
separating Y-predictive variation from Y-uncorrelated 
variation in X: 

   X = X̂ + X̂o + E = TPT
+ ToPo

T
+ E          (8) 

where To and Po are the scores and loadings, respectively, for 
the Y-uncorrelated variation identified by the OSC filter. The 
predictive OPLS-DA scores and loadings used to estimate Y 
are then composed of variation directly correlated with Y and 
free of interfering structured variation, yielding enhanced 
interpretability when compared with PLS-DA [43, 52]. Fi-
nally, it is important to note that OPLS-DA provides no pre-
dictive advantage over PLS-DA [53]; in fact, when no Y-
uncorrelated variation exists in X, OPLS-DA will yield an 
identical model to PLS-DA. 

 

METHOD SELECTION 

 In designing experiments for metabolic fingerprinting 
studies, the choice of multivariate analysis method must be 
driven by the data and the experimental goals. For explora-
tory studies where metabolomic differences between ex-
perimental groups may be unknown or unpredictable, initial 
application of PCA provides an informative first look at the 
dataset structure and relationships between groups. Even 
when dataset structure may be predictable, initial use of un-
biased methods like PCA provide further confirmation prior 
to analysis by supervised methods. Ideally, the results of 
PCA analyses would be used to formulate an initial biologi-
cal conclusion, which PLS or OPLS can then verify and test 
in more detail. The principal reason for this is due to the fact 
that separation is only observed between groups in PCA 
scores when within-group variation is significantly less than 
between-group variation in the data, while separation in PLS 
scores may simply be fortuitous. Therefore, PLS classifica-
tion guided by well-separated PCA scores has a greater like-
lihood of producing biologically relevant results. 

DATA PREPROCESSING 

 Pre-treatment of raw spectral data is critical for generat-
ing reliable, interpretable models using multivariate analysis 
techniques. A summarization of the procedures involved for 
preprocessing of metabolic fingerprinting datasets has been 
well described, and efforts have been made to standardize 
the processes [54, 55]. Nevertheless, depending on the in-
strumental technique, the experimenter must adopt certain 
procedures to obtain an optimal model. 

BINNING AND ALIGNMENT 

 As 1H NMR chemical shifts vary at times with a strong 
dependence on temperature, pH, ionic strength, and other 
factors that influence their electronic environment, metabolic 
fingerprinting datasets acquired from NMR spectrometers 
suffer from imprecisions in chemical shifts, and thus in the X 
variables. Therefore, models generated using PCA or PLS-
DA on full-resolution 1H NMR spectra may fail to identify 
separations between classes, and their loadings can be diffi-
cult to interpret due to the over-abundance of variables. 
These complications from chemical shift variations may be 
mitigated by uniformly dividing each spectrum into ‘bins’ 
having typical spectral widths of 0.04 ppm and integrating 
signal intensities within each bin to produce a smaller set of 
variables. A representative example of a binned 1H NMR 
spectrum is given in Fig. (2), showing the appreciable loss of 
resolution typically incurred.  
 The binning procedure not only masks subtle chemical 
shift differences and filters noise in spectra, but it also hides 
potentially significant changes of low-intensity peaks nearby 
strong signals. Additionally, uniform binning incurs the risk 
of splitting peaks or spectral features between bins, recreating 
the imprecision in the X variables that the preprocessing set 
out to correct. “Intelligent” or “adaptive” binning endeavors 
to evade this problem by using variable bin sizes that avoid 
dividing peaks between multiple bins [56-59]. A recent ker-
nel-based method of binning seeks to optimally reduce vari-
able count while retaining spectral information by applying a  
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Fig. (2). Example of the use of binning on a 1H NMR spectrum of a 
rat urine sample, with a bin spectral width of 0.04 ppm. In this ex-
ample, binning reduces the number of data variables from 65,536 to 
312, facilitating multivariate analysis by PCA and PLS-DA. Re-
printed with permission from reference [40], (Copyright 2007 
American Chemical Society). 
 
