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Abstract: Detecting a small molecular-weight compound by electrospray ionization mass spectrometry (ESI-MS) 

requires the compound to obtain a charge. Factors such as gas-phase proton affinities and analyte surface activity are 

correlated with a positive ESI-MS response, but unfortunately it is extremely challenging to predict from a chemical 

structure alone if a compound is likely to yield an observable molecular-ion peak in an ESI-MS spectrum. Thus, the 

design of a chemical library for an ESI-MS ligand-affinity screen is particularly daunting. Only 56.9% of the compounds 

from our FAST-NMR functional library [1] were detectable by ESI-MS. An analysis of ~1,600 molecular descriptors did 

not identify any correlation with a positive ESI-MS response that cannot be attributed to a skewed population distribution. 

Unfortunately, our results suggest that molecular descriptors are not a valuable approach for designing a chemical library 

for an MS-based ligand affinity screen. 
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INTRODUCTION 

 Designing a biologically relevant chemical library is an 
area of extensive interest in small molecule drug discovery 
[2-6]. High-throughput screening (HTS) assays routinely 
evaluate 10,000 to 100,000 compounds per day for 
evidence of biological activity [7]. Pharmaceutical 
companies have developed and acquired large chemical 
libraries that may exceed a million compounds [8]. 
Optimizing these chemical libraries is expected to improve 
the success rate and efficiency of HTS, where only 100,000 
to 400,000 compounds are routinely used per screen. In 
general, chemical diversity and “drug-like” characteristics 
are the primary features used to design an HTS library. 
Lipinski’s rule of five [9], which relates solubility, partition 
coefficient (logP), molecular weight, and the number of 
hydrogen bond donors and acceptors with known drug 
activity, is a standard approach to eliminate undesirable 
compounds from a chemical library [10]. Nevertheless, 
computational parameters used to characterize drug-like 
chemical properties continue to evolve [11], where there are 
additional concerns of being too restrictive to novel 
compound classes [6]. Alternatively, virtual screens are 
routinely used to predict likely active compounds to design a 
chemical library for HTS [12-14]. 

 Filtering a chemical library based on drug-like 
characteristics or predicted biological activity enhances the 
probability that HTS chemical leads can be evolved into 
drug candidates. Similarly, designing a library that increases 
the structural diversity of the compounds within the library is 
expected to improve the efficiency of the assay [15-17]. An 
HTS assay has a higher likelihood of identifying novel 
chemical leads, if the chemical library has been designed to  
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maximize the coverage of chemical space within the 
practical constraints of library size [18, 19]. By simply 
removing chemically similar structures, more time and 
resources are made available to assay other unique 
compounds. Fragment-based chemical libraries are a recent 
approach to maximize structural diversity while 
simultaneously minimizing the size of the library [20-23]. 
Basically, a fragment-based library is composed of small-
molecular weight compounds (  300 Da) that are fragments 
of known drugs or biologically active molecules [1]. Since 
fragment-based chemical libraries are significantly smaller 
(~1,000 compounds) than traditional HTS libraries, it is 
common to use NMR [24-27] or mass spectrometry [28-34] 
ligand-affinity screens to identify chemical leads. While 
drug-like properties and structural diversity are important 
design considerations for NMR and MS fragment-based 
chemical libraries, other practical issues such as aqueous 
solubility, chemical stability, availability and cost also 
contribute to compound selection. 

 For electrospray ionization mass spectrometry (ESI-MS), 
a further consideration in library design is the ability of the 
compound to generate a detectable molecular species. Given 
a large, structurally diverse compound library and a constant 
ESI-MS screening protocol, it is a challenging premise to 
predict, a priori, which compounds in the library will yield a 
detectable ESI-MS signal. The ESI process is fundamentally 
dependent on the analyte’s ability to obtain a charge, which 
is related to factors such as: solution ionic state, adduct 
formation, gas-phase proton affinities and analyte surface 
activity [35]. ESI-MS response has been correlated with 
nonpolar surface area [36, 37], Gibbs free energy of transfer 
from nonpolar to polar solutions [37], and HPLC retention 
times [38]. Other factors such as basicity, acidity, salt 
concentration, and calculated logP have also been associated 
with response patterns in ESI-MS [39-41]. Nevertheless, 
these factors are only modestly beneficial to the design of a 
chemical library for an ESI-MS based ligand affinity screen. 
A desirable alternative would be a correlation between 
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molecular descriptors and an ESI-MS response. Molecular 
descriptors are readily calculated from the chemical structure 
and provide an abundance of chemical and physical 
information about the compounds [42-48]. Molecular 
descriptors are generally correlated with structure-activity 
relationships, which are expected to include a compound’s 
ability to obtain a charge. 

