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’ INTRODUCTION

In eukaryotic organisms, signaling pathways are essential to
the life-cycle of cells and are ubiquitous processes that regulate a
variety of functions in response to both extracellular and intra-
cellular environmental changes.1�4 These signaling systems are
spatially and temporarily organized, where the kinetic properties
of these cycles depends on the cellular distribution of the
activator and deactivator proteins. Protein activity is usually
controlled through a variety of post-translational modifications
(phosphorylation, acetylation, ubiquitylation, etc.), through pro-
tein complex formation, through transcription regulation, or
through any combination of these factors. A prototypical signal-
ing cascade includes a membrane-bound receptor that binds a
signal molecule which in turn activates a kinase proximal to the
membrane. This activated kinase phosphorylates a second ki-
nase, where the cascade continues and perpetuates the signal
away from themembrane to the final target. Typically, the impact
of a signaling network is the up- and down-regulation of a set of
genes or proteins associated with a specific response (apoptosis,
metabolic process, proliferation, stress responses, etc.). Corre-
spondingly, the cell commits a significant amount of energy and
resources to undergo such a phenotype change.

In prokaryotes, signal transduction frequently involves two-
component regulatory systems that consist of a membrane-
bound sensor histidine protein kinase and a response regulator.5

These two-component signal transduction systems are activated
when an external signaling molecule, peptide, metal ion, etc., is
bound by the sensor kinase, which undergoes autophosphorylation

at a conserved histidine. Transfer of the phosphoryl group to the
receiver domain of a response regulator in the cytoplasm of a
bacterium completes the activation and the response regulator is
then competent to activate transcription of a limited set of genes.
In staphylococci, there are numerous two-component regulatory
systems,6 with the best studied being the agr quorum sensing
system.7 In addition to two-component systems, bacteria use
sigma factors as a means to detect environmental conditions that
induce heat stress, envelope stress, nitrogen stress, etc.8 In
staphylococci, σB is activated during stress conditions, growth
phase transitions, and morphological changes.9,10 Most recently,
the hypothesis that central metabolism can act as a signal
transduction pathway to transduce external environmental sig-
nals (e.g., iron-limitation) into intracellular metabolic signals by
altering the activity of the enzymes of central metabolism has
been proposed.11

The tricarboxylic acid (TCA) cycle is part of central metabo-
lism and provides reducing potential, energy and biosynthetic
intermediates necessary for other macromolecular synthesis.12

Several studies have also shown that the TCA cycle is involved in
regulating or affecting virulence or virulent determinant
biosynthesis.13�15 One specific example is the production of
the exopolysaccharide, polysaccharide intercellular adhesion
(PIA),16 which is associated with virulence and biofilm
formation.17�20 PIA synthesis is regulated by nutrient availability
and external stress conditions.21,22 Importantly, TCA cycle
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activity has also been shown to be affected by changes in
environmental stress factors.16,22,23 A number of environmental
stress factors have also been shown to influence biofilm forma-
tion: ethanol,24 oleic acid,25 glucose,26UDP-N-acetylglucosamine,27

subinhibitory concentrations of some antibiotics,28 anaerobic
conditions,29 Fe limitation,30�32 high osmolarity,33 and high
temperature.33 The diversity of these external stimuli suggests
a versatile regulation system. Recently, we used NMR metabo-
lomics to demonstrate that Fe limitation and ethanol decrease
TCA activity.23 These stressors cause a common metabolic
change that can be sensed by metabolite responsive-regulators
(e.g., catabolite control protein A; CcpA) that affect PIA
production. We proposed that the TCA cycle plays a central
role in a metabolic signaling network that senses disparate envi-
ronmental stress conditions and regulates PIA biosynthesis,
virulence determinants and biofilm formation (Figure 1). Herein,
we report a further NMR analysis of the impact on the metabo-
lome of S. epidermidis resulting from a diverse range of environ-
mental stress factors associated with biofilm formation that
include 5% NaCl,33 2% glucose,26 0.06 μg/mL tetracycline,28

and 400 nM autoinducer-2 (AI-2, furanosyl borate diester),34

in addition to our prior study23 with 4% ethanol,24 and Fe
limitation.30�32

Our differential NMR metabolomics methodology has been
applied to the study of in vivo drug activity in Aspergillus
nidulans35 and Mycobacterium smegmatis36 and is ideally suited
to a systems biology analysis of the impact of environmental
stress factors on the S. epidermidis metabolome and the corre-
sponding role of the TCA cycle.23 In the latter study, NMR was
used to detect metabolic perturbations by following changes to

