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Biofilms are a natural part of the ecology of the 
Earth, and correspond to a ‘social structure’ of 
microorganisms compared with a planktonic 
state [1–3]. They are a ubiquitous microbial 
phenomenon that has been observed for bacteria, 
fungi, algae, yeasts, protozoa and other organ-
isms. In a biofilm composed of multiple diverse 
organisms, the interspecies interaction can range 
from neutral to cooperative, to competitive, 
and finally, to antagonistic [4]. The diversity of 
organisms able to self-organize and form bio-
films is quite astounding and may provide clues 
to the evolution of multicellular organisms [5]. 
Are biofilms a transitional state of evolution and 
the basis for multicellular organisms? Or are bio-
films simply a highly organized state of single-
cell organisms? The fact that biofilms provide 
a significant survival advantage for adapting to 
the harsh and distinct environmental conditions 
probably explains its broad adaptation. 

�� How bacterial biofilms are related to 
human disease
The interest in biofilms is not merely a result 
of scientific curiosity, but is also derived from 
practical concerns related to medical science [6], 
material engineering [7], civil engineering [8] and 
others [9]. In the area of medicine, research on 
biofilms has focused on its relationship to bac-
terial infections and drug resistance. Bacterial 
infections are a serious disease and major source 
of deaths worldwide. Especially concerning is the 
growing resistance to antibiotics that has become 
a major medical issue in developing countries. 

Between 1980 and 1992, infectious disease 
deaths increased by 58%; the major contribu-
tors were HIV infections and AIDS, respiratory 
disease and bloodstream infection [10]. In 2000, 
a US government report identified infectious dis-
eases as a leading cause of death worldwide and 
the third leading cause of death in the USA [11]. 
It has been estimated that 60–80% of human 
microbial infections are caused by bacteria grow-
ing as a biofilm [12]. Certain pathogenic biofilms 
are of particular concern because of the added 
issue of drug resistance [13]. Multidrug-resistant 
pathogens, such as Enterococcus faecium, 
Klebsiella pneumonia, Acinetobacter baumanii, 
Pseudomonas aeruginosa and Enterobacter spp., are 
currently infecting the majority of US hospitals 
[14]. As methicillin-resistant Staphylococcus aureus 
(MRSA) and other resistant pathogens capable 
of biofilm formation continue to emerge and 
propagate, understanding and circumventing 
biofilm resistance to antibiotics is a paramount 
necessity [15].

Pathogens can be introduced into the human 
body through trauma, medical operations, 
dental procedures or by other means [16–18]. 
Many surfaces of organs are heavily colonized 
by microbes that have the potential to cause an 
infection, especially during any invasive medi-
cal procedure. In fact, the ratio of bacteria to 
mammalian cells living within the human body 
is ten to one, providing ample opportunity for 
inducing a bacterial infection from medical pro-
cedures or trauma [19]. For example, there are 
over 500 species of microorganisms identified 
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in typical dental plaque [301]. Correspondingly, 
dental cavities (caries) are commonly a result of 
bacterial biofilm infections [20]. Biofilms are also 
formed on our tongues, cheeks, in our intestines, 
nasal passages, sinuses and on our skin [301]. 
These human microbial communities are largely 
unstudied and their role in infections is largely 
unknown. But biofilms protect the organisms 
from both antimicrobials and the host immune 
response, making infectious biofilms extremely 
difficult to treat [21]. For instance, staphylococcal 
biofilm infections have a 10–1000-fold increase 
in antibiotic resistance [22–24].

A serious source of biofilm infections is heart 
disease, which is also a major cause of mortality 
in the USA [25]. Invasive surgical techniques are 
inevitably required to treat the resulting symp-
toms of heart disease, which may lead to fatal 
staphylococcal-infective endocarditis. S. aureus 
and S. epidermidis [26] infections stemming from 
implantable medical devices (e.g., pace mak-
ers [27,28], indwelling vascular catheters [29–31], 
grafts [32] and left ventricular assist devices 
[33–37]) are common causes of infective endo-
carditis. Biofilms have also been identified on 
various other medical devices [12,38] such as con-
tact lenses, endotracheal tubes, central venous 
catheters, pacemakers and voice prostheses that 
account for over 80% of microbial infections 
in the body. Catheter-associated urinary tract 
infection is also a common source of biofilm 
infections. It has also been suggested that auto-
immune disorders, such as arthritis, chronic 
fatigue syndrome, fibromyalgia, Crohn’s dis-
ease and ulcerative colitis, are caused by biofilm 
infections [39]. In summary, bacterial biofilms 
pose a serious threat to human health because 
of the added protection biofilms provide from 
an immune response and antibiotic treatments, 
the ease of acquiring an infection from trauma 
and medical procedures and the rapid emer-
gence of drug resistance among bacteria that 
form biofilms.

�� What does a biofilm look like?
The formation and structure of bacterial biofilms 
have been extensively reviewed and will only be 
briefly summarized here [1–3,5,8,9,40–48]. A biofilm 
(Figure 1) is composed of three parts: a living or 
nonliving substance that provides a moist surface 
for attachment of the highly organized micro-
bial structure [49–51]; a slim-like matrix made of 
extracellular DNA, proteins and polysaccharides 
(b (1–6)-linked N-acetylglucosamine polymer) 
[52,53] that embeds the microorganism [54]; and 

an aggregate of microorganisms in a commu-
nity that exchange fluids, nutrients and chemical 
signals [46]. The life cycle of the biofilm can be 
divided into approximately three steps: attach-
ment, growth and propagation (Figure 2). First, 
a few colonies reversibly adhere to the surface via 
van der Waals’ forces to create an initiation site. 
Attachment involves lipoteichoic acid anchored 
to the cell membrane [55]. This is followed by an 
irreversible attachment of the cells through the 
production of the exopolysaccaride matrix and 
cell growth [51]. The cell growth is not uniform 
and results in the formation of channels [9]. A 
combination of cell division and recruitment 
occurs during the maturation stage and only bio-
film shape and size are changed [9,52,56]. Finally, 
detachment of individual cells and dispersion 
enables the biofilm to spread and colonize new 
surfaces or to join another biofilm [57,58].

Biofilms are viewed as layers of bacteria encap-
sulated within different microenvironments due 
to variations in nutrient availability [59] and dif-
fering cell densities [45,55]. Bacteria within the 
biofilm core exist in a stationary or dormant 
growth phase [59] and are physiologically dis-
tinct from planktonic bacteria [44,60–62]. Thus, 
antibiotics that target cellular mechanisms asso-
ciated with growing bacteria have diminished 
activity against biofilms [63,64]. Biofilms form 
irregular spatial structures, which are affected 
by many different ecological, biological, chemi-
cal and physical factors. The effect of these 
factors on biofilm formations have been exten-
sively investigated using a variety of computer 
simulations [56,57,65–67].

Biofilm formation at the 
molecular level
There are some general principles regarding 
biofilm formation that include the need for 
metabolically active bacteria for surface adhe-
sion, the need for an adequate nutrient supply 
for cell replication and exopolysaccharide pro-
duction, and the fact that surfaces coated with 
organic nutrients stimulate biofilm formation 
[2,3]. Correspondingly, bacteria biofilms readily 
form on the surfaces of plastic or metal medical 
devices in body fluids. Some common bacterial 
biofilm infections include P. aeruginosa in the 
lung, Escherichia coli in the urinary tract, Vibrio 
cholera in the GI tract, S.  epidermidis in the 
heart, S. aureus in arteries, Enterococcus spp. in 
the urinary tract, and fungi such as Candida spp. 
in the GI tract [58]. The identification of bio-
chemical pathways critical to biofilm formation 
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is an important first step to being able to pre-
vent these bacterial biofilm infections. Even with 
our general understanding of the basic structure 
and development of bacterial biofilms, compre-
hending the underlying processes responsible for 
inducing the transition from planktonic cells to 
a biofilm is still unclear. Correspondingly, the 
planktonic to biofilm transition is a complex and 
highly regulated process that results in a pheno-
typic change. Thus, the differential expression 
and regulation of specific genes are associated 
with biofilm formation. 

�� Genomics & bacterial biofilms
Genomics analysis of biof ilm formation 
started in the 1990s by first screening for 

biofilm-defective mutants [68,69]. Such efforts 
identified a diverse number of genes required 
for biofilm formation [70–76]. More recently, 
DNA microarray technology has been used to 
identify genes up- or down-regulated in bacte-
rial biofilms [77]. Unfortunately, there does not 
appear to be a clear trend in biofilm-related 
genes. Instead, multiple pathways to biofilm 
formation that depend on media, growth con-
ditions and the specific organism are likely [40]. 
Nevertheless, some broad, common features 
have been observed, such as the upregulation 
of genes for polysaccharide production, for 
various stress-induced pathways, for station-
ary phase-induced genes, for a prevalence of 
genes of unknown function and new regulatory 
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Figure 1. Horizontal optical thin sections (0–2.6 µm) of the Pseudomonas aeruginosa 
biofilm obtained by scanning confocal laser microscopy. The biofilm was negatively stained 
with 0.1% fluorescein. The horizontal sections show the removal of out-of-focus information and 
reveal aspects of the internal structure of the biofilm. 
Reprinted with permission from [45] © American Society for Microbiology (1991).
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pathways [77]. For example, Quoc et al. identi-
fied 19 genes in S. aureus associated with biofilm 
formation that were not previously observed [74]. 
Again, this highlights the difficulty encountered 
with identifying a uniform set of biofilm-related 
genes. Besides genes involved in polysaccharide 
intercellular adhesion (PIA) or unknown func-
tion, the authors observe mutations in guano-
sine-dependent regulation and formation of 
wall teichoic acid. The complexity of biofilm 
formation may be attributed to the fact that the 
transition from planktonic cells to a biofilm is 
influenced by various and diverse environmental 
factors such as ethanol [78], oleic acid [79], glucose 
[80], UDP-N-acetylglucosamine [81], sub-inhib-
itory concentrations of some antibiotics [82], 
anaerobic conditions [83], iron limitation [84–86], 
high osmolarity [87] and high temperature [87]. 

The diversity of these external stimuli suggests 
a versatile regulation system. 