 Our chemical library of biologically relevant compounds 
[1] was designed for our FAST-NMR assay [49, 50]. The 
library is structurally and chemically diverse. We have 
evaluated the utility of this library for an affinity 
chromatography ESI-MS screen with the goal of improving 
the library design for MS. While 95% of the FAST-NMR 
library was (at least partially) soluble in an MS buffer, only 
56.9% of the compounds yielded an effective ESI response. 
In an effort to better understand factors that may lead to a 
desirable MS signal, ~1,600 molecular descriptors for each 
compound from the FAST-NMR library was obtained from 
the online software E-Dragon [48, 51-53]. The molecular 
descriptors were used to identify relationships between an 
ESI-MS response and chemical structures. Any molecular 
descriptors that correlate with an observable ESI-MS 
response would beneficially contribute to the future design 
of chemical libraries for ESI-MS ligand-affinity screens. 

METHODS AND MATERIALS 

 All solvents and chemicals were obtained from Sigma-
Aldrich (St. Louis, MO) and used without further 
purification. Water was filtered and purified with a 
Barnstead NANOpure filtration system (Thermo Fisher 
Scientific Inc., Asheville, NC). All mass spectra were 
collected by ESI-MS with a Finnigan LCQ using a Pauli ion 
trap (Thermo Fisher Scientific Inc., West Palm Beach, FL). 
Prior to spectral collection, the LCQ was tuned with 50 M 
caffeine in acetonitrile/water (1:1 v/v). 

Sample Preparation 

 10 mM stock solutions were made by dissolving the 
compounds in a 1:1 v/v 25 mM ammonium acetate buffer 
(pH 7.0)/acetonitrile solution. If required, heat and 
sonication were applied until the sample completely 
dissolved. 10 mM stock samples in sealed 1.5 mL sample 
tubes were partially submerged in a Branson 3510 ultrasonic 
sonicator (Danbury, CT) at 50° C for up to 30 min. Samples 
that didn’t dissolve after 30 min were considered insoluble. 
The chemical compounds were then diluted to a final 50 M 
concentration in the ammonium acetate-acetonitrile solution 
and stored in sterile 15 mL polypropylene Falcon conical 
tubes (BD Biosciences, Mississauga, ON Canada). Effects of 
pH were tested by successively adding 100 uL aliquots of 
formic acid to determine if changing the pH had an effect on 
ESI response. 

Mass Spectrometry 

 Each compound was injected into the ESI-MS using a 
250 L Hamilton glass syringe at a rate of 5-15 L/min. The 
scan range was dependent on the occasional appearance of 
larger contaminant peaks suppressing the peak of interest’s 
intensity. When the peak of interest had a large relative 
intensity, the scan was started, and continued for sixty 

seconds. The spray voltage was set to 4.00 kV, and the 
voltage applied to the heated capillary ranged from 33 to 42 
V. These fluctuations were a result of tuning the LCQ to 
obtain the optimum caffeine standard response each day 
before data collection. Data were collected for one minute at 
30 scans per minute with 4 microscans per scan. 

Buffers and Solubility 

 Several buffers were tested to determine optimal 
solubility and ESI-MS compatibility. Optimization of the 
FAST-NMR library is a prerequisite for a planned affinity 
chromatography ESI-MS ligand-affinity assay using human 
serum albumin (HSA). So a buffer must be compatible with 
the FAST-NMR library, the mass spectrometer and protein 
stability in order to obtain reliable MS reference spectra. An 
aqueous ammonium acetate buffer was chosen because of its 
general utility with protein samples [54]. Ammonium acetate 
is also a volatile buffer, making it an acceptable solvent for 
mass spectrometry. Dimethyl sulfoxide (DMSO) is routinely 
used to solubilize chemical libraries for water-based assays 
[55], but is not compatible with polyetheretherketone 
(PEEK) HPLC tubing. DMSO causes PEEK tubing to swell 
and would cause inconsistencies in the HPLC performance. 
Instead, methanol was considered for its organic solvent 
properties. Similarly, acetonitrile was chosen since it is 
commonly used in HPLC for protein purification. Several 
mobile phase mixture combinations (with varying amounts 
of methanol, acetonitrile, water and ammonium acetate) were 
explored to maximize the ESI-MS response for the largest 
number of compounds. The mixture ratio corresponds to the 
post-column solvent composition, just prior to entering the 
mass spectrometer. These will be adjusted from the 100% 
ammonium acetate buffer with a post-column, low-pressure 
pump with an 80/20 mixture of acetonitrile and methanol, 
making the resultant mobile phase for the mass spectrometer 
50/40/10 ammonium acetate/ acetonitrile/ methanol, to 
coordinate with the buffer conditions of the reference 
spectra. 