Gaussian weighting function [57]. Other adaptive binning 
methods rely on a recursive algorithm [56], undecimated 
wavelet transforms [58] or the optimization of an objective 
function using a dynamic programming strategy [59] to iden-
tify bin edges. Regardless of the approach, adaptive binning 
performs significantly better than uniform binning [59]. Alter-
natively, full-resolution spectral signals may be computation-
ally aligned within a dataset to remove chemical shift variabil-
ity, retaining the possibility of avoiding binning and perform-
ing multivariate analysis with less loss of spectral information 
[60-65]. Spectral alignment has been accomplished using a 
variety of approaches that includes fuzzy warping, genetic 
algorithms, a generalized fuzzy Hough transform approach, a 
reduced set mapping (PARS) algorithm, or a recursive segment-
wise peak alignment. Importantly, spectral alignment was 
shown to improve upon the results obtained using adaptive bin-
ning [65]. Sample acidification has also been used prior to data 
collection to force peaks into alignment [66]. Finally, it has been 
demonstrated that OPLS-DA more effectively copes with 
chemical shift variation in full-resolution 1H NMR datasets [67] 
without requiring binning or alignment steps. 
 A similar alignment problem arises in the retention times 
of chromatograms used in GC-MS and LC-MS metabolomics 
experiments, where shifts in observed metabolite retention 
times between samples can obscure true relationships in model 
loadings [68]. The use of correlation optimized warping 
(COW), a specialized form of dynamic time warping (DTW), 

has recently found success in bringing peaks in chroma-
tographic datasets into alignment by means of a dynamic pro-
gramming algorithm [69, 70]. Methods of automated optimal 
parameter selection for COW have also been introduced, re-
ducing the amount of operator intervention required for align-
ing large datasets [71]. Maven [72], MetaboAnalyst [73], 
MZmine [74] and PolyAlign [75] are just a few examples of 
some popular alignment software programs and metabolomics 
work-flow packages that are available. Some recent alterna-
tives to COW approach to peak alignment include model-base 
[76], density maximization [77], fuzzy clustering [78] or 
maximum-likelihood [79]. 

DATA NORMALIZATION 

 To account for variable dilution factors of metabolic fin-
gerprinting samples arising from variations in the number of 
cells, biofluid volume or tissue size, each observation row in 
X may be normalized to ensure that all observations are di-
rectly comparable. Normalization may be accomplished in-
ternally by computational means using internal standards 
(e.g. TMSP in NMR) [80, 81] or externally via measure-
ments of cell culture optical density or protein content. The 
simplest form of internal normalization, called constant-sum 
normalization, is where each spectrum is normalized such 
that its integral is 1. While this accounts for variable dilu-
tions each sample may possess, it can mask truly biologically 
relevant changes and obscure interpretation of loadings [80]. 

DATA SCALING 

 While the discussed forms of multivariate analysis are 
defined based on the covariance eigenstructure of X and Y, 
practical considerations motivate the use of variable scaling 
prior to analysis. From an intuitive standpoint, a linear combi-
nation of observations from different instrumental sources – 
1H NMR and MS, for example – has no physical meaning. 
However, even when all variables bear identical units, highly 
disparate intensities and variances between variables will force 
most forms of multivariate analysis to focus on a small set of 
intense signals [44]. For these reasons, variables may be 
autoscaled to have zero mean and unit variance through a z-
scoring operation [80] that results in PCA and PLS examining 
correlations, rather than covariances, in X and Y. Myriad other 
forms of scaling exist (Table 1), each of which enhance differ-
ent features in the data and carry different disadvantages, 
which may suit every metabolic profiling experiment differ-
ently [82]. Fig. (3) shows the results of applying unit variance 
autoscaling to a set of simulated two-peak NMR spectra. 

NOISE AND BASELINE REMOVAL 

 A principal disadvantage of data scaling is its tendency to 
amplify instrumental noise, to which PCA and PLS have been 
shown to be sensitive [52, 83]. Methods of scaling based on 
Maximum Likelihood PCA (MLPCA) [84] have been used to 
estimate and remove instrumental errors prior to multivariate 
analysis [85]. More simply, domain knowledge may be used 
to preselect variables based on experimental relevance or 
noise criteria for the removal of signal-free baseline noise 
from acquired spectra or the selection of more narrow spectral 
regions [86]. 
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Table 1. Listing of Most Commonly Used Data Scaling Methods in Metabolic Fingerprinting Multivariate Analyses.1 

Method Equation Goal Advantage Disadvantage 

Centering  
  
%xik = xik ! xk  Focus on differences, not similari-

ties 
Removes offset from the data Unsuitable for heteroscedastic 

data 

UV 
 

  
%xik =

xik ! xk
sk

 
Compare metabolites based on 
correlation 

All metabolites equally impor-
tant 

Inflation of measurement errors 

Range 
 

   

%xik =
xik ! xk

xk ,max ! xk ,min
 

Compare metabolites relative to 
biological response range 

All metabolites equally impor-
tant. Biologically related scal-
ing 

Inflation of measurement er-
rors, sensitive to outliers 

Pareto 
 

  