�� Regulating biofilms: s factors, 
two-component systems or quorum sensing
After two decades of research, multiple mecha-
nisms of biofilm regulation have been proposed: 
s factors, two-component systems (TCSs) or 
quorum sensing. s factors control the expression 
of various genes, including virulence factors and 
global regulators, which are related to biofilm 
formation [88–90]. They are activated when bac-
teria sense environmental conditions that induce 
stress (e.g., heat shock, nitrogen-limitation, star-
vation and high osmolarity) [91]. TCSs are an 
alternative stimulus–response coupling mecha-
nism that have been shown to regulate diverse 
metabolic processes, such as the bacterial cell 

Key Term

Metabolome: The complete 
set of small-molecular-weight 
compounds (<1 kDa) or 
metabolites found within 
bacterial cells, other cellular 
organisms, tissues or biological 
samples.
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Reprinted with permission from [46] © Elsevier (2008).
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cycle, cell–cell communication, and virulence 
factors in biofilm formation [92]. In a TCS, a 
ligand or a signal molecule can stimulate a his-
tidine kinase sensor protein, which undergoes 
autophosphorylation at a conserved histidine 
residue. The phosphoryl group is then trans-
ferred to the cognate response regulator, which 
can activate or repress transcription of the target 
genes [92,93]. Conversely, quorum sensing uses 
signal molecules for bacterial intercellular com-
munication. Quorum sensing enables bacteria 
to ‘sense’ cell density and coordinate behavior 
in response to nutrient availability, toxic com-
pounds, host–immune response, and defense 
[94,95]. In Gram-negative bacteria, N-acyl homo-
serine lactones (autoinducer-1 [AI-1]) have been 
identified as the signal molecules [96]. AI-1 is 
synthesized and sensed by analogous LuxI and 
LuxR regulatory proteins. The specific AI-1 
molecule varies between Gram-negative organ-
isms. For Gram-positive bacteria, autoinducer 
peptides (with no conserved sequence) have been 
identified as a signal molecule that involves a 
two-component signal-transduction system [97]. 
Furanosyl borate diester (autoinducer-2 [AI-2]) 
has been identified as a universal interspecies sig-
nal molecule that regulates biofilm formation 
in over 55 Gram-positive and -negative species 
[98]. Figure 3 illustrates some common regula-
tory mechanisms of the planktonic to biofilm 
transition. 

�� Targeting biofilm regulation systems for 
drug discovery
TCS and autoinducers are promising drug 
targets for biofilms because of the essential 
role in cell growth regulation and the unique 
mechanisms of action compared with conven-
tional antibiotics [99–102]. Importantly, proteins 
from TCS and quorum sensing are absent in 
humans, minimizing toxicity concerns. In 
addition, both biological processes are based on 
ligand-receptor interactions, which are typical 
targets for drug discovery and have a reason-
able likelihood of success. Histidine kinases 
and response regulators, such as WalK/WalR, 
YhcS/YhcR81, HP165/HP166 and MtrB/
MtrA, are potential drug targets for bacteria 
pathogens [102]. Targeting the kinase domain 
appears to suffer from poor selectivity, but tar-
geting the sensor domain may prove more suc-
cessful. Furthermore, targeting nonessential 
TCS proteins that regulate virulence, such as 
GacS/GacA, PhoQ/PhoP and CorS/CorR, has 
demonstrated some initial positive results [102].

Alternatively, quorum sensing may be inter-
rupted by targeting the LuxI, LuxR or LuxS tran-
scriptional regulators [103,104], AIP receptors [101] 
or Lsr transporters [98]. A common approach is to 
use the three classes of autoinducers as chemical 
templates to design agonists or antagonists as a 
starting point for drug design (Figure 4) [105,106]. 
For instance, TCS proteins QseC/QseB from 
E. coli (EHEC) O157:H7 that responds to AI-3, 
epinephrine and norepinephrine, are inhibited by 
LED209 (N-phenyl-4-[[(phenylamino)thioxo-
methyl]amino]-benzenesulfonamide) [107]. 
Additionally, the RNAIII-inhibiting peptide 
(RIP; YSPWTNF-NH

2
) is an inhibitor of the 

staphylococcal TRAP/agr system, which is regu-
lated by autoinducer RNAIII-activating protein 
[108]. RIP was shown to be active against MRSA 
graft infections. There has also been significant 
effort in the design of AI-2 analogs as novel anti-
biotics because of AI-2’s broad activity against 
multiple species [109,110]. For instance Roy et al. 
explored the activity of C-1 alkyl analogs of AI-2 
against multiple bacterial species [110]. Ethyl-4,5-
dihydroxy-2,3-pentanedione (DPD) was found 
to inhibit quorum sensing in both E. coli and 
Salmonella typhimurium. In addition, Rui et al. 
explored DPD analogs with a new stereocenter 
at C-5 (4S, 5R)-DHD [111]. The compound was 
also shown to be active against both E. coli and 
Vibrio harveyi. Conversely, Tsuchikama et al. 
synthesized carbocyclic analogues of DPD 
that were inactive against S. typhimurium and 
V. harveyi, suggesting the importance of the lin-
ear form of DPD and the heterocyclic oxygen 
atom [112]. Similarly, Lowery et al. explored a 
variety of DPD analogs that resulted in a uni-
form lower activity, which highlights the gen-
eral challenge in evolving a small chemical tem-
plate into a drug [113]. Nevertheless, the unique 
mechanism of action for TCS and autoinducer 
targets holds the promise of a valuable new class 
of drugs that may circumvent biofilm resistance 
to antibiotics (Figure 4).

An overview of metabolomics
�� What is metabolomics?

Metabolomics is the study of metabolites, such 
as amino acids, carbohydrates and lipids that are 
the end products of cellular regulatory processes, 
as well as intermediates and other signaling mol-
ecules [114,115]. The metabolome is the complete 
collection of all metabolites within a biological 
cell compartment, cell, tissue, organ or organ-
ism examined in the form of a cellular extract or 
biofluid [116,117]. In general, a molecular weight 
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Reprinted with permission from [264] © Springer (2011).
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extract information and 
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differentiate a set of NMR 
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between two or more 
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of 1  kDa is the typical limit that separates 
metabolites from macromolecules [118]. 

There are many differences between conven-
tional metabolite measurements and metabolo-
mics. First, metabolomics focuses on a global or 
broad-based analysis of metabolites through a 
high-throughput detection methodology com-
pared with a limited and directed analysis of a 
specific number of individual metabolites [115]. 
In general, metabolomics does not require the 
complete separation of individual metabolites. 
Instead, it captures a ‘snapshot’ or ‘fingerprint’ 
of the state of the metabolome. Thus, metabo-
lomics simplifies metabolite detection by using 
a single analytical technique to characterize 
the state of the metabolome. In this manner, 
metabolomics also provides an unbiased view 
of changes in metabolism by covering all major 
pathways. Thus, the systematic analysis of the 
ultimate response of a biological system has a 
better chance of describing pleiotropic effects 
[115]. Second, metabolomics uses a combina-
tion of multiple methodologies, such as cellular 
biology, instrumental analysis, chemometrics 
and bioinformatics to analyze the biological sys-
tem. This combination of techniques provides a 
better view of the global role that metabolism 
plays in cellular functions. Again the analysis 
of a select set of metabolites does not provide 
this sort of global picture of cellular activity. 
However, in theory, it should be possible to cor-
relate metabolic changes in a biochemical path-
way with the enzymes involved, and then to the 
underlying genetic alterations or changes in gene 
expression or regulation [115]. A computational 
simulation could also integrate the experimental 
data to create a systematic view of the effected 
biochemical pathways and, potentially, the rel-
evant proteins. The identification of specific 
proteins that are disease-related or, in this case, 
related to biofilm formation, is a fundamental 
and critical step of the drug-discovery process. 

�� Benefits of metabolomics to drug 
discovery
Autoinducers are an excellent example of the 
significant roles that small molecules can play 
in bacterial biofilms, where mimicking or 
inhibiting the mode of action of autoinducers 
is a potential drug-discovery target. Other 
inter- or intra-cellular small-molecular-weight 
molecules may have similar roles in the initia-
tion, progression and survivability of bacterial 
biofilms. Specifically, biofilms are a spatial 
distribution of heterogeneous cells, where cells 

exist in different metabolic states to maximize 
survival. Thus, understanding biofilms requires 
a comprehensive characterization of the vari-
ous metabolic states within a complex cellular 
community. Correspondingly, metabolomics 
provides a systematic approach to explain this 
complex system [119,120]. 

Compared with genes and proteins, primary 
metabolites are highly conserved between vari-
ous cells and organisms [121]. In a similar manner 
to gene expression, some of the key metabolites, 
nutrients and signal molecules (autoinducers) 
have been shown to significantly influence bio-
film formation [122]. Thus, metabolite quanti-
fication and the pathway modeling of complex 
biological systems is useful for exploring cell 
behavior in establishing a biofilm community. 
Furthermore, metabolomics is an invaluable 
approach for investigating antibiotic resistance in 
biofilms. By generating a network of metabolites 
affected by the drug treatment, it is possible to 
predict the antibiotic’s mechanism of action [123]. 
Additionally, the phenotype of antibiotic resis-
tance and biofilm strains can be characterized 
through their relative metabolome differences. 
Similarly, monitoring metabolic changes can 
be used to investigate the effects of other envi-
ronmental stimuli on biofilm formation [124]. 
Metabolomics can also be used for detecting 
disease biomarkers [125] and as a supplementary 
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tool for proteomics and transcriptomics. The 
linkage between metabolomics, mRNA and 
protein expression makes it possible to visualize 
the biological state of an organism [126]. 

Metabolomics is the bridge between genotype 
and phenotype [115]. Correspondingly, metabolo-
mics provides a better understanding of a disease 
since it links the pathology to actual changes in 
the activity of biological processes. Metabolomics 
provides an approach to diagnose a disease, moni-
tor its progression, evaluate a response to therapy, 
and identify potential novel drug targets. Thus, 
metabolomics has a wide range of applications 
in drug discovery [127], including toxicology [128] 
and functional genomics [126].

�� Achievements of NMR-based 
metabolomics
NMR metabolomics has been applied to iden-
tify biomarkers for cardiac disease [129,130], liver 
disease [131], respiratory disease [132,133], cancer 
[134–137] and CNS disorders [138–141], among oth-
ers. NMR metabolomics provides a means to 
differentiate between a disease and healthy state 
or between drug treated and untreated. Drug 
discovery or chemical-lead identification is then 
based on observing the metabolome change from 
a disease state to a healthy state or by simply 
observing that a compound changes the metab-
olome. For example, Tizianni  et  al. describes 
using NMR metabolomics in a high-throughput 
screening platform (96-well plates) to identify 
kinase inhibitors [142]. They demonstrate that 
changes in the lactate/pyruvate ratio in human 
leukemia cells (CCRF-CEM) and human ovar-
ian cancer cells (SKOV-3) was successful in iden-
tifying inhibitors of eEF-2, NF-kB, MK2, PKA, 
PKC and PKG kinases. Similarly, Halouska et al. 
demonstrate that the in vivo mechanism of action 
of a chemical lead can be inferred by compar-
ing the metabolome changes to a known drug 
[123]. If two or more drugs have a similar impact 
on the metabolome then the compounds share a 
similar target. Additionally, NMR metabolomics 
is also widely used for drug development and 
personalized medicine [143–145]. The consortium 
for metabonomic toxicology, an organization of 
major pharmaceutical companies, was formed to 
share metabolomics data from drug studies to 
characterize metabolites associated with kidney 
or liver toxicity. The overall protocol for toxicity 
analysis is comparable to drug discovery and lead 
identification. Specifically, biofluid (e.g., urine, 
serum and saliva) metabolites from animals or 
patients undergoing drug treatment are analyzed 

by NMR to identify metabolites known to be 
associated with drug toxicity or disease biomark-
ers. If the biofluid metabolites reveal the presence 
of drug toxicity or the lack of drug efficacy, then 
an alternative treatment can be prescribed. 