Data Analysis 

 Each compound from the FAST-NMR chemical library 
was classified based on the observed solubility, ESI-MS 
response and chemical class. The compounds were assigned 
to a chemical class by manual inspection of each 
compound’s chemical structure. 

 A compound’s solubility was manually ranked on a scale 
of 1 to 0 based on the amount of time the compound required 
to completely dissolve under various experimental 
conditions. Compounds that dissolved at room temperature 
with only sample vortexing were given the best score of 1. 
Compounds that required 5, 10, and 30 minutes of sonication 
at 50° C were assigned a score of 0.8, 0.6, and 0.4 
respectively. Compounds that did not appear to completely 
dissolve, but still generated an ESI-MS response were 
assigned a score of 0.2. Compounds that did not dissolve and 
lacked an ESI-MS response were assigned a score of 0.0. 

 Since observing a detectable signal in a MS spectrum is 
the primary requirement for a MS-based ligand affinity 
screen, the ESI-MS response was ranked using a simple 
binary scale. The ESI-MS response was determined by 



Design of an ESI-MS Chemical Library Combinatorial Chemistry & High Throughput Screening, 2012, Vol. 15, No. 9    3 

simply recording the absolute intensity of the most intense 
peaks that correspond to the correct mass of either the parent 
compound or an obvious fragment based on a rapid 
structural analysis. If the apparent signal-to-noise ratio of the 
most intense molecular species peak is  2, the compound 
was determined to be detectable by ESI-MS under our 
experimental conditions and was assigned a score of 1. All 
other compounds were given a score of 0. 

 The 355 compounds in the soluble library were clustered 
into thirty general chemical classes (Fig. 2). A histogram 
plot indicates the total number of compounds in each class, 
along with the percentage of compounds within the class that 
received an ESI-MS response score of 1. 

 The online software E-Dragon (VCClabs, http://www.vcc 
lab.org/lab/edragon/) was used to calculate approximately 
1,600 molecular descriptors for each soluble compound in 
the FAST-NMR library [48, 51-53]. The molecular 
descriptors were selected based on properties related to small 
molecule analysis. In order to facilitate the analysis of the E-
Dragon molecular descriptors, the statistical program 
SIMCA-P (UMETRICS, Kinnelon, NJ) was used to identify 
molecular descriptors correlated with an ESI-MS response. 
A partial least squares (PLS) regression was calculated based 
on each compound’s set of molecular descriptors and the 
ESI-MS response score. The loading plot from the PLS 
analysis identified the molecular descriptors with the largest 
contribution to the data variability (Fig. 1). Molecular 
descriptors with relatively large positive (upper right circle) 
and negative (lower left circle) PC1 and PC2 coefficients are 

correlated or anti-correlated, respectively, with the 
experimentally observed ESI-MS response. The PLS loading 
plot suggests 59 molecular descriptors are correlated with 
ESI-MS response and 16 are anti-correlated. 

 Each molecular descriptor identified by the PLS loading 
plot was analyzed in detail. Simply, the compounds from the 
FAST-NMR library were binned based on the molecular 
descriptor score. The percentage of compounds in each bin 
that received an ESI-MS response score of 1 was calculated 
and the results plotted as a histogram using Microsoft Excel 
(Figs. 3-5). A histogram that displayed an increase in the 
percentage of compounds with a positive ESI-MS response 
as a function of the molecular descriptor score would further 
support a correlation between the molecular descriptor and 
an ESI-MS response. The process was repeated for a total of 
75 molecular descriptors, where the bin sizes varied for each 
histogram and was dependent on an approximate equal 
distribution of the number of compounds per bin. Also, the 
bins were adjusted based on descriptor parameters, i.e. the 
bins were restricted to whole numbers if the descriptors were 
based on discreet whole numbers. 