S. epidermidis (strain 1457) cultured under environmental stress
conditions that induce biofilm formation. These results were
then compared to the metabolome of a S. epidermidis mutant
(aconitase mutant strain SE1457-acnA::tetM) with an inactivated
TCA cycle. If S. epidermidis senses environmental stress condi-
tions by affecting TCA cycle activity as previously observed, then
the impact on the metabolome caused by the aconitase mutant
and the disparate external signals were expected to be equivalent.
The overlapping clusters in principle component analysis (PCA)
and orthogonal partial least-squares discriminant analysis
(OPLS-DA) two-dimensional (2D) scores plot and the branch
similarity on a metabolic tree diagram37 indicate that external
biofilm signals inactivate the TCA cycle. Furthermore, a detailed
analysis of the relative concentration changes of 55 different
metabolites from 2D 1H�1H TOCSY and 2D 1H�13C HSQC
spectra implies the TCA cycle plays a central role in a metabolic
signaling network.35,36,38,39 A metabolic network created with
Cytoscape40 illustrates this metabolic signaling network and the
interrelationship of the TCA cycle activity with alanine metabo-
lism, amino sugar metabolism, glycolysis/gluconeogenesis and
the urea cycle.

’METHODS AND MATERIALS

Bacterial Growth and NMR Sample Preparation
Staphylococcus epidermidis wild-type strain 1457 and the iso-

genic aconitase mutant strain 1457-acnA::tetM were grown in
tryptic soy broth (TSB; BD Biosciences) without dextrose and
supplemented with 0.25% glucose (Sigma Chemical) or 0.25%
13C6-glucose (Cambridge Isotope Laboratories).

Figure 1. Illustration of the interrelationship of metabolic pathways associated with the TCA cycle and biofilm formation.
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All bacterial cultures were inoculated to an optical density at
600 nm (O.D.600) of 0.06 and were grown for 2 or 6 h at 37 �C
with 225 rpm aeration in TSB or TSB supplemented with a
stressor known to induce biofilm formation. Either 10 or 12
replicate bacterial cultures were grown for each bacterial strain or
environmental condition for the one-dimensional (1D) 1H
NMR experiments. Three replicate bacterial cultures were grown
for each bacterial strain or environmental condition for both the
two-dimensional (2D) 1H�13C HSQC and the 2D 1H�1H
TOCSY experiments.

In general, four different bacterial cultures were harvested per
experiment: (1) wild-type S. epidermidis in TSB media, (2) wild-
type S. epidermidis in TSB media with an environmental stress
condition, (3) aconitase mutant of S. epidermidis in TSB, and (4)
aconitase mutant of S. epidermidis in TSB with an environmental
stress condition. The environmental stress conditions used in this
study were 5% NaCl,33 2% glucose,26 0.06 μg/mL tetracycline,28

400 nM autoinducer-2 (AI-2, furanosyl borate diester)34 in TSB
media. To facilitate integrating this current work with our recent
study,23 control cultures containing 4% ethanol24 in TSB or TSB
medium depleted of iron (DTSB, defferated TSB)30�32 were
included for comparison. DTSB was prepared as described.23

AI-2, furanosyl borate diester, was synthesized as previously
described.41,42

For the 1D 1H NMR experiments, 2.74 O.D.600 units were
harvested for analysis and for both the 2D 1H�13CHSQC and 2D
1H�1H TOCSY experiments 5.48 O.D.600 units were harvested.
Following harvest, the culture medium was removed and the
bacteria were suspended in 1 mL portions of 50 mM phosphate
buffer (PBS) in 99.8%D2O (Isotec) at pH 7.2 (uncorrected). The
bacteria were lysed using a FAST-Prep instrument (MP
Biomedicals) for 40 s, centrifuged for 5min to remove the bacterial
debris and glass beads, and frozen in liquid nitrogen.

NMR Data Collection
The NMR spectra were collected on a Bruker 500 MHz

Avance spectrometer equipped with a triple-resonance, Z-axis
gradient cryoprobe. A BACS-120 sample changer with Bruker
Icon software was used to automate the NMR data collection. 1D
1H NMR spectra were collected using excitation sculpting43 to
efficiently remove the solvent and maintain a flat baseline,
eliminating any need for baseline collection that may induce
artifacts in the PCA or OPLS-DA 2D or three-dimensional (3D)
scores plot. 1D 1H NMR spectra were collected at 298 K with a
spectrum width of 5482.5 Hz and 32K data points. A total of 16
dummy scans and 64 scans were used to obtain each spectrum.