�� Designing a metabolomics experiment: 
what information is desired?
Metabolomics is routinely combined with alterna-
tive strategies to resolve a biological problem and 
to generate a comprehensive analysis. Although 
different strategies may require alternative experi-
ments and data analysis, targeted metabolite ana
lysis, metabolic profiling and metabolic finger-
printing share the same general workflow from 
sample preparation to data collection and ana
lysis. Targeted metabolite analysis is the exclusive 
study of the direct product of a corresponding 
enzyme or protein [116]. Metabolic profiling is the 
identification and quantification of a set of pre-
defined metabolites in a biological sample [146]. 
The metabolites may belong to a specific class of 
compounds or a particular metabolic pathway. 
As an illustration, metabolic fingerprinting can 
be used to probe different metabolic phenotypes. 
Metabolic profiling can then be used to provide 
a detailed analysis of specific metabolite changes 
between the two phenotypes. Metabolomics can 
also be referred to as ‘metabolic fingerprinting’ 
[147], and is generally designed to rapidly classify 
biological samples. The combination of different 
strategies makes metabolomics a flexible and ver-
satile technique for the analysis of various biologi-
cal systems, such as bacterial biofilms [148,149]. The 
NMR metabolomics methodologies described for 
drug discovery are equally applicable to inves-
tigating bacterial biofilms, for identifying new 
drug targets and chemical leads, and evolving 
lead candidates into new drugs. Again, character-
izing and comparing the metabolomic differences 
between planktonic cells and biofilms provides 
a means to identify active and relevant biologi-
cal processes associated with biofilm formation. 
Correspondingly, proteins involved in these path-
ways are potential drug targets. Identifying and 
validating drug leads can then be accomplished 
by observing chemical-induced changes in the 
metabolome related to biofilm formation. 

�� Designing a metabolomics experiment: 
what steps need to be taken?
NMR-based metabolomics generally refers to 
a comprehensive approach to the analysis of 
metabolomic samples that include specific NMR 
experiments, sample preparation protocols, and 

Key Terms

Classes or groups: 
Collections of NMR spectra 
obtained from replicate 
bacterial cell cultures where 
one experimental variable 
differs from the other sets of 
spectra.

Scores plot: Each NMR 
spectrum is represented as a 
single point in a scores plot, 
where its relative location is 
dependent on the spectrum’s fit 
to a predictive model. The 
resulting clustering pattern 
identifies the relative similarity 
and differences between the 
NMR spectra.
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multivariate statistical analysis [150–152]. NMR 
spectroscopy is used to characterize the meta-
bolic samples by providing both qualitative and 
quantitative data [117]. NMR-based metabo-
lomics of bacterial biofilms consist of the gen-
eral procedures outlined in Figure 5: prepare the 
metabolic samples by culturing the desired bacte-
rial strains under identical conditions (the only 
variable should be the specific environmental or 
genetic factor being investigated); prepare the 
NMR samples by lysing the cells, extracting the 
metabolites and removing cell debris; detect the 
metabolites through various NMR techniques; 
and perform spectral processing, data normali-
zation, statistical analysis and metabolite iden-
tification. The success of metabolomics largely 
depends on accomplishing each step in a highly 
controlled and uniform manner. Variations 
in the NMR metabolomics data should result 
from relevant biological differences between the 
samples as opposed to artifacts introduced from 
sample or data handling. For example, extracting 
the metabolites from the lysed cells should occur 
quickly and at low temperatures to avoid changes 
to the metabolome that results from the proc-
ess of harvesting the cells. In effect, all potential 
variables, such as the number of cells, growth 
phase, culture media, experimental conditions, 
bacterial strain and time, need to remain con-
stant between all bacterial samples [153]. Again, 
the only difference between the various bacterial 
cultures should be the specific environmental or 
genetic factor being investigated. Uniformity is 
the key to a successful metabolomics experiment. 
It is impractical to investigate a heterogeneous 
sample composed of multiple bacterial organ-
isms since there is no mechanism to associate the 
majority of the commonly observed metabolites 
to a specific organism. Alternatively, using flow 
cytometry or other techniques [154] to separate 
the cells prior to investigating the metabolome 
does not solve the problem. The results would be 
invalid because the time required and the process 
of separating the cells would perturb the state of 
the cells and, correspondingly, the metabolome. 

�� Designing a metabolomics experiment: 
what model is used?
Fundamental to a metabolomics study is the 
identification of the classes or groups of bacte-
rial cells that will be compared. A straightfor-
ward application is the comparison between two 
groups, a bacterial strain in its planktonic state 
(class one) and its biofilm state (class two). Models 
of higher complexity include even more classes. 

For example, Figure 6 illustrates the application 
of metabolomics to monitor in vivo drug activ-
ity. The diagram illustrates the general analysis 
of clustering patterns in a principal component 
analysis (PCA) scores plot. In a scores plot, the 
metabolome of four different classes are com-
pared: wild-type cells; mutant cells in which the 
drug-target has been genetically knocked-out; 
wild-type cells treated with the drug; and mutant 
cells treated with the drug. The activity and selec-
tivity of the drug is determined by the relative 
similarity of the four different metabolomes as 

Growth of bacteria cultures:
– wild-type versus mutant
– environmental stressors
– growth phases

Metabolite sampling:
– cell quenching and collection
– cell distribution and separation
– metabolite extraction in NMR buffer

NMR data collection:
– 1D 1H, 2D TOCSY, 2D HSQC
Data processing:
– noise removal, scaling, normailization

Statistical analysis:
– PCA, OPLS-DA, hierarchical analysis
Metabolite identification:
– MMCD, HMDB, BMRB metabolomics

Metabolite pathway construction:
– KEGG, BioCyc, Cytoscope
Systematic biological integration:
– transcriptomics, proteomics

Figure 5. General protocols for an NMR 
metabolomics study.
BMRB: Biological Magnetic Resonance Data 
Bank; HMDB: Human Metabolome Database; 
HSQC: Heteronuclear single-quantum 
correlation; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; MMCD: Madison 
Metabolomics Consortium Database; 
OPLS-DA: Orthogonal partial least squares 
discriminant analysis; PCA: Principal 
component analysis; TOCSY: Total correlation 
spectroscopy.
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described in Figure 6. As an illustration, a drug is 
selective and active if the metabolome of the wild-
type cells treated with the drug clusters together 
with the metabolome obtained from the mutant 
cells with and without drug treatment, where this 
cluster forms a separate cluster from the wild-type 
cells without the drug treatment (Figure  6B). 
These results indicate the protein target in the 
wild-type cells was chemically inactivated since 
the metabolome is identical to the mutant cells 
where the protein was genetically inactivated. It 
also differs from the wild-type cells without the 
drug treatment where the protein is still active. 
The drug is selective because there is no difference 
between the metabolomes for the mutant cells 
with or without drug treatment. This analysis can 
be easily generalized. The ‘drug’ in this scenario 
can also be taken as any environmental condition, 
while the ‘mutant’ can be taken as the drug target 
or any knockout, repressed or overexpressed gene. 

Metabolomics sample preparation
Metabolite sample preparation includes cell 
quenching, cell harvesting, cell disruption and 
metabolite extraction. An important advantage 
of NMR-based metabolomics is the minimal 
and relatively simple sample preparation proto-
col. Nevertheless, the details of the procedure 
influence the accuracy, reliability and reproduc-
ibility of the metabolomics data [117]. Different 
approaches to sample preparation have various 

advantages in terms of speed, capability, consis-
tency, efficiency and metabolite recovery yield 
[155–157]. Since biofilms can form on a wide range 
of surfaces or habitats, the experimental condi-
tions for growing and harvesting cells can be 
highly variable. Therefore, this review will focus 
on a general discussion of sampling methods for 
biofilm-related planktonic cells.

�� A proper metabolite extraction 
technique is critical
A very critical issue in sample preparation is the 
need to rapidly and efficiently quench all enzy-
matic and biological activities in order to cap-
ture an accurate ‘snap-shot’ of the metabolome. 
This is because metabolites, such as pyruvate, 
fumarate, oxoglutarate, phosphoenolpyruvate, 
fructose-6-phosphate and others, have a rapid 
turnover rate [158]. In addition, it is important to 
avoid inducing a stress response or cell death that 
would completely invalidate the study. Thus, a 
quick quenching step that involves reducing the 
cell temperature has been shown to be a useful 
approach to slow down enzyme activity within 
a cell [155]. Methanol is commonly used because 
of its low freezing point and minimal toxicity 
relative to other organic solvents [156]. However, 
methanol may only be suitable for Gram-positive 
bacteria or fungi due to the possibility of cell leak-
age and the loss of metabolites during the quench-
ing and washing steps [158]. Choosing the proper 
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Figure 6. Hypothetical principal component analysis scores plot for several scenarios. 
(A) Inactive compound; (B) active and selective inhibitor; (C) active, nonselective inhibition of 
target and secondary protein; and (D) active, nonselective preferential inhibition of 
secondary protein. 
PC: Prinicipal component. 
Reprinted with permission from [267] © American Chemical Society (2006).
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metabolite extraction protocol is extremely criti-
cal since it influences the efficiency and accuracy 
of the entire metabolomics experiment.