%xik =
xik ! xk

sk
 

Reduce relative importance of 
large values, partially preserve 
data structure 

Stays closer to original meas-
urement than UV 

Sensitive to large fold changes 

Vast 
 

�

Focus on small fluctuations Aims for robustness, uses prior 
group knowledge 

Not suited for large induced 
variation without group struc-
ture 

Level 
 

  
%xik =

xik ! xk
xk

 
Focus on relative response Suited for biomarker identifica-

tion 
Inflation of measurement errors 

1Variable subscripts reflect conventions shown in Fig. (1), with the mean of the k-th variable in X represented by 
 
xk  and its deviation represented by sk, the sample standard deviation. 

Reprinted with permission from reference [82], (Copyright 2006 van den Berg et. al.). 

 

    

 
Fig. (3). Demonstration of the effects of autoscaling to unit variance in simulated 1H NMR spectral data. (A) Set of 40 spectra containing two 
Lorentzian peaks having random intensities, summed with Gaussian baseline noise. (B) Spectra from above with mean-centering. (C) Spectra 
with mean-centering and autoscaling to unit variance, exhibiting amplification of noise in signal-free regions. Adapted with permission from 
reference [80], (Copyright 2006 American Chemical Society). 
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VARIABLE SELECTION 

 Due to the expense of sampling and data collection in 
metabolomics experiments, a tendency exists in metabolic 
fingerprinting studies to retain all collected variables for 
multivariate analysis [86]. Unfortunately, this exacerbates 
the aforementioned collinearity problem and increases the 
likelihood of finding spurious correlations in data, leading to 
a greater chance of inferring incorrect biological conclusions 
[46, 51]. While it is not typically performed during data ex-
ploration, variable selection may be used conservatively in 
concert with domain knowledge to select only biologically 
meaningful regions of datasets for classification or dimen-
sionality reduction. 1H NMR datasets, for instance, may con-
tain highly varying signals from solvents, buffers and chemi-
cal shift reference compounds, as well as large signal-free 
noise regions. These features may obscure biologically rele-
vant variation and are good candidates for variable selec-
tion/removal. Structured noise (baseline issues, contami-
nants) negatively affects the correspondence between scores 
and loadings and hinders the correct interpretation of PLS 
results [87]. OPLS can separate out this structured noise, but 
often at the expense of an overly complex model [88]. There 
are significantly more variables (K) than observations (N) in 
a typical metabolomics dataset, so removing irrelevant vari-
ables is beneficial to the multivariate analysis. A more ex-
haustive variable selection approach applies a pretreatment 
based on orthogonal projections [89] or a recursive algorithm 
[90-92], support vector machine, genetic algorithm or ran-
dom forest, to select for variables or spectral features primar-
ily contributing to class separation. This is particularly perti-
nent to MS metabolomics data that may contain a very large 
number of variables, of which only a small percentage is 
relevant. Importantly, either the complete absence of variable 
selection or an overly aggressive variable selection may lead 
to inadequate separation or over-fitting of the dataset, respec-
tively [92, 93]. 

INTERPRETATION 

 Interpretation of multivariate analysis results of meta-
bolic fingerprinting data for the purposes of inferring bio-
logical importance must be done with care, bearing in mind 
the nature and goal of the algorithm used. Scatter plots of 
scores and loadings are no exception, particularly since dif-
ferent axis scaling can produce misleading results [86, 94]. 
As an illustration, an observed difference in a scores plot 
comparing spectral data obtained from healthy and ill pa-
tients may imply the existence of potential disease biomark-
ers. Thus, it is imperative to verify that this variation is due 
to an underlying biological source instead of artifacts in-
duced by the algorithm, sample handling or data processing.  

SCORES 

 Scores produced by PCA and PLS are the observation 
rows of X projected onto a hyperplane within the data that 
describes the covariances of X, or the covariances between X 
and Y, respectively. In a nutshell, scores are good ‘summa-
ries’ of the observations [35]. Because fewer predictive 
components are required to yield discrimination in OPLS-

DA, two-class scores plots are commonly built from one 
predictive component and one orthogonal component. For 
PCA, class separations in scores are exposed only when 
within-class variation is less than between-class variation. 
Because of this, misleading class separation in a PCA scores 
plot is not a function of the algorithm, but occurs from sam-
ple preparation problems [95], experimental bias [96], or 
inappropriate data preprocessing [82]. Contrary to PCA, PLS 
and OPLS aggressively over-fit models to the data, almost 
always yielding scores in which classes are separated [88]. 
As a result, PLS and OPLS can generate excellent class sepa-
ration even with random data Fig. (4) [86]. Thus, extreme 
care must be taken not to infer model reliability from the 
existence of class separations in PLS or OPLS scores. In 
effect, the use of PLS or OPLS models necessitates valida-
tion [97]. 

