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Metabolic fingerprinting studies rely on interpretations drawn from low-dimensional representations of
spectral data generated by methods of multivariate analysis such as principal components analysis and
projection to latent structures discriminant analysis. The growth of metabolic fingerprinting and chemo-
metric analyses involving these low-dimensional scores plots necessitates the use of quantitative statis-
tical measures to describe significant differences between experimental groups. Our updated version of
the PCAtoTree software provides methods to reliably visualize and quantify separations in scores plots
through dendrograms employing both nonparametric and parametric hypothesis testing to assess node
significance, as well as scores plots identifying 95% confidence ellipsoids for all experimental groups.

� 2012 Elsevier Inc. All rights reserved.
A trademark of metabolomics experiments—more specifically found within the data, termed the ‘‘principal axes’’, onto which

metabolic fingerprinting and nontargeted metabolic profiling stud-
ies—is the use of multivariate analysis techniques, most commonly
principal components analysis (PCA) and projection to latent struc-
tures discriminant analysis (PLS-DA) [1,2]. While these techniques
provide low-dimensional representations of complex datasets
through visually interpretable scores plots, the task of inferring
biologically relevant conclusions from scores plots has been largely
based on subjective examinations by expert users. Correspond-
ingly, the continued growth in metabolomics and the associated
application of chemometric analysis have created a strong need
for a quantitative means to justify conclusions drawn from these
scores plots. Toward this goal, we recently described the applica-
tion of our PCAtoTree software to generate metabolic tree dia-
grams from scores plots and the use of standard bootstrapping
techniques to infer the statistical significance of each resulting tree
node [3]. This note presents a new set of portable software tools
that enhance and improve upon our original methodology. Our up-
dated version of the PCAtoTree software provides quantification of
scores–space separation using both nonparametric bootstrapping
and multivariate Hotelling’s T2 hypothesis testing to generate eas-
ily interpretable dendrograms of differences between experimen-
tal groups. Notably, the new software is now stand-alone and no
longer dependent on PHYLIP (http://www.phylip.com/) [4].

Scores plots generated from unsupervised PCA or supervised
PLS-DA methods provide visualizable representations of informa-
tion-rich spectral data by means of dimensionality reduction. In
the case of PCA, orthogonal lines of maximum gross variation are
ll rights reserved.
the input data are transformed [5]. This operation preserves as
much original gross variation as possible in the first few trans-
formed dimensions and reveals separations between experimental
groups only when within-group variability is sufficiently less than
between-group variability. Alternatively, PLS-DA is a supervised
method that guides this transformation informed by between-
group variability to better reveal group structure [6,7]. In any case,
the resultant two- or three-dimensional scores plot is used to iden-
tify spectral features contributing to between-group variability
based on separations observed between groups in the scores plot.

The importance placed on interpretation of PCA and PLS-DA
scores plots necessitates the use of quantitative procedures to
determine the significance of these group separations. However,
no de facto protocol or metric exists to provide a means of report-
ing the degree or significance of cluster separation [3,8,9]. Ander-
son et al. used the J2 criterion [10,11] to assess the quality of
resulting scores clusters according to the average within-group
and between-group scatters for all groups. However, the J2 metric
provides only an overall estimation of cluster separation without
fine-grained information on each pair of groups [11]. A similar
problem exists with the related Davies–Bouldin index [12], which
chooses a worst-case estimate of cluster overlap as its figure of
merit. Dixon et al. [13] also comprehensively reported the perfor-
mances of four cluster separation indices based on modifications
of metrics used to validate separation for unsupervised clustering
algorithms. Alternatively, our PCAtoTree protocol constructs
dendrograms from distance matrices based on PCA scores for the
PHYLIP software suite using a bootstrapping routine to determine
node significance [3,4]. However, it was recently shown that
hypothesis testing using a Mahalanobis distance metric and the
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T2 and F distributions can provide a statistical means to infer clus-
ter similarity [8], suggesting the possibility of returning p values
for full statistical quantitation of PCA group separations.

Methods

The methods described below were implemented in software
using the C programming language with minimal external depen-
dencies, so the programs may be compiled and executed on any
modern GNU/Linux distribution.