Improperly removing the cell growth medium 
and washing the cells is an easy way to contami-
nate the metabolomic samples and generate 
unreliable data. Filtration and centrifugation 
are the two main methods of removing the 
culture medium before collecting the metabo-
lome. Centrifugation takes longer so there are 
concerns regarding induced stress and metabo-
lome changes, but it has a higher consistency in 
sample preparation. Conversely, filtration is sig-
nificantly faster, and it is also easier to quench 
cells on a filter membrane. However, there are 
also practical concerns with uniformly and 
consistently retrieving all the frozen cells from 
the filter paper. Nevertheless, filtration quench-
ing was demonstrated to have the highest yield 
for an S. aureus metabolomics study [159]. An 
NMR-based metabolomics study of P. pastoris 
applied a single centrifugation step and demon-
strated that there was no benefit to including an 
additional washing step in the quenching process 
[160]. Directly growing E. coli cells on filter paper 
may provide an efficient and fast approach to 
quench cells and extract the metabolome [161]. 
To date, the choice of technique to separate and 
wash cells is still very flexible, which implies a 
necessary optimization step for any metabo-
lomics study. An inability to efficiently arrest 
all cell processes and purify the cells without 
inducing leakage or lysis will inadvertently lead 
to undesirable changes in the state of the system 
and the metabolome. Thus, choosing system-
appropriate washing, quenching and cell separa-
tion protocols is the first and most critical step 
of a metabolomic project and will determine the 
validity of the entire study. 

Cell lysis and metabolite extraction can 
sometimes be carried out simultaneously. Both 
mechanical disruptions, such as the Fast-Prep® 
system or organic solvent-based methods are 
widely used [157,162]. Trichloroacetic acid is a 
traditional approach for lysing cells from filter 
paper, but trichloroacetic acid causes a signifi-
cant background for metabolomics data because 
it also degrades the filter paper [158]. The opti-
mal extraction buffer should: extract the largest 
number of metabolites; be nonselective and not 
exclude molecules with particular physical or 
chemical properties; and be nondestructive, as 
well as not modify metabolites through chemi-
cal or physical means [163]. Since metabolites are 
normally dissolved in a D

2
O buffer or CDCl

3
 for 

NMR, choosing alternative extraction solvents 
is not particularly beneficial. A common extrac-
tion solvent is a 5:2:2 v/v mixture of methanol, 
chloroform and water [164]. Other extraction 
mixtures include a 1:1 v/v mixture of methanol 
and chloroform, or water and chloroform for 
metabolite extractions that include lipids [165]. 

NMR experiments for metabolomics
There are many practical challenges encountered 
when studying the bacterial metabolome. A cel-
lular metabolome can contain upwards of thou-
sands of metabolites, with a 7–9 order of mag-
nitude range in concentrations (i.e., picomoles 
to millimoles) [166]. Therefore, it is generally not 
possible to analyze all cellular metabolites in a sin-
gle experiment. Also, cellular metabolism is very 
sensitive to environmental changes, in which the 
measurement and sampling process can influence 
the metabolome. Thus, metabolomic measure-
ments are also perturbed by including separa-
tion techniques. Correspondingly, each biologi-
cal system requires experimental optimization to 
accurately study its metabolome. 

�� NMR- or MS-based metabolomics?
MS and NMR are the primary analytical 
techniques used for metabolite detection. MS 
measures the mass-to-charge ratio of charged 
molecules that can be used to determine the 
elemental composition and elucidate the chemi-
cal structure of molecules. While an exact mass 
is determined by MS, the limited molecular-
weight dispersion of the metabolome generally 
requires the use of chromatography [167]. GC, 
HPLC and CE are common separation tech-
niques used in MS-based metabolomics [168,169]. 
Unfortunately, the use of chromatography to 
separate metabolites inevitably leads to changes 
in the metabolome. The amount that is recovered 
from the chromatography step will vary for each 
metabolite, where some metabolites will be lost 
or chemically modified. MS also requires ioniza-
tion of the molecule for detection with the cor-
responding uncertainty that a specific metabolite 
will ionize. Furthermore, determining a concen-
tration for each metabolite by MS is particularly 
challenging.

Conversely, NMR determines a molecular 
structure by measuring nuclear chemical shifts 
within a magnetic field [170]. Three valuable 
pieces of information are obtainable from a sin-
gle peak in an NMR spectrum (Figure 7). The 
chemical shift is related to the local chemical 
environment of that specific nucleus (e.g., 1H, 
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13C and 15N), and the peak-splitting (J-coupling) 
identifies chemically bonded nuclei, which are 
both used to identify the chemical structure of 
the metabolite [170]. Importantly, the peak inten-
sity is directly proportional to the metabolite’s 
concentration. Typically, multiple distinct NMR 
resonances are observed per molecule, which 
eliminates the need for chromatographic sepa-
ration and increases the accuracy of metabolite 
identification. 

MS is significantly more sensitive than NMR 
and covers a wider diversity of the metabolome, 
although the use of cryogenic probes has sig-
nificantly increased the sensitivity of NMR by a 
factor of four [171]. In effect, NMR only detects 
the most abundant metabolites that are present 
at concentrations greater than 1 to 5 µM. 1H 
NMR is typically used for metabolomics since 
1H NMR is 64-times more sensitive than 13C 
NMR. Nevertheless, NMR cryoprobes can still 
be used to detect metabolites using naturally 
occurring 13C, which has an abundance of only 
1.1% (12C is not detectable by NMR) [172,173]. MS 
is a destructive technique, but it requires a sig-
nificantly lower sample amount (<100 µl) com-
pared with NMR (600 µl). Correspondingly, 
both approaches are complementary to each 
other and contribute inherently distinct infor-
mation to the analysis of a metabolome [174]. The 
complementary nature of MS and NMR has 
been demonstrated by a number of metabolomic 
studies using both techniques [175–179]. In effect, 
the MS and the NMR data can be combined to 

create a 3D scores plot. The added dimensional-
ity from complementary data may provide the 
additional resolution necessary to differentiate 
between multiple classes or groups.

�� 1D, 2D & solid-state NMR techniques for 
metabolomics
The application of NMR spectroscopy for 
metabolomics can be categorized into one 
of three groups, 1D NMR, 2D NMR and 
solid-state NMR [170]. 1D and 2D solution-state 
1H NMR experiments are commonly used for 
global metabolomics analysis of bacterial cell 
extracts [180]. Conversely, solid-state NMR can 
be used to analyze intact cells [181–183]. In addi-
tion to 1H, other nuclei are also used in 1D 
NMR-based metabolomics, such as the meta-
bolic profiling of the carbohydrate cycle using 
1D 13C NMR [184,185], or tissue metabolism 
using 1D 31P NMR [186]. 

A typical 1D 1H NMR spectrum of a bacte-
rial cell lysate may contain thousands of sharp 
lines from low-molecular weight metabolites 
(Figure 7) [117]. The entire 1D 1H NMR spec-
trum is used as a ‘fingerprint’ to characterize the 
state of the bacterial cell. A global investigation 
of the metabolome is based on a comparative 
analysis of the features present or absent in each 
1D 1H NMR spectrum. A global metabolomic 
analysis is based on how similar or how different 
the 1D 1H NMR spectra are between each class 
or group. It is not necessary to assign each 1D 1H 
NMR spectrum to identify and quantify all the 
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Figure 7. 1H NMR spectra of the intracellular metabolic profiles of aqueous extract of 
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metabolites present in each sample. Overlapping 
these relevant NMR resonances and interfering 
with the analysis may be broad bands from pro-
teins or other biomolecules, which can be readily 
removed by using a Carr–Purcell–Meiboom–
Gill (CPMG) spin-echo sequence [187]. The 
CPMG pulse sequence takes advantage of the 
large difference in T

2
 relaxation times between 

small-molecular-weight metabolites and large-
molecular weight biomolecules. The NMR 
resonances from the biomolecules rapidly decay 
during the CPMG pulse. Alternatively, proteins 
and other biomolecules can be removed by an 
appropriate choice of extraction solvents [188,189]. 
The large interfering signal from water or other 
buffer components is also eliminated by the use 
of appropriate NMR solvent-suppression meth-
ods and a 100% deuterated buffer [190]. The 
water NMR resonance is set in the center of 
the spectrum where selective irradiation and 
gradient pulses suppress the solvent peak while 
leaving all other peaks unaffected. In effect, any 
resonance in the 1D 1H NMR spectrum that 
does not originate from the bacterial metabo-
lome will generate a ‘false feature’ that needs to 
be removed. NMR resonances originating from 
proteins or solvents are likely to be variable and 
dominate the spectra relative to metabolite sig-
nals. This will lead to an erroneous interpreta-
tion of the 1D 1H NMR spectra and incorrect 
sample classification. For instance, replicate 
samples may not cluster together because of a 
significant variation in the peak height and peak 
shape of the water resonance despite the overall 
similarity in all the metabolite NMR peaks.

High-resolution magic angle spinning 
(HR-MAS) is used to generate in vivo 1D 1H 
spectra of solids comparable to solution-state 
NMR [191]. Thus, small, intact and untreated 
cells or tissues can be directly analyzed by 
HR-MAS by spinning samples at speeds between 
4 and 12 kHz at the ‘magic’ angle of 54.7° rela-
tive to the external magnetic field. Spinning the 
sample significantly reduces NMR line widths 
by averaging out chemical shift anisotropy, mag-
netic susceptibility, and dipolar coupling that 
are prominent in solid samples [170]. 

Assigning a 1D 1H NMR spectrum to 
identify the metabolites present in a sample 
is challenging because of the large number of 
peaks, the significant overlap in peaks, the high 
chemical shift degeneracy (multiple metabolites 
have some chemical shifts in common), and an 
incomplete database of NMR reference spec-
tra for metabolites. Again, assigning a 1D 1H 

NMR spectrum is not necessary for a global 
analysis of the metabolome, but identifying 
the specific metabolites that are changing and 
are the main contributors to class distinction is 
extremely valuable for understanding the under-
lying biological differences. Statistical total cor-
relation spectroscopy (STOCSY) can be used to 
associate multiple NMR peaks from the same 
molecule in a complex mixture [192]. This sig-
nificantly simplifies the assignment problem 
since most, if not all, of the NMR resonances 
for a given metabolite can be used together in a 
database search. A positive identification only 
occurs when all of the observed chemical shifts 
match the metabolite’s known chemical shifts in 
a database. In STOCSY, a series of 1D 1H NMR 
spectra is converted into a pseudo-2D spectrum 
that is based on a correlation of peak intensi-
ties. NMR peaks from the same metabolite will 
change together as the metabolite’s concentra-
tion varies across multiple distinct classes. The 
statistical heterospectroscopy (SHY) is similar 
in concept to STOCSY [193]. Instead of corre-
lating NMR peak intensities, SHY correlates 
chemical shifts from NMR with m/z data from 
MS. Thus, SHY can improve molecular iden-
tification by directly cross-correlating NMR 
chemical shifts with a molecular weight.