 

 
Fig. (4). Scores from the PLS-DA discrimination of 1H NMR spec-
tra from 23 healthy volunteers, where class labels have been ran-
domly assigned. Internal cross-validation produces a Q2 of -0.18, 
clearly well below acceptable limits. Nevertheless, the scores plot 
displays a clear separation between classes that could lead the inex-
perienced practitioner to wholly false biological conclusions. Re-
printed with permission from reference [88], (Copyright 2008 
Westerhuis et. al.). 
 

 For PCA and validated PLS scores, quantitative measures 
must be applied to reliably infer significant separations be-
tween classes within a scores plot [98]. Simply, a visual in-
spection of the clustering pattern or class separation in a 
scores plot is not typically sufficient to infer statistical rele-
vance. Methods using cluster overlap metrics [99], statistical 
distances [98], and hierarchical clustering [100, 101] have 
been successfully used to quantify separations in scores 
plots. Also, class membership may be inferred from 95% 
confidence ellipses calculated from scores [101]. 

LOADINGS 

 Loadings from PCA and (O)PLS are the directions of 
the hyperplane mentioned above with respect to the origi-
nal X variables, and function as good ‘summaries’ of the 
variables’ influence on the model. Due to the complemen-

views, 2013, Vol. 9, No. 1 
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tary nature of scores and loadings as explanations of the 
rows and columns of X, respectively, the two may be used 
in concert. Variables whose loadings are co-located away 
from the origin in a loadings plot may be inferred to be 
correlated. Moreover, variables with loadings in a given 
position in a loadings plot contribute heavily to observa-
tions whose scores are found in a similar position in a 
scores plot. This requires proper normalization such that 
the scores and loadings are on the same scale, where the 
loadings closest to the scores are expected to have the 
highest contribution to class separation. The ease of inter-
pretation of loadings is directly affected by the number of 
variables and the scaling method used, if any [82]. As indi-
cated by (Table 1), scaling protocols emphasize different 
spectral features which will then perturb the influence of a 
particular variable on the model. In turn, the magnitude of 
the corresponding loadings will be proportionally affected. 
As an example, Pareto scaling is commonly used to reduce 
the influence of intense peaks while emphasizing weaker 
peaks that may have more biological relevance. The corre-
sponding loadings of intense peaks will be reduced and 
loadings from weak peaks will be increased due to Pareto 
scaling.  
 Loadings may also be examined on a per-component 
basis as a line plot, with the loading value plotted as de-
pendent upon the spectral variables (ppm, m/z, v). This is 
especially valuable when full-resolution spectra are used as 
data. In this form, the loadings of each model component 
may be viewed as a spectrum or pseudo-spectrum, with 
large positive or negative excursions of a variable’s loading 
corresponding to a large positive or negative correlation 
with class structure, respectively. With full-resolution spec-
tra and OPLS-DA models, this method of interpreting load-
ings is highly useful for identifying metabolites contribut-
ing to class differences [67, 102]. Pareto scaling has an 
added advantage in this context, as it better preserves spec-
tral lineshapes in loading pseudo-spectra. Of course, large 
loadings corresponding to irrelevant spectral regions such 
as noise, artifacts, buffers, or solvent peaks, raise serious 
concerns about the biological relevance of the model.  

WEIGHTS 

 The weights produced in A by multivariate analysis are 
the relative degrees of influence that each observed variable 
in X has on each of the latent structures in the model, and are 
used to transform new observation vectors from later meas-
urements into scores space for the purposes of class predic-
tion. A common misconception is misrepresenting loadings 
as weights for the purpose of identifying variable or metabo-
lite contribution to class separation.  

VALIDATION 

 PLS and OPLS have an innate tendency to over-fit 
models to data, even identifying excellent class separation 
in completely random variables as demonstrated in Fig. (4) 
[88]. For PLS and OPLS, validation is a critical step in en-
suring model reliability. Truly honest model validation re-
quires partitioning the data into a training set used to build  
 

a model and a validation set used to assess predictive abil-
ity of the model, where the validation set is in no way used 
to generate the trained model [103, 104]. Few practitioners 
have adopted this method of validation because of the low 
sample count in metabolic fingerprinting experiments and 
the costly nature of sample preparation and data acquisi-
tion. Instead, internal cross-validation is routinely em-
ployed, where the leave-one-out method is a common 
choice [105]. However, it has been demonstrated that 
leave-one-out internal cross-validation should be aban-
doned [106-108] in favor of the more consistent leave-n-
out method.  