Probability calculation

Under the assumption that each group in the scores space is dis-
tributed as a multivariate normal random variable, the distances
between groups may be calculated using the squared Mahalanobis
distance metric [14],

D2
M ¼ ðuj � uiÞT S�1

p ðuj � uiÞ:

Here, ui and uj are the p-variate sample means of groups i and j,
respectively, and Sp is the pooled p-by-p variance–covariance ma-
trix, a weighted average of the covariance matrices from groups i
and j. The Mahalanobis distance may then be related to a Hotell-
ing’s T2 statistic by the scaling [15].

T2 ¼ ninj

ni þ nj

� �
D2

M;

where ni and nj are the number of data points in groups i and j,
respectively. This T2 statistic is an extension of the Student t statis-
tic to hypothesis tests in multiple dimensions and can be related to
an F distribution by a final scaling [15]:

xF ¼
ni þ nj � p� 1
pðni þ nj � 2Þ T2 � Fðp; ni þ nj � p� 1Þ:

It can be seen from this final relation that evaluation of the com-
plement of the cumulative F-distribution function at xF yields the p
value for accepting the null hypothesis: the points in groups i and j
are in fact drawn from the same multivariate normal distribution.

Tree generation

The implementation of the tree-generation procedure is a classi-
cal UPGMA algorithm [16]. When p values are reported at each
branch point, a single tree is generated based on the matrix of
Mahalanobis distances between groups. In the case of bootstrapped
trees, the groups are randomly resampled with replacement while
preserving group size. The desired number of trees is then gener-
ated using Euclidean distances between group means. The final tree
used to report bootstrap probabilities is built using a Euclidean dis-
tance matrix calculated from the original (non-resampled) dataset.

Confidence ellipse calculation

When viewing PCA and PLS-DA scores plots, it is common prac-
tice to apply hand-drawn ellipses to inform group membership or
even to omit such ellipses entirely. This may lead to inconsistent or
erroneous interpretation of experimental results. Instead, the fact
that the Mahalanobis distances of a set of p-variate points from
their sample mean follow a v2 distribution having p degrees of
freedom [17] may be leveraged to estimate 95% confidence ellip-
soids for scores in any number of dimensions. The sample mean
u and covariance matrix S for each group must first be calculated
from its scores space data. Then, the group covariance matrix is
decomposed into its eigenvalues and eigenvectors,

S ¼ QKQ�1;

where Q is a p-by-p matrix whose columns are the eigenvectors of S,
and K is a diagonal matrix of the corresponding eigenvalues of S.
For the case of two-dimensional scores data, the 95% confidence el-
lipse for the group follows,

xðtÞ
yðtÞ

� �
¼ uþ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KF�1

0:95;2

q cos t

sin t

� �
;

where F�1
0:95;2 is the value of the inverse v2 cumulative distribution

function at a = 0.05 and 2 degrees of freedom, and the square root
is taken element-wise over K. Similarly, a three-dimensional (3D)
confidence ellipsoid may be obtained from the parametric equation

xðu; vÞ
yðu;vÞ
zðu; vÞ

2
64

3
75 ¼ uþ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KF�1

0:95;3

q cos u cos v
cos u sin v

sin v

2
64

3
75;

where the parameters t, u, and v are all evaluated on (0,2p). These
methods allow for the inclusion of confidence regions onto two-
and three-dimensional scores plots that reflect the 95% membership
boundaries for each group. The approach assumes normally distrib-
uted data. The approach assumes normally distributed data. Fig. 1(a)
and Supplemenal Fig. S1 illustrate the inclusion of these group con-
fidence regions in representative PCA and OPLS-DA scores plots
[18,19]. The ellipses and ellipsoids clearly define statistically signif-
icant class separation and also provide an example in which multiple
groups actually belong to the same biological classification.