More commonly, 2D NMR spectroscopy 
improves the accuracy of metabolite assignments 
by significantly increasing spectral resolution 
by extending chemical shift information into 
a second frequency dimension. Additionally, 
2D NMR experiments can identify the net-
work of resonances associated with a specific 
metabolite through J-coupling. 2D correlation 
spectroscopy (COSY) and total correlation 
spectroscopy (TOCSY) experiments identify 
spin–spin coupling connectivities that identify 
chemically bonded pairs of hydrogens, carbons 
or nitrogens [194,195]. To a lesser extent, 2D 
J-resolved NMR experiments are also used for 
metabolomics studies [196]. In a 2D J-resolved 
NMR experiment, the data are dispersed into 
two dimensions based on chemical shifts and 
the J-coupling pattern [197]. While it is possible 
to match coupling patterns to identify bonded 
resonances, this is generally not practical for a 
complex metabolomics data set. Therefore, a 2D 
J-resolved NMR experiment has significantly 
less information then a 2D COSY or TOCSY 
experiment while requiring the same amount 
of experimental time. Alternatively, a 1D pro-
jection of the 2D J-resolved NMR experiment 
can be used to simplify the NMR spectra by 
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removing peak multiplicity due to J-coupling 
[198]. This dramatically reduces the number of 
peaks and correspondingly reduces peak overlap. 
Removing peak splitting improves the accuracy 
of metabolite identification and quantification. 
Of course, a single 2D NMR experiment may 
require 1 h or longer to acquire compared with 
a few minutes for a 1D NMR experiment.

�� Why 2D 1H–13C heteronuclear single-
quantum correlation experiments are 
commonly used for metabolite identification
The 2D 1H–13C heteronuclear single-quantum 
correlation (HSQC) experiment correlates the 
1H and 13C chemical shifts for each C-H pair in 
a molecule [199]. This provides unique informa-
tion relative to the COSY, TOCSY or J-resolved 
experiments. In addition, metabolite assignments 
are easier with a 2D 1H–13C HSQC experiment 
because of two correlated and distinct chemical 
shift assignments, the large 13C chemical shift 
dispersion and the simplified spectrum without 
splitting from J-coupling. However, due to the 
low natural abundance (1.1%) of 13C-labeled 
compounds, such as 13C-methanol, 13C-CO

2 

[200], 13C-glycerol [201] and 13C-glucose [202] are 
required as a bacterial carbon source to enhance 
the sensitivity of the NMR spectrum [203]. This 
significantly simplifies and focuses the analysis 
of the metabolome. Only metabolic intermedi-
ates and products of the 13C-labeled materials 
will be partially or completely enriched with 
13C. Correspondingly, only these metabolites 
will be observed in a 2D 1H−13C HSQC spectrum, 
which provides a means to follow carbon flow 
through the metabolome and identify the per-
turbed metabolic pathways. Standard HSQC 
experiments are not quantitative because of 
significant variability in coupling constants and 
relaxation times (T

1
 and T

2
) between metabo-

lites. Nevertheless, the newly developed 2D 
extrapolated time zero 1H−13C HSQC (HSQC

0
) 

experiment allows for the calculation of metabo-
lite concentrations [204]. This experiment collects 
a series of 2D HSQC spectra with an increas-
ing number of the core NMR pulse sequence 
or HSQC block. Typically, this HSQC block 
is repeated from one- to three-times. The peak 
intensity will decrease linearly with the number 
of HSQC blocks, where a linear fit and extrapo-
lation back to zero HSQC blocks will determine 
the true peak intensity and metabolite concen-
tration. Examples of 2D NMR spectra used to 
identify metabolites from biological samples are 
shown in Figure 8.

�� Processing NMR data: binning, peak 
alignment, baseline correction & 
normalization
For chemometrics (also see the section 
‘Chemometrics & bioinformatics analysis of 
metabolomics data’), the 1D 1H NMR spectra 
are transformed into a data matrix of integrated 
peak intensities and corresponding chemical 
shift values. These data are used to define the 
classes and to identify NMR spectral features 
that differentiate the classes. Unfortunately, 
subtle instrument, temperature and sample con-
dition variability (e.g., pH and ionic strength) 
can result in chemical shift differences between 
replicate samples. Correspondingly, misalign-
ments will occur in the NMR data matrix 
between these replicate samples that will lead to 
clustering errors independent of any biological 
differences. One approach to normalize NMR 
metabolomics samples is the inclusion of a 
known concentration of chemical shift reference 
compound, such as the sodium salt of 3-trimeth-
ylsilylpropionic acid. The 3-trimethylsilylpro-
pionic acid peak intensity can also be used to 
calibrate the concentrations of the metabolites 
in the biological sample. However, an internal 
reference only corrects for global differences. It 
does not correct for individual peak position 
and shape variability due to subtle experimen-
tal differences. Instead, binning or bucketing is 
commonly used to correct for peak variability 
between replicate samples [205,206]. 

In its simplest implementation, bucketing 
divides the NMR spectrum into equally sized, 
nonoverlapping subspectral regions with a width 
or bin size of 0.025 ppm. A typical 1D 1H NMR 
spectrum with a width that ranges from 0 to 
10 ppm will have 400 buckets. Bin sizes typi-
cally range from 0.01 to 0.04 ppm. The peak 
intensity within each bucket is integrated, and 
these resulting integrals are then used as input 
to the chemometrics analysis. In this manner, 
the buckets or bins smooth out small peak vari-
ability with the expectation that the same peaks 
occur in the same bucket. Unfortunately, bin 
edges create a second problem: the undesirable 
splitting of a peak between buckets. Thus, ‘intel-
ligent’ or ‘adaptive’ bucketing techniques have 
been developed that vary the individual bin size 
to avoid dividing peaks between multiple buckets 
[207–210]. These methods use a Gaussian function, 
a recursive algorithm, optimize an objective func-
tion using a dynamic programming strategy, or 
use undecimated wavelet transforms to automati-
cally identify bin edges. In all cases, intelligent 
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Figure 8. 2D NMR spectra obtained from metabolomics samples. (A) Overlay of 2D 1H–13C 
heteronuclear single-quantum correlation spectra comparing wild-type Staphylococcus epidermidis 
strain 1457 (red) and aconitase mutant strain 1457-acnA::tetM (black) grown for 6 h in standard 
tryptic soy broth media augmented with 0.25% 13C-glucose. NMR resonances corresponding to 
specific metabolites are labeled and citrate is circled. (B) Overlay of 2D 1H–1H total correlation 
spectroscopy spectra comparing wild-type S. epidermidis strain 1457 (red) and aconitase mutant 
strain 1457-acnA::tetM (black) grown for 6 h in standard tryptic soy broth media.
Reprinted with permission from [124] © American Chemical Society (2011).
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bucketing performs significantly better than uni-
form bucketing, where dynamic adaptive binning 
was recently shown to perform the best [210]. The 
use of intelligent bucketing results in a signifi-
cant improvement in replicate clustering in scores 
plots since it minimizes spectral differences that 
are biologically irrelevant. Noise regions of the 
NMR spectra are typically zeroed or removed 
from the bucketing [211]. Similarly, buckets 
resulting from solvent or buffer peaks that are 
unrelated to the bacterial metabolome are also 
excluded. Again, this eliminates class distinction, 
which results from biologically irrelevant data. In 
essence, the variables used in the chemometrics 
analysis should be relevant to real variations in 
the metabolome between the classes [153]. 

Peak alignment is a more robust and complex 
alternative to NMR binning [212–215]. The goal is 
to remove the chemical shift variability between 
the replicate 1D 1H NMR spectra by individu-
ally aligning each NMR peak to a representa-
tive spectrum from each class. The approaches 
used include fuzzy warping, genetic algorithms, 
a generalized fuzzy Hough transform approach, 
a reduced set mapping (PARS) algorithm, or a 
recursive segment-wise peak alignment. Each 
approach demonstrated acceptable results on 
test metabolomic samples and were shown to 
improve upon the results obtained from buck-
eting [215]. Nevertheless, intelligent bucketing 
is still the predominant methodology used in 
NMR metabolomics.

An NMR spectrum is experimentally collected 
as a free induction decay (FID) that requires fur-
ther processing to convert the time-domain data 
into a frequency-domain spectrum through a 
Fourier transform. This process can be accom-
plished using a variety of software packages 
(Table 1). All of the software packages can import 
popular NMR data formats, such as Bruker, 
Varian, Jeol Delta, JCAMP-DX, as well as others. 
Some NMR software can process both 1D and 2D 
data, where others only focus on processing 1D 
(most popular) or 2D data sets. In addition to the 
Fourier transform step, the processing of NMR 
data may include zero-filling, phase correction, 
baseline correction, applying a window function 
and removal of solvent peaks. The inclusion of 
any of these steps induces changes in the resulting 
NMR spectrum that is not biologically relevant. 
Thus, uniformity in the NMR processing pro-
tocol is essential, where minimizing all spectral 
manipulation is ideal. In general, phase correction 
is essential in order to obtain purely absorption 
peak shapes. Uniform zero-filling of the NMR 

spectra is typically acceptable since it provides a 
constant improvement in the digital resolution. 
Similarly, removing residual solvent peaks by sim-
ply zeroing the corresponding region of the NMR 
spectrum does not have any detrimental effect 
because these solvent regions are not included 
in the binning process. Conversely, applying a 
window function or incorporating baseline cor-
rection should be avoided, if possible, since these 
processes induce significant variable changes in 
the NMR spectrum. The goal of a window func-
tion is to either increase the spectral resolution or 
the signal-to-noise by multiplying the FID with 
a mathematical function. As a result, each NMR 
peak shape is artificially changed. Instead, the 
signal-to-noise and spectral resolution should be 
improved experimentally. A baseline correction is 
required if the baseline for the NMR spectrum 
is not flat. A flat baseline is necessary for reliable 
chemometrics analysis. Distorted baselines may 
result from intense solvent or buffer peaks, from 
phasing problems, errors in the first data points 
of the FID, large range of T

1
 values (short recycle 

times), or short acquisition times. Again, baseline 
problems should be experimentally minimized. 
Nevertheless, numerous computational approaches 
to obtain a flat baseline are available and include 
a linear or polynomial (up to six orders) fit of the 
baseline, FID reconstruction and spectrum aver-
aging. The choice of a baseline correction method 
depends on the specifics of the baseline distortion, 
which is typically determined by trial and error. 
Importantly, a single baseline correction method 
must be used for an entire metabolomics dataset in 
order to avoid inducing class distinctions that are 
primarily a result of the NMR processing protocol.