 In the leave-n-out method, the data is partitioned into  N-
choose-n  subsets, where each of the subsets is then used as a 
validation set [109, 110]. As true leave-n-out cross-
validation is computationally inefficient, Monte Carlo cross-
validation may be utilized to rapidly estimate model predic-
tion ability [111, 112]. The quality assessment (  Q

2 ) statistic 
is typically reported as a result of cross-validation and pro-
vides a qualitative measure of consistency between the pre-
dicted and original data. Even still,   Q

2  has no standard of 
comparison or critical value for inferring significance, aside 
from its theoretical maximum of 1 or an empirically inferred 
acceptable value of ≥ 0.4 for a biological model [88]. Unfor-
tunately, an invalid or irrelevant model is still capable of 
producing a large   Q

2  value, since consistent cross-validation 
requires a systematic deletion of large portions of its dataset 
during training. One solution recently demonstrated for me-
tabolomics combines random permutation of class labels, 
which requires no deletion of data, with internal leave-n-out 
cross-validation [88]. The approach produces a distribution 
of   Q

2  values suitable for testing the null hypothesis for a 
model’s Q2. In essence, a reliable model should yield a sig-
nificantly larger   Q

2  value compared to   Q
2  values generated 

from random models using the same data set. The technique 
is also valid for testing null hypotheses for the area under 
Receiver Operating Characteristic (ROC) curves (AUROC) 
statistic and misclassification count. Another method, the 
CV-ANOVA, uses the cross-validated predictive residuals of 
a model as a basis for hypothesis testing [97]. 

 Also, while they are not strictly a cross validation meas-
ure, the   R2  values of a given model may be used to assess its 
degree of fit to the data [35, 44]. PCA decompositions will 
return only   R2 X , the degree to which the principal compo-
nents describe the observation data, and PLS decompositions 
will return both   R2 X  and R2Y. Due to its division of X into 

  X̂  and   X̂o , OPLS splits   R2 X  into 
  
R2 X p  and   R

2 Xo , the 

explained sum of squares of the Y-predictive and Y-
uncorrelated components of X, respectively. Highly disparate 

  R2  and   Q
2  values (i.e. R2 >>Q2) are an indicator of possible 

model over-fitting in supervised analyses. 
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APPLICATIONS 

Raman and NMR Fingerprinting of Rat Urine 

 The application of Raman spectroscopy to the study of 
metabolite fingerprints has occurred only relatively recently 
compared with the more mature NMR and MS techniques 
[31]. A comparative analysis demonstrates Raman spectros-
copy offers complementary spectral information to NMR 
[40]. In the study, three groups of rats were orally fed differ-
ent triazole fungicides, and a fourth group was fed only the 
drug carrier vehicle as a control. After five days of exposure, 
urine was collected from the rats and subjected to both 1H 
NMR and Raman spectroscopy. NMR spectra were acquired 
on a Varian Inova 800 spectrometer with a spectral width of 
12.5 ppm over 64k data points using a standard 1D pre-
saturation pulse sequence. Peaks corresponding to the sol-
vent, urea and carrier vehicle were removed from the spectra, 
which were then truncated to 0.5 – 9.5 ppm extents and inte-
grated into 0.04 ppm-wide bins. The NMR bins were then 
mean-centered and Pareto scaled [82] prior to PCA. 
 While collection and PCA of Raman spectra was per-
formed in similar fashion to the NMR data, several marked 
differences exist. First, samples for Raman analysis were 
subjected to ultrafiltration to remove fluorescent biomacro-
molecules having molecular weights greater than 500 Da. 
While the filtration step reduced biologically irrelevant 
chemical noise in the collected spectra, the authors noted that 
the tricarboxylates citrate, trans-aconintate, and oxoglutarate 
were significantly removed in the process. Raman spectra 
were then collected with 785 nm laser excitation at ~5 cm-1 
resolution between ~3280 – 95 cm-1. Unlike the collected 
NMR spectra, Raman peaks showed no significant pH-