RESULTS AND DISCUSSION 

 Structural diversity and drug-like characteristics are 
typical issues that dominate discussions of library design, but 
practical considerations such as solubility, stability and ease 
of replenishing the compound are commonly the deciding 
factors for the inclusion of a specific compound in a library. 
Unfortunately, these factors are not readily predictable and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). PLS loading plot of ~1,600 molecular descriptors contribution to a detectable signal in an ESI-MS spectrum, where molecular 

descriptors at each axial extreme (circled) were chosen for further investigation. 
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require experimental verification. MS-based screens have an 
additional unique concern in regards to library design: does a 
compound generate a detectable molecular species peak? 
The FAST-NMR library was selected based on functional 
diversity [1]. All the compounds in the library have known 
biological activity that involves distinct proteins or protein 
classes. The compounds correspond to co-factors, 
metabolites, substrates, carbohydrates, fatty acids, protein 
inhibitors, and known drugs, among other classes. 
Furthermore, the compounds were selected based on 
experimentally determined aqueous solubility (100 μM), 
long term stability (> 6 months), cost (~ $32/compound) and 
commercial availability. Nevertheless, attempting to use the 
FAST-NMR library for an affinity chromatography–ESI-MS 
ligand affinity screen proved to be an unexpected challenge. 

 While the FAST-NMR library is generally water soluble, 
using only an aqueous buffer in an ESI-MS ligand affinity 
screen  is not feasible. Unlike NMR, the MS solvent must 
also be volatile. Common ESI-MS solvents, methanol, water, 
and acetonitrile (ACN), were used to test compound 
solubility. Only 76% of the FAST-NMR library was soluble 
in a solvent composed of an approximately 50:50:0.1% (v/v) 
mixture of methanol, water and ACN. Conversely, 95% of 

the library was soluble in a 50/50 (v/v) mixture of ACN and 
25 mM aqueous ammonium acetate buffer. After dissolving 
these soluble compounds (most of them from powder) into 
the 50/50 (v/v) ACN/25 mM aqueous ammonium acetate 
buffer, only about half of the compounds had a discernible 
ESI-MS response. 0.1% (v/v) of formic acid was added to all 
samples that failed to generate a molecular species peak in 
the ESI-MS. An ESI-MS spectrum was then re-acquired in 
the positive-ion mode, but only a slight increase in a 
detectable response was achieved. In all, only 56.9% of the 
soluble compounds, or 202 compounds in total, produced an 
observable ESI-MS spectrum. 

 Consistent with our results, there does not appear to be 
any correlation between the pKa of a compound and the pH 
of the solution [35]. Instead, obtaining a charge has been 
postulated to depend on the partitioning of the compound to 
the droplet surface [56] and the relative pKa of the 
compound and the solvent [35]. While these details are 
valuable for understanding the process of an analyte 
obtaining a charge by ESI, applying this information to assist 
in the design of an MS library is not particularly straight-
forward without experimental data. As an illustration, 
psoralen, leflunomide, carisoprodol, estriol, p-aminohippuric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The soluble compounds within the FAST-NMR chemical library were assigned to one of thirty different chemical classes. The 

histogram plot indicates the number of compounds within each chemical classification and the percentage of compounds within each class 

that yielded a detectable signal in an ESI-MS spectrum. 
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acid, 1-octanol, ethylenediaminetetraacetic acid (EDTA), 
flutamide, and 1-phenyl-1-cyclopropanecarboxylic acid were 
all initially unresponsive to ESI-MS and were titrated with 
0.1% formic acid. But, only psoralen, p-aminohippuric acid, 

and EDTA generated a positive ESI-MS response after the 
addition of formic acid (Table 1). Unfortunately, there are no 
obvious structural features among this short-list of 
compounds that readily explains the variable ESI-response. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) Histogram plots where the x-axis corresponds to the bin range for the E-Dragon molecular descriptor and the y-axis is the percentage 

of compounds with a detectable signal in an ESI-MS spectrum within each bin. Each bar is labeled with the total number of compounds 

within the bin. Molecular descriptors corresponding to (a) the number of R--CR—R atom-centered fragments per bin, (b) the number of 

benzene-like rings (nBnz), (c) the number of 8-membered rings (nR08), (d) the Kier-Hall electrotopological state of the compound, (e) the 