Discussion

Our updated and enhanced PCAtoTree software package consists
of a set of stand-alone C programs that generate dendrograms from
PCA/PLS-DA scores, report p values and bootstrap numbers, and
incorporate confidence ellipse/ellipsoids into scores plots. The p val-
ues reported for every pair of distinct groups in a PCA/PLS-DA scores
plot provide a truly quantitative means to discuss group separa-
tions. We also included support for the generation of dendrograms
that use these p values at each branch point to address the question
of tree uniqueness. This eliminated the prior dependency on PHYLIP
[4]. The reporting of p values is complementary to bootstrapping
methods in cases of highly overlapped groups, in that it provides a
more direct, interpretable quantitation of group separation.

The PCAtoTree software package now uses Mahalanobis dis-
tances because this metric is more appropriate for multivariate
data. De Maesschalck et al. [20] provide an exceptional introduc-
tion to the use of Mahalanobis distances with PCA. Specifically,
Mahalanobis distances account for different variances in each
direction (PC1, PC2, PC3) and are scale-invariant. Moreover, the
use of a Mahalanobis distance metric for dendrogram generation
includes cluster shape and orientation in the analysis of group sep-
aration. Also, Mahalanobis distances calculated between groups in
PCA scores space will closely approximate those calculated on the
original data while avoiding possible collinearity of the original
variables. This is not true of Mahalanobis distances in PLS-DA
scores space, because of the underlying supervision of PLS. These
features differ from the Euclidean metric, which is a special case
of the Mahalanobis metric with the group covariance matrices
equaling the identity. Fig. 1(b) illustrates the dendrogram structure
based on the use of Mahalanobis distances determined a set of
scores. Supplemental Fig. S2 shows the dendrogram structure
based on Euclidean distances from the same scores.

It is important to note that our software is not a means of infer-
ring the reliability of PCA or PLS-DA models, but only a toolset for
quantifying the scores that those models produce. In the case of
PCA scores, significance of the principal components used must
be inferred based on the explained sum of squares or another
cross-validation technique [21,22]. PLS-DA models require rigorous
cross-validation to ensure model reliability, as they almost always
yield perfect separations between the scores of different groups
[23]. With that in mind, separations between groups not under



Fig.1. (a) 2D OPLS-DA scores plot illustrating 95% confidence ellipses for data having one predictive and one orthogonal PLS component. The symbol shape and color of each
point correspond to the groups in (b). Discrimination in the first component is between wild-type and antibiotic-treated Mycobacterium smegmatis, and separations along the
second component indicate metabolic differences between various antibiotic treatments. The antibiotics cluster together based on a shared biological target (cell wall
synthesis, mycolic acid biosynthesis, or transcription, translation and DNA supercoiling). Three compounds of unknown in vivo activity were shown to clustered together with
inhibitors of cell wall synthesis, implying a potential biological target. Interestingly, the M. smegmatis strain is resistant to ampicillin resulting in the ampicillin-treated cells
clustering closer to untreated cells. The ellipses define the statistical significance of class separation and provide an illustration where two groups actually belong to the same
biological classification. (b) Dendrogram generated from scores in (a) using Mahalanobis distances, with p values for the null hypothesis reported at each branch.
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discrimination may be due to true experimental differences in
PLS-DA scores plots, as opposed to the forced separations between
discriminated groups. Thus, interpretation of the results of our
PCAtoTree software must be done with the knowledge of the under-
lying algorithm’s mathematical intent and only after the model has
been validated. While we demonstrated our software using only 2D
and 3D scores plots, our software places no restrictions on the
number of components or on which components are used during
dendrogram generation and p value calculation. Any dimensional-
ity or choice of scores may be used with our PCAtoTree software
provided all components are suitably validated.

Our updated and enhanced PCAtoTree software package pro-
vides a novel means of quantifying and visualizing separation sig-
nificance in PCA and PLS-DA scores plots. Importantly, our new
software enables single-step methodologies for generating infor-
mative scores plots and dendrograms of experimental groups in
any study utilizing PCA or PLS-DA to elucidate group structure in
complex datasets, including metabolic fingerprinting and nontar-
geted metabolic profiling. The tools are distributed under version
3.0 of the GNU General Public License and are freely available at
http://bionmr.unl.edu/pca-utils.php.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ab.2012.10.011.
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