2D 1H�13C HSQC spectra were collected with solvent pre-
saturation and relaxation delay of 0.5 s.44,45 A total of 2048 data
points with a spectrum width of 4734.9 Hz, and 128 data points
with a spectrum width of 13834.3 Hz were collected in the 1H
and 13C dimensions, respectively. A total of 8 dummy scans and
128 scans were used to obtain each of the 2D 1H�13C HSQC
NMR spectra. 2D 1H�1H TOCSY spectra were collected with
WATERGATE solvent presaturation, and a relaxation delay of
2 s.46,47 A total of 2048 data points with a spectrum width of
5000.0 Hz, and 256 data points with a spectrum width of 5001.3
Hz were collected in the direct and indirect 1H dimensions,
respectively. A total of 16 dummy scans and 8 acquisition scans
were used to obtain each of the 2D 1H�1HTOCSYNMR spectra.

NMR Data Analysis
1D 1H NMR spectra were processed in the ACD/1D NMR

manager version 12.0 (Advanced Chemistry Development, Inc.).

The residual H2O NMR resonance was removed. Intelligent
bucketing was used to integrate each region with a bin size of
0.025 ppm. Each NMR spectrum was center averaged to mini-
mize any experimental variations between bacterial cultures as
follows:

Z ¼ xi � x̅
σ

ð1Þ

where x is the average signal intensity,σ is the standard deviation in
the signal intensity, andXi is the signal intensity within a bin. Noise
regions of the spectra were omitted from the PCA analysis by
setting the corresponding bins to zero.48 The table of integrals was
imported into SIMCA 11.5+ (UMETRICS) for PCA and OPLS-
DA analysis using the program’s standard parameters. The identi-
fication of the control group and treated group or groups for the
OPLS-DA analysis was based on the PCA clustering pattern.

2D NMR spectra were analyzed using NMRViewJ49 and
Sparky (T. D. Goddard and D. G. Kneller, SPARKY 3, University
of California, San Francisco) to identify chemical shifts and
assign peak intensities. Peak intensities were normalized for each
2DNMR spectrum by dividing by the average peak intensity for a
given spectrum. Each peak for each metabolite from each specific
triplicate data set was averaged and the intensity for each peak
was further normalized across all data sets (i.e., wild-type,
aconitase mutant, and each bacterial growth condition). Speci-
fically, the maximal intensity for each peak across all data sets was
set to 100. The peak intensities in the remaining data sets were all
scaled relative to this peak intensity. Then, a normalized intensity
for the metabolite within each data set was calculated by
averaging the normalized intensity for each of the metabolite’s
assigned peaks. In this manner, the relative percent difference in
metabolite intensity (concentration) can be reported between
different bacterial strains or bacterial growth conditions. As an
illustrative example, consider a metabolite with three assigned
peaks (A, B, C) in a 2D 1H�13C HSQC spectrum. The 2D
1H�13C HSQC spectrum is collected in triplicate under three
different bacterial growth conditions for a total of 9 spectra and
27 peak intensities, 3 peaks in each spectrum for the metabolite.
Peak A has average intensities of 0.05, 0.10, and 0.20 in the three
different bacterial growth conditions, respectively. The values
would be normalized to 25, 50, and 100. Similarly, peaks B and C
are normalized against their maximal peak intensities for values of
20, 60, 100 and 30, 65, 100, respectively. Thus, the average
relative concentrations of the metabolite under the three bacte-
rial growth conditions would be the average of the three normal-
ized peaks, yielding values of 25, 58.3 and 100, respectively. The
bacterial growth condition with the highest relative metabolite
concentration (100) would have a corresponding concentration
increase of 75 and 41.7 relative to the two other bacterial growth
conditions.

The observed NMR peaks in the 2D 1H�13C HSQC and 2D
1H�1H TOCSY spectra were assigned to specific metabolites
using 1H and 13C chemical shift tolerances of 0.05 ppm and 0.50
ppm, respectively.Metabominer,50MadisonMetabolomics Con-
sortium Database (MMCD),51 the BioMagResBank (BMRB),52

and Human Metabolome Database (HMDB)53 were used to
identify metabolites. The presence of metabolites and metabolic
pathways were verified with the KEGG54 andMetacyc55 databases.
A metabolic network map was generated using Cytoscape using
a force directed layout.40 Metabolites identified with a percent
concentration difference of g (10% relative to wild-type
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S. epidermidis were manually color-coded to indicate either an up-
or down-regulated concentration change.