number of Hydrogen atoms, and (f) the number of aromatic rings per compound. 
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 Conversely, when all the soluble compounds from the 
FAST-NMR library were manually classified into general 
chemical classes, some distinct correlations with an ESI-MS 
response were observed (Fig. 1). Several of these chemical 
categories were found to have a high probability of an ESI-
MS response, while other classes had no compounds that 
generated a detectable peak in the MS spectrum. Some 
chemical categories with a positive ESI-MS response 
included: ketones, nitrones, sulfones and esters. The double 
bonded oxygen in this chemical class can form resonance 
structures that enable the compound to accept a charge. 
Nucleic acid derivatives and sugars are also adequate 
responders due to the flexible ring nature of the sugar 
molecule. Amphoteric molecules, such as amino acids prove 
to be good responders as well. Some compound types that 
gave poor response are carboxylic acids, alcohols, lactones 
and urea-containing molecules. These trends between 
chemical classification and ESI-MS response are beneficial 
for designing an MS screening library. But, there are 

important caveats to the data since the apparent high or low 
ESI-MS response for some classes may be misleading 
because of the low number of members. A 100% or 0% 
percent response for a chemical class that has only a few 
compounds is not particularly meaningful. 

 Alternatively, molecular descriptors provide a more 
robust and unbiased approach to establish a correlation 
between chemical structures and an ESI-MS response. E-
Dragon [48, 51-53] was used to calculate ~1,600 molecular 
descriptors for each soluble compound in the FAST-NMR 
library. A PLS analysis was used to identify a relationship 
between any of the individual molecular descriptors and each 
compound’s ESI-MS response. The PLS loading plot (Fig. 1) 
identified the molecular descriptors that made the largest 
contribution to principle components and preferentially 
explain the variation in the data. The two circles on the PLS 
loading plot highlight the molecular descriptors that are 
either highly correlated (positive coefficients) or anti-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig (4). Histogram plots of 3D Molecular Representation of Structures based on Electron diffraction (MoRSE) molecular descriptors. The x-

axis is the empirical MoRSE values calculated by E-Dragon. The y-axis corresponds to the percentage of compounds with a detectable signal 

in an ESI-MS spectrum. Each bar is labeled with the total number of compounds within the bin. Molecular descriptors corresponding to (a) 

MoRSE value at signal 28 weighted by mass (Mor26m), (b) MoRSE descriptor weighted by van der Waals volume from signal 11 (Mor11v), 

(c) MoRSE descriptor weighted by Sanderson electronegativites (Mor14e), and (d) a MoRSE descriptor weighted by polarizability 

(Mor10p). 
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correlated (negative coefficients) with an ESI-MS response. 
A total of 75 molecular descriptors were identified for 
further analysis. 

 Histograms (Figs. 3-5) were generated for the molecular 
descriptors that were obvious outliers from the PLS-DA 
scatter plot in order to identify a correlated trend. The 
percentage of compounds yielding a positive ESI-MS 
response in each bin was plotted against the molecular 
descriptor score (in bins). Trends were identified if the 
percentage of compounds yielding an ESI-MS response 
increased or decreased uniformly as a function of the 
molecular descriptor score. For example, as the number of 
benzene-like rings increases from 0 to 8, the percentage of 
compounds with a positive ESI-MS response decreases from 
61 to 0 percent (Fig. 3b). To be clear, a compound that 
contains zero to two benzene-like rings had a 56.0% 
likelihood of yielding a positive ESI-MS response. 
Conversely, the likelihood that a compound would have a 
detectable ESI-MS molecular ion peak dropped to less than 
20% for compounds with three or more rings. While this 

does indicate that adding more benzene-like rings to a 
compound would decrease the likeliness of ionization in ESI, 
the lack of these rings provides only a slightly higher-than-
average rate of ionization (62.9%) despite the depolarizing 
nature of a benzene-like system. Also, the perceived 
difference may be skewed by the relatively low population 
of structures with three or more benzene-like rings. 

 Based on prior correlations between ESI-MS responses 
with nonpolar surface area [36, 37], Gibbs free energy of 
transfer from nonpolar to polar solutions [37], basicity, 
acidity, and calculated logP [39-41]; a trend would be 
expected to be found for certain molecular descriptors such 
as Morse values, mean electrotopological state, logP and the 
number of hydrogen bond donating or accepting atoms. 
MoRSE descriptors are part of the 3D-MoRSE (Molecule 
Representation of Structures based on Electron diffraction) 
class of descriptors designed to represent a chemical 
structure for QSAR calculations [57]. Basically, the intensity 
of scattered radiation is calculated from the three-
dimensional atomic coordinates of a molecule for 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig (5). Histogram plots where the x-axis corresponds to the bin range for the E-Dragon molecular descriptor and the y-axis is the percentage 

of compounds with a detectable signal in an ESI-MS spectrum within each bin. Each bar is labeled with the total number of compounds 

within the bin. Molecular descriptors corresponding to (a) the number of hydrogen-bond donor atoms per bin, (b) the number of hydrogen-