dependent variation, permitting the full spectral resolution to 
be used in PCA without binning or alignment. Spectra of 
urea and sodium azide were subtracted from each spectrum, 
which were then truncated to 1705 – 467 cm-1, mean-
subtracted, normalized to constant AUC and submitted to 
PCA and PLS-DA. 
 Fig. (5) shows a comparison of the PCA scores produced 
by the collected NMR and Raman datasets. From the scores, 
it can be seen that the within-class variation of the Raman 
spectra is noticeably lower than that of the NMR spectra, 
effectively showing a better separation for the collected 
samples. However, due to the low number of spectra col-
lected for each experimental class, it is difficult to judge 
class separations on a statistical basis. The authors note that 
PCA captured a greater percentage variance of the Raman 
spectra than the NMR spectra, suggesting better perform-
ance. This use of captured variance is incorrect, however, as 
captured variance is a relative measure that only describes 
model performance for any given dataset and not between 
different datasets. 
 Finally, two-class PLS-DA was used to find loadings in 
the Raman spectra that discriminated between each fungicide 
treatment and the control. Significant changes in the loadings 
were found to coincide with transitions of the metabolites 
allantoin, creatine, alanine, taurine, acetate and hippurate. 
However, no measures of validation were provided to lend 
statistical credence to the observed metabolite changes. The 
class distinction present in the PCA scores plot does suggest 
the same class separation in the PLS-DA is likely correct. 
But, the PLS-DA model could still be over-fitted to the data, 
leading to an invalid model and incorrect loadings. As a re-

 
Fig. (5). Scores from PCA decomposition of (A) 1H NMR and (B) Raman spectra of rat urine metabolites, demonstrating the use of PCA to 
compare within- and between-group variation datasets from complementary instrumental sources. In this example, the captured variances on 
each plot reflect the relative effectiveness of PCA to approximate the input data, and may not be used as a standard of comparison. Reprinted 
with permission from reference [40], (Copyright 2007 American Chemical Society). 
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sult, the identified metabolites could be biologically irrele-
vant. This is not necessarily true, but it is plausible outcome 
in the absence of a validated PLS-DA model. Nevertheless, 
the study does provide an illustrative proof-of-principle for 
Raman spectroscopy-based metabolic fingerprinting which, 
with further tuning, promises to be a useful instrumental 
platform for metabolomics. 

Discrimination of French Labeled Brandies 

 While the metabolite profiles of many brandies were pre-
viously known, marker metabolites that could be used to 
discriminate between different types of brandy were not 
identified. Such metabolites could be used in determination 
of the origin and authenticity of French labeled brandies. To 
that end, gas chromatography mass spectrometry (GC-MS) 
analyses of Cognac, Armagnac, Calvados and Mirabelle 
were analyzed and subjected to PLS-DA [113]. Ethyl unde-
canoate and 4-methylpentan-2-ol were added to the brandy 
samples for use as internal standards, and two liquid-liquid 
extractions were used to isolate the volatile organic mole-
cules from the samples. 
 Peaks in the collected GC-MS spectra having a signal-to-
noise greater than 10 were linked with compounds using 
database searches based on electron impact spectra and re-
tention indices; the resulting intensities of all compounds 
were then normalized to the internal standards. The data ma-
trix was then generated using the calculated relative com-
pound concentrations, which were mean-centered and 
autoscaled to unit variance prior to PLS-DA. This particular 
study highlights the flexibility of multivariate analysis meth-
ods to accept any type of variable, not only raw spectral in-
formation, for modeling purposes in metabolomics. 

 Fig. (6) shows the variable loadings from PLS-DA plot-
ted for the two discriminatory components found in the GC-
MS dataset. The authors understandably described the load-
ings as weights in the manuscript, a confusing description 

exacerbated by the SIMCA (UMETRICS) nomenclature for 
PLS loadings (   w

*c[n] ). Unfortunately, the SIMCA loadings 
nomenclature appears startlingly similar to the PLS regres-
sion coefficients [35], the product of X-weights and Y-
weights, and not the loadings. However, in PLS loading plots 
of this type, the X-weights ( w* ) and Y-weights (c) are sim-
ply plotted together – not multiplied – in order to expose the 
correlation structure between X and Y. The loadings for each 
type of brandy in scores space were printed on the loadings 
plot to aid in identifying compounds that contribute most to 
the discrimination between each of the beverage types. Im-
portantly, loadings must be non-zero along any principal 
component axis to have any contribution to the model. 