Ideally, the overall concentration of the 
metabolites and the corresponding signal-to-
noise of each replicate 1D 1H NMR spectrum 
will be essentially identical. Unfortunately, in 
practice, there may be a significant variability in 
the signal-to-noise between replicate NMR spec-
tra due to random errors in cell lysing, metabolite 
extraction, or the number of bacterial cells per 
sample. Correspondingly, the 1D 1H NMR spec-
tra need to be normalized [216]. Center averaging 
is a common normalization technique:

Z X Xi= -
v

Equation 1
Where X  is the average signal intensity, σ is the 
standard deviation in the signal intensity, and X

i
 

is the signal intensity within a bin. Other nor-
malization techniques include normalization to 
a constant sum, Pareto scaling, mean centering, 

Review | Zhang & Powers

Future Med. Chem. (2012) 4(10)1288 future science group



logarithmic scaling and probabilistic quotient 
normalization. A recent analysis of NMR pro-
cessing procedures by De Meyer et al. suggests 
that a combination of intelligent bucketing with 
probabilistic quotient normalization yields the 
best results [217]. Of course, it was not practical 
to explore all the possible combinations of the 
various processing techniques and, as a result, 
the analysis did not include center averaging. 
This highlights a particular challenge with pro-
cessing NMR metabolomics data: there is no 
clear consensus for an optimal protocol because 
of all the possible combinations of parameters 
that need to be evaluated.

Chemometrics & bioinformatics 
analysis of metabolomics data
For a detailed understanding of a complex 
biological system, it is essential to follow the 
response of an organism to a conditional per-
turbation at the transcriptome, proteome or 
metabolome level [126]. Metabolic products are 
dependent on genotype, environment, time and 
location [218]. Perturbations in any of these fac-
tors may lead to a variety of biological changes 
that inadvertently affect the metabolome [126]. 
The primary goal of chemometrics is to reduce 
the complexity of the NMR-based metabolomics 
data to understand these global correlations. In 
essence, chemometrics identifies the major fea-
tures within an NMR spectrum, the presence or 
absence of peaks, the change in peak intensity 
or shape, or the change in chemical shifts that 
differ between the various classes. A class defi-
nition can be based on any variable that affects 
or changes the bacterial cell culture, such as 
different bacterial strains (including wild-type 
and mutant cells) and different experimental 
conditions (e.g., growth phase, drug dosage, 
media composition and pH). Bioinformatics is 
used to uncover and characterize all the associ-
ated variables and to reveal the underlying rela-
tionships. Essentially, bioinformatics is used 
to identify the metabolites that correlate with 
the major changes in the NMR spectra and to 
associate these metabolites with specific pro-
teins, enzymes, metabolic pathways and other 
biological processes. 

�� PCA & orthogonal partial least squares 
discriminant analysis are the most 
commonly used chemometrics techniques
For statistical modeling, PCA is the most com-
mon multivariate technique for the comparison 
of metabolomic data [219]. Each multivariable 

(chemical shift and intensity) NMR spectrum 
is converted into a single point in multidimen-
sional Cartesian space (Figure 9). Each axis (V

1
, 

V
2
, V

3
 … V

n
) corresponds to a specific chemical 

shift where the peak intensity is the value along 
each axis. PCA determines the vector (PC1) cor-
responding to the largest variation in the data 
and fits each NMR spectra to this vector. Each 
NMR spectrum is assigned a value – prinicipal 
component one (PC1) based on its distance to 
the vector (PC1). The process is repeated for the 
next largest variation (PC2) orthogonal to the 
first vector. Plotting the resulting principal com-
ponents (PC1 and PC2) corresponds to a scores 
plot, where similar spectra (and metabolomes) 
cluster together in a scores plot. Spectra (and 
metabolomes) obtained from different classes are 
expected to form separate clusters in the scores 
plot. Figure 9 illustrates the hypothetical sepa-
ration of class 1 from class 2 and the relatively 
tight clustering of the class replicates. The class 
separation is based on differences in the 1D 1H 
NMR spectra. 

Orthogonal partial least squares discriminant 
analysis (OPLS-DA) is a related, but alternative 
approach to PCA. Unlike PCA, OPLS-DA is a 
supervised method. This is an important and 
significant difference. In PCA, the different 
classes are not identified and each 1D 1H NMR 
spectrum follows the protocol described above. 
Thus, the clustering of each NMR spectrum in 
the scores plot is solely determined by the intrin-
sic differences and similarities in the features 
of its NMR spectrum relative to all the other 

Table 1. NMR software packages.

Software Operating system Source Dimension Ref.

ACDLab Win Commercial 1D and 2D [302]

CCPNmr Win/Mac/Unix Academic 2D [269,303]

Felix Win/Unix Commercial 2D [304]

FERCH Win Commercial 1D [305]

Gifa Unix Academic 1D and 2D [270,306]

iNMR Mac Commercial 1D and 2D  [307]

matNMR Win/Mac/Unix Academic 1D and 2D [271,308]

MestreNova Win/Mac/Unix Commercial 1D and 2D [309]

NMRPipe Win/Mac/Unix Academic 2D [272,310]

NMRViewJ Win/Mac/Unix Commercial 2D [311]

NUTS Win Commercial 1D and 2D [312]

RMN Mac Academic 1D and 2D [313]

rNMR Win/Mac/Unix Academic 2D [273,314]

Sparky Win/Mac/Unix Academic 2D [315]

SpinWorks Win/Mac/Unix Academic 1D and 2D [316]

TARQUIN Win/Mac/Unix Academic Solid state [274,317]

WIN-NMR Win Commercial 1D [318]
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NMR spectra. However, in OPLS-DA each 1D 
1H NMR spectrum is assigned to one of two 
classes, (e.g., biofilm vs planktonic, healthy vs 
diseased, treated vs untreated, and wild-type vs 
mutant). More than two class definitions can 
be used, but it is generally not recommended. 
As a result, OPLS-DA determines the cluster-
ing patterns in the scores plot based on the 
NMR spectral features and the class definition. 
OPLS-DA tries to maximize the separation 
between the classes based on these manual class 
assignments, while minimizing the within class 
variation. This results in tighter class clustering 
in the OPLS-DA scores plot relative to PCA. 
Fundamentally, if two classes are defined in 
OPLS-DA then two clusters corresponding to 
the two assigned classes will be generated in the 
resulting scores plot. OPLS-DA assesses a rela-
tionship between an X matrix (NMR data) and 
Y matrix (the 0 or 1 class designation). Thus, 
OPLS-DA will only identify all the spectral 

features that can be used to distinguish the two 
classes regardless of any real significance (e.g., 
noise and small random variability in peak 
height). Conversely, the class separation in a 
PCA scores plot depends on a combination of all 
principal component variables. Since OPLS-DA 
is a supervised method or biased by the class 
assignment, it is essential that the model is vali-
dated [153]. Is the class separation due to relevant 
changes in the 1D 1H NMR spectra resulting 
from changes in metabolite concentrations?

The quality of the OPLS-DA model can be 
evaluated by multiple statistical factors and 
cross validation, the goodness of fit (R2) and 
the quality assessment score (Q2) [220]. A good 
OPLS-DA model has R2 values ≥0.5 (range of 
0–1) that is conceptually similar to simple linear 
regressions. Similarly, a typical value for Q2 for 
a biological model is ≥0.4. The leave-one-out 
cross-correlation technique is commonly used to 
calculate Q2, where a sub-set of the NMR spec-
tra are left out to calculate a model that is then 
used to predict the left-out data [221,222]. Q2 is the 
consistency between the predicted and original 
data. Importantly, Q2 and R2 values should only 
be used as a figure of merit and not validation of 
the model. A permutation tests is one approach 
to validate the model [221,222]. The NMR spec-
tra classifications are randomly assigned creat-
ing, in principle, a random data set that should 
have poor class separation and low Q2 scores. 
The process is repeated numerous times (>1000 
permutations) until a Gaussian distribution of 
Q2 scores is obtained for the random data set. 
The statistical significance of the model with 
the correct NMR spectra classification can then 
be obtained by comparing the model Q2 with 
the random Q2 scores and calculating a p-value. 
In addition to Q2, a similar validation can be 
achieved by using the area-under-a-receiver-
operating-characteristic curve or the number of 
misclassifications.

Further validation of the OPLS-DA model 
can be assessed by determining if the NMR 
features that determine the class separation are 
biologically relevant. S-plots and loading plots 
are additional outcomes of an OPLS-DA model. 
An S-plot identifies the relative contribution of 
each bin (chemical shift and metabolite) to the 
clustering in the corresponding scores plot, each 
bin with a covariance of >0.10 or <-0.10 are iden-
tified as major contributors to the class separa-
tion [223]. Similarly, a loadings plot displays the 
relative contribution of each bin to the principal 
components. Thus, a valid OPLS-DA model is 
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Figure 9. Conceptual illustration of the principal component analysis of 
NMR-spectral data. Each 1D 1H NMR spectrum is converted into a single point 
in multidimensional space. Each axis (e.g., V
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integral. A vector (PC1) corresponds to the largest variation in the data. The 
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PC: Prinicipal component; PCA: Principal component analysis.
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supported by being able to assign metabolites to 
the bins that are associated with the class separa-
tion. The model is further validated if multiple 
bins assigned to the same metabolite are all major 
contributors to the class separation. Additionally, 
the identification of multiple correlated metabo-
lites, members of the same metabolic pathway 
for instance, that are all major contributors to 
the class separation would further strengthen the 
reliability of the OPLS-DA model. Again, the 
overall goal of NMR-based metabolomics is to 
identify major changes in the NMR spectra that 
can be associated to a specific set of metabolites 
with a relationship to a biological process, such 
as bacterial biofilm formation.

A number of metabolomics software packages 
have been developed to automate the chemo
metrics analysis by combining data normal-
ization, data reduction, model prediction and 
validation, and even metabolite identification, 
into a single work flow. These programs include: 
Automics [224], HiRes [225], MetaboAnalyst [226] 
and the R-package Metabonomic [227]. Among 
these, Automics is the most versatile and exten-
sive package and includes nine different statisti-
cal methods applicable to metabolomics data: 
feature selection (Fisher’s criterion), data reduc-
tion (PCA, LDA and ULDA), unsupervised clus-
tering (K-Mean) and supervised regression and 
classification (PLS/PLS-DA, KNN, SIMCA and 
SVM). Automics also incorporates processing 
tools to generate a STOCSY spectrum. 