bond acceptor atoms per bin, and (c) the Ghose-Crippen value per bin [64]. 
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different scattering angles. The intensity can be unweighted 
or weighted by atomic masses, atomic van der Waals 
volumes, electronegativities or atomic polarizabilities. The 
goal of 3D-MoRSE is to transform the molecular structure 
into a set of variables that maintain the structure-property 
relationships. As a result, 3D-MoRSE molecular descriptors 
have been previously shown to be correlated with the 
structural details of infrared spectra [57] and mass spectra 
[58]. Thus, a correlation with an ESI-MS response is a 
reasonable expectation. Unfortunately, no apparent trend was 
observed between a detectable ESI-MS molecular-ion peak 
and the 3D-MoRSE molecular descriptors (Fig. 4). 

 The mean electrotopological state molecular descriptor 
calculated by E-Dragon is the average of the Kier-Hall 
electrotopological state for each non-hydrogen atom in the 
structure [59]. Briefly, the electrotopological state describes 
the electronic and topological characteristics for each atom 
in a structure and the electronic influence by all the other 
atoms in the molecule on that atom. Each atom type is 
assigned an intrinsic state based on Kier-Hall 
electronegativity that is modified by the number of  bonds, 
number of hydrogen atoms, number of electrons in  
orbitals, and number of lone pair electrons. The intrinsic 
value (Ii) is large for electronegative atoms and decreases 
with increasing number of  bonds. The electrotopological 
state (Si) is calculated by summing the difference between 

each pair of intrinsic values weighted by the distance (ri,j) 
between the atoms: 

S
i
= I

i
+ Ii I j( )

i, j

/ r
i , j

2             (1) 

 The electrotopological state has been correlated with 17O 
and 13C NMR spectra [60, 61] consistent with capturing the 
intrinsic electronegativity of an atom within the context of a 
molecular structure. Thus, observing a correlation between 
an ESI-MS response, the ability of a molecule to accept a 
charge, and the overall electronegative characteristics of a 
compound is not unexpected, especially since positive results 
have been previously observed with polar and ionic analytes 
[62]. Recently, a correlation was observed between basic 
analytes and ESI-MS response [63]. Similarly, an ESI-MS 
response would be expected to be correlated with the number 
of hydrogen atoms (Fig. 3e), number of hydrogen bond 
donating or accepting atoms (Fig. 5a, b), logP (Fig. 5c) [64], 
or similar descriptors. Unfortunately a clear correlation 
between ESI-MS response and molecular descriptors related 
to electronegative characteristics was not observed (Fig. 3d). 
In fact, a convincing correlation between an ESI-MS 
response and any molecular descriptor was not observed 
(Figs. 3-5). For example, the atom-centered fragments and 
the constitutional descriptors, like the number of benzene-
like rings descriptor, potentially exhibit a minor correlation 
(Fig. 3a-c). But, the population difference between the bins 

Table 1. ESI-MS Response After Adding Formic Acid to the Ionization Buffer 
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cyclopropane  
carboxylic  

acid 

O

HO

 

4.3 No     



Design of an ESI-MS Chemical Library Combinatorial Chemistry & High Throughput Screening, 2012, Vol. 15, No. 9    9 

are highly skewed, where the percent ionization in a low 
populated bin could change dramatically if the number of 
compounds increased by a factor of ten or more, to be on par 
with the highly populated bins. In effect, these perceived 
differences may simply be attributed to a skewed population 
distribution for a particular molecular descriptor. It is 
important to note, that for most of the populated bins, the 
percentage of ionized compounds was typically close to the 
overall average response rate of 56.9%. This result was 
independent of the molecular descriptor and suggests that 
any perceived correlation is not significant. Fundamentally, 
our analysis implies that any relationship between a 
molecular descriptor and an ESI-MS response is purely 
coincidental. 

CONCLUSION 

 There are a number of inherent challenges in the creation 
and design of a diverse ESI-MS chemical library for drug 
discovery. Paramount to this process is the identification of 
compounds that are able to accept a charge and generate a 
detectable molecular species. Here, we examined the 
application of molecular descriptors, which are readily 
determined from chemical structures, as a means to predict 
the relative response in electrospray ionization mass 
spectrometry. We did not find a satisfactory correlation 
between calculated molecular descriptors and an ESI-MS 
response. Unfortunately, our results suggest that molecular 
descriptors are not an effective approach to design a 
chemical library for MS-based ligand affinity screens. 
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