 Each loading is correlated to a particular X-variable, in 
this case the molecular-weight of a particular metabolite. 
Thus, the loadings strongly correlated with scores for each 
type of brandy identify metabolites that may uniquely de-
scribe or characterize that particular brandy. While the vola-
tile compound identification and quantification procedure 
resulted in a great wealth of useful information, no validation 
statistics were provided to justify the discriminatory com-
pounds selected from the PLS-DA loadings. Again, the lack 
of appropriate validation is a common problem among the 
metabolomics community. 

Correlations of Human Gut Microbiome with Urine Me-
tabolites 

 Studies have shown that the microbiome – the sum total 
of all microbial organisms – of the human gastrointestinal 
tract has a great impact on individual metabolite profiles, 
even when genetic variations are minimized [114]. Changes 
in the symbiotic gut microbes correlate with phenotypic 
variations observed between gender and across ethnicities, 
and are implicated in many forms of human pathology. Re-

 
Fig. (6). PLS-DA loadings for volatile compound composition of French labeled brandies. Clustering patterns of variables reveal relevance 
of those X variables to the responses in Y. The Y-weights for each type of brandy are labeled and represented as squares, and the X-weights 
are represented as numbered triangles. Variable numbers relate to volatile compounds identified by GC-MS analysis, with the identity and 
amount of each compound may be found in reference [113]. Reprinted with permission from reference [113], (Copyright 2010 American 
Chemical Society). 
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cent work based on the gut microbiomes and urine metabolic 
fingerprints of Chinese family members has shed light onto 
correlations between gut flora and phenotype [45]. 

 In the study by Li et al., selected portions of the bacterial 
genomes of family members’ gut microbiota were subjected 
to denaturing gradient gel electrophoresis (DGGE), and urine 
samples were also collected from each family member and 
analyzed by 1H NMR spectroscopy. OPLS-DA was used to 
identify gender-predictive components of the DGGE gels 
and NMR spectra. The   Q

2  value of each variable obtained 
by five-fold internal cross-validation was used to identify 
statistically reliable loadings in the OPLS-DA models. Spe-
cies of Clostridia, Bacteroidetes and Proteobacteria were 
found to be predictive of gender based on DGGE gels, and 3-
aminoisobutyrate and creatine were found to predict gender 
from the NMR spectra. 

 A cross-correlation analysis was also performed to model 
the DGGE gel bands using NMR spectral data, and vice 
versa, using OPLS regression. Again, five-fold internal 
cross-validation was performed to ensure model reliability, 
and the predictions of NMR peaks and DGGE bands made 
by the model were color-coded according to   Q

2  to facilitate 
rapid identification of significant correlations. A correlation 
matrix was also constructed to show peaks in the collected 
NMR spectra that co-varied with bands in the DGGE gel. 

Fig. (7) summarizes the results of the cross-correlation 
analysis. This study highlights a powerful use of OPLS, both 
in discrimination and regression applications, as well as the 
use of cross-validation statistics. 

Analysis of Bacterial Metabolic Signaling of Stress Re-
sponse 

 It has been shown that the stress response of prokaryotic 
organisms contains a metabolic sensing component, centered 
around the tricarboxylic acid (TCA) cycle and sensed by 
catabolite control protein A (CcpA), that effects downstream 
signaling networks involved in virulence factor presentation 
and biofilm formation [115]. Metabolic fingerprinting using 
1H NMR spectroscopy was conducted to further examine the 
effects of external biofilm-inducing perturbations on the me-
tabolome of Staphylococcus epidermidis [116]. Metabolite 
mixtures were collected from wild-type cells, as well as cells 
exposed to sodium chloride, glucose, tetracycline, ethanol, 
iron-depleted media, and an aconitase deletion mutation. 

 PCA analysis of the NMR spectra revealed that the so-
dium chloride-treated cells grouped with the wild-type in 
scores space. All other observations on treated cells group 
together in scores space except for glucose treatment, which 
clustered separately from all observations. The separations 
between classes in the PCA scores were used to define two 
classes for a subsequent OPLS-DA analysis, with wild-type 

 
Fig. (7). Cross-correlation analysis between the DGGE gel in (A) and collected 1H NMR spectra of urine metabolites. (B) Prediction of 
DGGE bands using NMR spectra. (C) Correlation matrix relating the aromatic region of collected NMR spectra to DGGE bands. Red indi-
cates positive correlation greater than 0.7 and blue indicates negative correlation of the same magnitude or greater. (D) Prediction of the 