Interpreting a PCA or OPLS-DA scores plot 
is fundamentally a cluster analysis. If two or 
more classes cluster together in the scores plot, 
then the NMR spectra and the corresponding 
metabolome are considered statistically simi-
lar. Conversely, two or more classes that form 
distinct clusters indicate the samples are sig-
nificantly different metabolomes. For a simple 
metabolomics study that involves only two or 
three different types of samples, the cluster 
analysis is generally straightforward. An ellipse 
that corresponds to the 95% confidence limits 
from a normal distribution for each cluster can 
be used to define each class in the 2D scores 
plot to visually determine class separation. 
Alternatively, Werth et al. [228] recently demon-
strated the application of metabolomic tree dia-
grams combined with standard boot-strapping 
techniques [229] as a more robust statistical ana
lysis of clustering patterns in scores plots. Each 
PC value (PC1 and PC2) is treated as an axis in 
a Cartesian coordinate system. An average posi-
tion is calculated for each class cluster, which 

is then used to calculate a Euclidean distance 
between each class to create a distance matrix. 
The cluster centers and distances between clus-
ters are re-calculated by randomly selecting data 
points from each class. The process is repeated 
until 100 different distance matrices are gener-
ated, which are then used to generate 100 tree 
diagrams using Phylip 3.68b [230]. A consensus 
tree is created, where the bootstrap number is 
simply the number of times each node appears in 
all 100 trees. Bootstrap values below 50% imply 
a statistically insignificant separation. Further 
analysis to identify the metabolic processes that 
led to class separation may require bioinformat-
ics [231]. An example 2D OPLS-DA scores plot 
and associated metabolomics tree diagram is 
shown in Figure 10.

Metabolic pathway reconstructions have been 
widely employed with five major goals: contex-
tualization of high-throughput data; guidance 
of metabolic engineering; directing hypothesis-
driven discovery; interrogation of multispecies 
relationships; and network property discovery 
[232]. NMR-based metabolomics are routinely 
used to generate these metabolic networks for 
a particular biological system (Figure 11). The 
first step of the process is to deconvolute and 
decode the NMR spectra. This is a difficult and 
time-consuming process because the high degen-
eracy of NMR chemical shifts makes unambigu-
ously assigning an NMR resonance to a specific 
metabolite extremely challenging. This is further 
complicated by the incompleteness of metabolo-
mics data and by several technical problems that 
include proper peak assignment [180], peak align-
ment [233,234], absolute concentration determina-
tion [204,235] and intensity normalization [236]. A 
number of metabolomics databases that contain 
NMR and MS spectra with the associated assign-
ments are available: Metabominer [237], Madison 
Metabolomics Consortium Database [238], 
BioMagResBank [239] and Human Metabolome 
Database [240]. Some efforts to automate the 
process have also been made [180,224]. 

The next critical step is to analyze the identi-
fied metabolites and find all possible correlations. 
The presence of metabolites and metabolic path-
ways in a particular organism can be verified by 
the KEGG [241] and MetaCyc databases [242]. A 
metabolic network map can then be generated 
using Cytoscape [243], and there are many metab-
olome simulators that are useful for predicting the 
networks involving hundreds of metabolites [244]. 
Additionally, Cell Designer is a valuable diagram 
editor for drawing biochemical networks [245]. 
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Analysis of biofilms with NMR-based 
metabolomics
An obvious application of NMR-based metabo-
lomics has been used to characterize the differ-
ence in the metabolome between planktonic and 
biofilm cells. Gjersing et al. applied 1H HR-MAS 
to study the metabolome difference between P. 
aeruginosa chemostat planktonic and biofilm 
cells [149]. There was no apparent difference in 
the extracellular metabolite composition when 
planktonic and biofilm cells were grown under 
continually feed chemostat mode. Conversely, the 
2D PCA scores plot of the intracellular metabo-
lome indicated a clear distinction between the 
batch and chemostat planktonic and biofilm cells 
(Figure 12A). The corresponding loadings plot 
suggests major and complex differences between 
the two metabolomes (Figure 12B). The metabo-
lite differences were not analyzed in detail, but it 
was noted that biofilm metabolites were gener-
ally lower in concentration, possibly due to the 
cells closer to the substrate operating at a lower 
metabolic rate. Similarly, Workentine et al. also 
used 1H NMR to characterize the phenotype of 
different biofilm colonies of Pseudomonas fluo-
rescens [246]. PCA of the 1D 1H NMR spectra 

yielded a 3D PCA scores plot with distinct clus-
tering for the four different P. fluorescens colonies 
(Figure 13A). The class distinction was attributed 
to changes in amino acids (Asp, Glu, Gly, Met, 
Phe, Pro, Trp and Val) and central metabolites 
(acetate, glutathione and pyruvate). This is sug-
gestive of changes in exopolysaccharide produc-
tion, response to oxidative stress, and an impaired 
amino acid metabolism. Interestingly, the four 
different P. fluorescens phenotypes exhibited dis-
tinctly different metal sensitivity (Figure 13B). 
Unfortunately, it was not possible to determine 
whether the metabolome differences were a result 
of the different metal sensitivity. Booth et al. also 
analyzed P. fluorescens cells under metal stress, 
but compared planktonic to biofilms cells [148]. 
1D 1H NMR was combined with GC-MS to 
obtain a detailed analysis of metabolite changes 
caused by the addition of copper (Figure 14). 
Planktonic cells responded differently to cop-
per stress compared with biofilms. Planktonic 
cells experienced an oxidative stress response as 
indicated by changes in the tricarboxylic acid 
(TCA) cycle, glycolysis, pyruvate, nicotinate and 
niacotinamide metabolism. Conversely, biofilms 
exhibited changes in exopolysaccharide-related 
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Figure 10. Staphylococcus epidermidis biofilm formation, regulated by the tricarboxylic acid cycle. (A) 2D orthogonal partial 
least squares discriminant analysis (OPLS-DA) comparing wild-type Staphylococcus epidermidis 1457 cells grown 6 h in standard tryptic 
soy broth media, with S. epidermidis 1457 cells grown 6 h in iron-depleted media (DTSB), with the addition of 4% ethanol,with the 
addition of 2% glucose, with the addition of 0.06 µg/ml tetracycline, with the addition of 5% NaCl, and 6 h growth of aconitase 
mutant strain 1457-acnA::tetM in standard tryptic soy broth media. The ellipses correspond to the 95% confidence limits from a 
normal distribution for each cluster. For the OPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 was designated the 
control class and the remainder of the cells were designated as treated. The OPLS-DA used one predictive component and four 
orthogonal components to yield a R2X of 0.637, R2Y of 0.966 and Q2 of 0.941. (B) Metabolomic tree diagram generated from the the 
2D OPLS-DA scores plot depicted in (A). Each node is labeled with the bootstrap number, where a value above 50 indicates a 
statistically significant separation.  
Reprinted with permission from [124] © American Chemical Society (2011).
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metabolism suggestive of a protective response 
instead of the reactive changes that occurred in 
planktonic cells. 

Demonstrating a difference between plank-
tonic cells and biofilms by NMR is an important 
step towards an application in drug discovery. 
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UDPGLSAc: UDP-NAc-d-glucosamine; VAL: Valine.
Reprinted with permission from [124]. © American Chemical Society (2011).
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Does a chemical lead inhibit metabolic path-
ways associated with biofilm formation? Does 
drug treatment result in a metabolome more 
similar to planktonic cells despite conditions 
that induce biofilm formation? Comparing the 
metabolome of planktonic cells with and with-
out drug treatment may provide an answer to 
these key questions. Furthermore, the compara-
tive analysis of planktonic cells and biofilms 

has already identified changes in the activity 
of specif ic cellular process correlated with 
biofilm formation. Thus, proteins essential to 
exopolysaccharide production and the response 
to oxidative stress may be novel targets for dis-
rupting biofilm formation. Additionally, the 
metabolome differences between planktonic 
cells and biofilms can be used as a diagnos-
tic tool and in the design of treatments. As 
an illustration, Hall-Stoodley et  al. describe 
the application of microbiological culture, 
polymerase-chain reaction-based diagnostics, 
direct microscopic examination, fluorescence 
in  situ hybridization and immunostaining to 
characterize middle-ear mucosa biopsy speci-
mens for biofilm morphology [247]. The authors 
concluded that chronic otitis media in chil-
dren that require tympanostomy tube place-
ment is biofilm related. NMR metabolomics 
could provide a similar analysis of biopsy 
samples. The treatment of biofilm infections 
that have colonized on medical implants often 
requires the removal of the infected device [149]. 
Investigating changes in bacterial metabolomes 
in response to the different surfaces (e.g., metals 
and polymers) may contribute to the develop-
ment of novel materials resistant to biofilm for-
mation [248,249]. Coating or embedding medical 
devices with antibiotics is a common approach 
to prevent biofilm infections, but the overuse of 
antibiotics incurs the risk of inducing the rapid 
development of resistance [250,251]. 

Besides characterizing cellular differences 
through metabolomics, NMR can also be used 
to explore the overall structure and function of 
biofilms. Vogt et al. used NMR to describe dif-
ferences in metabolite diffusion within a biofilm 
[252]. Pulsed-field gradient NMR was used to 
measure diffusion coefficients for slowly mov-
ing water and other components in a P. aerugi-
nosa biofilm. Five groups of components includ-
ing water, glycerol, and polysaccharides, were 
observed with diffusion coefficients ranging 
from 1.8 × 10–9 to 5 × 10–13 (m2s-1) that indicate 
locations in the biofilm pores or the extracellular 
polymeric substance. Correspondingly, the com-
plicated structure of a biofilm is a major obstacle 
to successful treatment with antibiotics. As the 
above NMR experiment suggests, a biofilm is a 
diffusion barrier that hinders the infusion and 
dispersion of antibiotics within a biofilm [253]. 
This also suggests that the in vivo activity of a 
chemical lead is determined by both its efficient 
dispersion throughout the biofilm in addition to 
its intrinsic inhibitor activity.
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A recent study by Rogers et  al. analyzed 
the synergistic activity of 2-aminoimidazole-
derived compounds, a new class of antibiofilm 
agents that disperse biofilms [254]. Combining 
a 2-aminoimidazole-derived compound with 
known antibiotics resulted in a two- to eight-fold 
reduction in MICs against biofilms of P. aeru-
ginosa, Acinetobacter baumannii, Bordetella 
bronchiseptica and S. aureus. Importantly, the 
antibiofilm agent actually resensitized MRSA. 
Walencka et al. observed a synergy between sal-
vipisone and aethiopinone from Salvia sclarea 
hairy roots with b-lactam antibiotics. Improved 
activity was observed against MRSA and mul-
tiresistant S.  epidermidis (i.e., MRSE) [255]. 
Salvipisone and aethiopinone are postulated to 
function by altering cell surface hydrophobicity 
and cell wall/membrane permeability.