NMR spectral aromatic region based on DGGE data. Both predictions from OPLS regression are colored according to   Q
2  obtained from 

cross-validation. Reprinted with permission from reference [45], (Copyright 2008 National Academy of Sciences of the USA). 
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and salt-treated cells discriminated from all other observa-
tions. Fig. (8) shows the OPLS scores plot and dendrogram 
resulting from decomposition into one Y-predictive compo-
nent and three Y-uncorrelated components. In the OPLS 
model, the explained sum of squares for X and Y were found 
to be 0.637 and 0.966, respectively. It is important to note 
that the reported   R2 X  of 0.637 includes Y-uncorrelated 
variation, and is therefore not a measure of modeled predic-
tive variation. Leave-n-out internal cross-validation resulted 
in a   Q

2  value of 0.941, an acceptable value in light of the 

models   R2Y , but by no means conclusive. While it was not 
performed for the publication, a subsequent validation using 
CV-ANOVA provided a p-value of 0.0 – to within machine 
precision [117] – for the OPLS model. 

Future Directions 

 Multivariate analysis of metabolic fingerprinting datasets 
is performed most often with the linear projection-based 
methods of PCA, PLS and OPLS, but these are by no means 
the only tools available. Hierarchical clustering analysis 
(HCA) and nearest-neighbor clustering may be applied to 
multivariate spectral data to reveal differences between 
classes without supervision. Support-vector machine (SVM) 
methods [118] have been applied to human urine me-
tabolomics NMR [119], NIR and UV datasets [120] with 
enhanced predictive power over PLS-DA. Artificial neural 
networks (ANN) have also been used in combination with 
PCA for plant metabolic profiling and fingerprinting [121, 
122]. In contrast to pure PCA and PLS, which model linear 
relationships, both SVM and ANN algorithms admit the use 
of a kernel function to allow for modeling of non-linear rela-
tionships between X and Y. However, none of these methods 
provide quite the interpretative simplicity of projective ‘la-
tent-space’ methods such as PCA and PLS. The metabolom-
ics community is accustomed to drawing conclusions from 

PCA and PLS results, but these new methods with their un-
familiar analysis formats require further acclimation. 
 Finally, the majority of multivariate analysis techniques 
used in metabolic fingerprinting are designed for ‘snapshot’ 
datasets, where the state of a system is observed at one or 
two highly distinct time points. However, as instrumental 
methods improve to accommodate measurement of highly 
time-resolved metabolite concentration changes, methods of 
multivariate analysis must be developed to cope with the 
new information [123]. Multi-way data analysis methods 
such as Parallel Factor Analysis (PARAFAC [124]), consen-
sus PCA (CPCA) and multi-block PLS are all suited to par-
ticular types of multi-way datasets [125]. Somewhat similar 
in form to time-resolved metabolomic datasets are those pro-
duced by the fusion of data from orthogonal or complemen-
tary instrumentation. For example, 1H NMR and LC-MS 
data matrices have been combined by multiple means to 
achieve improved PCA and PLS models [126]. GC-MS and 
LC-MS datasets [127], as well as near-IR and mid-IR spec-
tral datasets [128] have been similarly fused for the purposes 
of multivariate analysis. 

CONCLUDING REMARKS 

 Techniques such as PCA and PLS provide an essential 
platform for rapid interpretation of information-rich spectral 
datasets for inferring biological conclusions. Through proper 
application of preprocessing transformations, optimal choice 
of analysis algorithms, and judicious application of valida-
tion metrics, MVA can lend a powerful hand in the biologi-
cal understanding and exploration of complex, multiparamet-
ric metabolic systems. Unfortunately, misunderstandings and 
the misuse of MVA can lead to misleading or erroneous bio-
logical inferences. The few examples highlighted in this re-
view are just a sampling of the large number of metabolom-
ics studies with similar problems. Additionally, metabolom-
ics has many data challenges left to be solved, and machine 
learning chemometrics methods have much to offer me-
tabolomics. 

 
Fig. (8). Results of OPLS-DA modeling of the metabolomic effects of six different stressors on S. epidermidis. (A) OPLS scores of all ex-
perimental groups, showing the high observation counts for each group necessary for statistical treatment of scores. Ellipses around each 
group the 95% confidence regions of the groups under the assumption of normally distributed data. (B) Dendrogram built from OPLS scores-
space data using Euclidean distances between the sample means of each group. Within-group substructure that was not forced during class 
discrimination is evident in the dendrogram. Group name colors in (B) correspond to scores colors in (A). Reprinted with permission from 
reference [116], (Copyright 2011 American Chemical Society). 
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