NMR metabolomics has also been used to 
investigate the mechanism by which S. epidermi-
dis and S. aureus respond to a diverse set of envi-
ronmental signals to induce the planktonic to 
biofilm transition. Bacteria have been shown to 
form biofilms in response to variations in ethanol, 
oleic acid, glucose, UDP-N-acetylglucosamine, 

subinhibitory concentrations of some anti
biotics, anaerobic conditions, iron limitation, 
high osmolarity and high temperature. Instead 
of numerous distinct signaling pathways, a series 
of detailed NMR and molecular biology experi-
ments has demonstrated the presence of a single 
flexible metabolic signaling pathway centered on 
the TCA cycle [124,202,256]. 1D 1H NMR com-
bined with OPLS-DA was used to compare the 
metabolome of wild-type S.  epidermidis 1457 
and an aconitase mutant strain 1457-acnA::tetM 
under various environmental stressors known 
to induce biofilm formation (Figure 10). The 
change in the metabolome of wild-type S. epi-
dermidis 1457 in the presence of 4% ethanol, 2% 
glucose, Fe-limitation and 0.06 µg/ml of tetracy-
cline was shown to be essentially identical to the 
aconitase mutant with an inactive TCA cycle. No 
change in the metabolome was observed for the 
aconitase mutant with or without the addition of 
environmental stress factors. 2D 1H–13C HSQC 
experiments combined with bacteria grown in 
the presence of 13C-glucose were used to generate 
a detailed analysis of the changes in the S. epider-
midis metabolome (Figure 11). Consistent with 
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Reprinted with permission from reference [246]. © Wiley-Blackwell (2010).
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Reprinted with permission from reference [148]. © American Chemical Society (2011).
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the global changes in the metabolome, wild-type 
S. epidermidis in the presence of the environ-
mental stressors induced the downregulation of 
metabolites associated with the TCA cycle and 
the upregulation of metabolites related to PIA 
production. These results suggest that biofilm 
formation is regulated by the activity of the 
TCA cycle. Inactivating the TCA cycle allows 
the shuttling of key metabolites into PIA pro-
duction, which is generally necessary for biofilm 
formation. Similarly, White et al. compared the 
metabolome of wild-type Salmonella and a CsgD 
deletion mutant that prevents production of an 
extracellular matrix [257]. GC–MS and NMR 
were used to analyze the metabolome along with 
an analysis of gene expression. Metabolites asso-
ciated with glucogenesis and major osmoprotec-
tants were upregulated in wild-type Salmonella; 
whereas metabolites associated with the TCA 
cycle were upregulated in the mutant. Again, 
this is consistent with the TCA cycle activity 
regulating biofilm formation. These results 
suggest that agonists of the TCA cycle would 
interfere with biofilm formation. Diets or drugs 
that modulate the nutrient environment may 
be an approach to prevent bacterial biofilm. As 
an example, iron limitation downregulates the 
TCA cycle and induces biofilm formation [258]. 
The major source of morbidity and mortality in 
cystic fibrosis patients is P. aeruginosa biofilms 
formed in the lung. High iron concentrations 
inhibit P. aeruginosa biofilms, where chelated 
sources of iron combined with antibiotics hold 
promise as a treatment for cystic fibrosis [259,260]. 

Metabolomics can also be used to con-
struct metabolic pathways, with contributions 
from proteomics and genomics information. 
Liebeke et al. provided a time-resolved analysis of 
S. aureus during the transition from exponential 
growth to glucose starvation [261]. The activity of 
more than 500 proteins and the concentration of 
94 metabolites were followed. 1D 1H NMR was 
used for the quantification of compounds in the 
media before inoculation, and at defined time 
points during cell growth. Intracellular metab-
olites were measured by GC–MS/LC–MS. In 
general, changes in the metabolome correlated 
with changes in the proteome, where the metabo-
lome displayed a larger dynamic range. The most 
dramatic changes were observed for amino acids. 
During initial cell growth, glycolysis and pro-
tein synthesis were highly active, but as glucose 
was exhausted gluconeogenesis and the TCA 
cycle were activated. Again, this is consistent 
with the TCA cycle activity regulating biofilm 

formation due to variations in glucose concentra-
tions [80]. Metabolomics is a valuable approach to 
characterize the state of a system. Nevertheless, 
incorporating additional complementary data, 
such as proteomics, significantly enhances the 
reliability of the information. Observing a cor-
relation between a metabolite’s concentration 
and a protein’s expression level further substan-
tiates the importance and relevance of the pro-
tein to the system, such as biofilm formation. 
From a drug-discovery perspective, this provides 
substantial corroboration of a potentially new 
drug-discovery target. 

Conclusion
NMR metabolomics can be used to character-
ize different cell phenotypes, to investigate the 
underlying biology of biofilm formation, explore 
the impact of various environmental stress fac-
tors on cell biology, analyze the effect of gene 
mutations, investigate the spatial and temporal 
structure of a biofilm, and even to generate a 
3D image. Notably, the NMR metabolomics 
methodologies used to study the biochemistry 
of bacterial biofilms are directly applicable to a 
drug-discovery effort. NMR metabolomics has 
been used to identify disease biomarkers and 
diagnose a disease, to screen for drugs, to evalu-
ate drug activity and toxicity, to identify new 
therapeutic targets and design new treatments. 
While the application of NMR for the analysis of 
changes in the metabolomics is a relatively new 
endeavor, the technique has already made some 
significant contributions to our understanding 
of bacterial biofilms. More importantly, NMR 
metabolomics holds great promise to signifi-
cantly contribute to the diagnosis and treatment 
of biofilm-related diseases, where it may play an 
important role in personalized medicine. 

Future perspective
NMR-based metabolomics is a relatively new 
technology for systems biology and, correspond-
ingly, has only had a limited use in the investi-
gation of bacterial biofilms. Nevertheless, the 
application of NMR-based metabolomics to the 
investigation of bacterial biofilms is only limited 
by the creativity of the scientific community. In 
the near future, the further development of the 
technology will be a primary focus. While NMR-
based metabolomics is straightforward in concept, 
there are numerous practical considerations that 
can severely complicate the routine application of 
the technique. A primary issue is our incomplete 
knowledge of the metabolome; extensive effort 
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Executive summary

�� Bacterial biofilms are a health concern because they increase antibiotic resistance and protect the bacteria from the host immune 
response system, which may lead to a serious and untreatable infection.

�� Bacterial biofilms can attach to a variety of surfaces that include numerous medical devices, which is a primary source of biofilm 
infections.

�� A biofilm is a highly organized microbial structure that contains a slim-like matrix that embeds the microorganism, but allows for the 
exchange of fluids, nutrients and chemical signals for cellular communication. 

�� The three main stages of a biofilm life cycle are attachment, growth and propagation. Biofilm formation depends on the bacteria’s 
response to changing environmental conditions, which is regulated by quorum sensing, two-component systems or s factors.

�� Quorum sensing enables bacteria to ‘sense’ cell density and coordinate behavior in response to nutrient availability and environmental 
conditions through signal molecules. These signal molecules are prime targets for developing drugs that inhibit biofilm formation. 

�� Metabolomics is the global analysis of small-molecule concentration changes within a cell using NMR spectroscopy or MS. It provides a 
direct means of monitoring changes in the state of the cell resulting from activities such as drug treatments or biofilm formation.

�� Metabolomics provides a better understanding of a disease since it links the pathology to actual changes in the activity of biological 
processes. Any observed change in the metabolome is a direct consequence of a change in protein activity.

�� The process of monitoring the metabolome includes rapidly quenching all cell activities, efficiently lysing the cell, and quickly extracting 
the metabolites. Speed and consistency are essential to a successful metabolic study. The goal is to avoid perturbing the state of the 
metabolome during the collection process.

�� 1D 1H NMR, 2D 1H–13C HSQC and 2D 1H–1H TOCSY are the NMR experiments commonly used for metabolomics. The goal of the 1D 1H 
NMR experiments is to generate a ‘fingerprint’ of the state of the cellular metabolome. The primary goal of the 2D NMR experiments is 
metabolite identification.

�� MS is also used for metabolomics, where NMR and MS are complementary techniques.

�� There are many considerations for the proper processing of NMR data for a metabolomics study. These include binning, peak 
alignments, baseline corrections and normalization. 

�� Chemometrics is commonly used to analyze NMR metabolomics data with the principal goal of class discrimination. The metabolomics 
data are interpreted by a simple cluster analysis, NMR spectra that yield distinct clusters in a scores plot have different metabolomes.

�� A primary challenge with metabolomics is validating that the clustering pattern in a scores plot is biologically relevant as opposed to 
experimentally induced changes to the metabolome or the NMR data. 

�� A number of examples illustrating the application of NMR-based metabolomics to the investigation of bacterial biofilms are presented.

is still required to characterize the metabolome 
from all organisms and populate databases with 
reference NMR and MS spectra. Similarly, while 
some progress has been made, a metabolomics 
software package is still needed that automates 
and standardizes the processing of metabolomics 
data, chemometric analysis and model validation, 
and metabolite identification. Also, the efficient 
and accurate extraction of metabolites from cell 
lysates requires continued optimization, and varies 
depending on the organism under investigation. 
Developing these protocols is extremely critical 
to the future success of metabolomics. Additional 
methodology advancements that will benefit 
metabolomics include the routine integration of 
MS and NMR data, and the efficient quantitation 
of metabolite concentrations from MS and 2D 
NMR experiments. 

Our understanding of bacteria cell biology is 
far from complete, where NMR-based metabolo-
mics will be an invaluable addition to the study of 
biofilms and related processes such as programed 
cell death, inter-/intra-species communication 
and pathogenesis. The systematic analysis of the 

bacterial genome, transcriptome, proteome and 
metabolome will enable the construction of a 
detailed network to describe the regulatory and 
metabolic pathways associated with biofilm forma-
tion, progression, evolution and survivability. In 
addition to enhancing our basic understanding of 
bacterial biofilms, NMR-based metabolomics will 
be an invaluable tool for drug discovery, disease 
diagnosis and personalized medicine. NMR-based 
metabolomics can be used as part of a drug-dis-
covery screening protocol. Observing an induced 
change in the bacterial metabolome due to a drug 
treatment would further validate a chemical lead 
identified from standard high-throughput screens 
[262,263]. In fact, Halouska et al. recently demon-
strated how NMR-based metabolomics can be 
used to identify the in vivo mechanism of action of 
a chemical lead [123]. This addresses a major chal-
lenge with drug discovery: identifying new drugs 
with activity against novel therapeutic targets that 
also avoid common mechanisms of resistance or 
toxicity. Similarly, characterizing the metabolome 
of various pathogenic bacterial strains with a cor-
relation to drug susceptibility provides a means 
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to personalize patient treatments. In essence, the 
identification of characteristic metabolites from 
the biofluids of infected patients would identify the 
bacterial strain and preferred form of treatment.
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