’RESULTS AND DISCUSSION

NMR Metabolomics and Principle Component Analysis
The elimination of experimental factors that may inadver-

tently influence PCA or OPLS-DA metabolomic data interpreta-
tion is essential. The observed variability in the PCA or OPLS-DA
data should result from differences in the biological samples as
opposed to changes in sample preparation, sample handling, data
acquisitions, data processing or any number of experimental param-
eters (temperature, pH, time, concentration, etc.). To obtain
accurate and reproducible metabolomic data, the following
general protocols were employed: (i) bacterial cultures of wild-
type S. epidermidis were used as a reference metabolome and
were prepared with all sets of bacterial cultures, (ii) equivalent
bacterial numbers were used, so metabolite concentrations were
independent of any bacterial growth variability, (iii) all NMR
spectra were normalized using center averaging,56 so variability in
sample concentration was minimized, (iv) noise regions48 and
solvents were removed from NMR spectra prior to PCA or
OPLS-DA, and (v) minimal processing (no baseline correction
or apodization functions) of the NMR spectra.

Harvesting of S. epidermidis Cultures
Bacteria grown in vitro undergo four different growth phases:

(i) lag, (ii), exponential, (iii) stationary, and (iv) death. Through-
out a typical growth cycle, the state of the bacteria and the
environment are constantly changing. Clearly, there is a funda-
mental difference between the exponential phase, when cell
density is relatively low, cells are rapidly dividing and the required
nutrients are abundant; and the stationary phase when these char-
acteristics are effectively reversed. Correspondingly, the meta-
bolome is expected to reflect these differences. Therefore, explor-
ing a biological system bymonitoring changes in themetabolome
necessitates the appropriate choice of the state of the system. In
the case of S. epidermidis biofilm formation and the proposed role
of the TCA cycle in a metabolic signaling network, the proper
choice of the state of the system requires endogenous TCA cycle
activity.

The TCA cycle is minimally active during the exponential
phase (2 h growth) when nutrients (i.e., glucose or other rapidly
catabolizable carbohydrates) are sufficient for bacteria to grow
quickly.16,57 Overflow metabolism results in an incomplete

oxidation of glucose, leading to the accumulation of acetate,
lactate, and other incompletely oxidized metabolites in the cul-
ture medium (Figure 2a). During the transition to the post-
exponential growth phase (6 h), the TCA cycle is derepressed as
the carbohydrate(s) are depleted from the culture medium.
Concomitantly, the incompletely oxidized metabolites that ac-
cumulated in the medium are catabolized through the TCA cycle
resulting in the depletion of secondary metabolites from the
culture medium.

The growth phase-dependent activity of the TCA cycle in
S. epidermidis is also apparent from the PCA 2D scores plot
generated from 1D 1H NMR spectra of S. epidermidis cell lysate
(Figure 2b). The 2D PCA scores plot indicates that PC1 and
PC2 account for 20.6% and 10.7% of the variations in the NMR
spectra, respectively. A 3D PCA scores plot (supplemental
Figure 1S) did not improve cluster separations. Each 1D 1H
NMR spectrum obtained for each cell lysate is represented as a
single point in the PCA 2D scores plot, where the 10 replicates
form four distinct clusters for the wild-type and aconitase mutant
strains grown for 2 and 6 h, respectively. As expected and consistent
with our prior study,23 the metabolomes of the S. epidermidis wild-
type and aconitase mutant cells from the exponential growth phase
(2 h) were more similar to each other than the 6 h cultures. This is
apparent from the close clustering in the 2D scores plot for the 2 h
wild-type and aconitasemutant. This is consistent with theminimal
activity of theTCAcycle at 2 h and the loss of TCA cycle activity for
the aconitase mutant. Conversely, there is a large separation in the
2D scores plot along the PC1 axis between the 6 h wild-type and
aconitase mutant. In fact, the 6 h aconitase mutant cluster is closer
to the 2 hwild-type cluster. Again, this is consistentwith an increase
in TCA activity at 6 h and the loss of TCA activity in the aconitase
mutant. Correspondingly, the separation along PC1 reflects TCA
cycle activity. Since the TCA cycle is minimally active during the
exponential phase, the 2 h wild-type cluster is slightly closer to the
6 h wild-type cluster along PC1, compared to the aconitase
mutants.

Alternatively, the separation along PC2 axis may reflect the
variability in nutrients available to the cells. Glucose is still pre-
sent after 2 h of bacterial growth, but is being depleted while
acetate is being accumulated. After 6 h of growth, the depletion of
acetate is dependent on TCA cycle activity, resulting in the
largest separation along PC2 between the 6 h aconitase mutant
and the 2 h wild-type samples. These two samples correspond to
the largest expected variation in glucose and acetate concentrations.

Figure 2. (a) Typical S. epidermidis growth curve superimposed on the cellular production of acetic acid. (b) 2D PCA scores plot and (c) 2DOPLS-DA
scores plot comparing 2 h growth of wild-type S. epidermidis 1457 (greyb), 2 h growth of aconitase mutant strain 1457-acnA::tetM (grey2), 6 h growth
of wild-type S. epidermidis 1457 (black b), and 6 h growth of aconitase mutant strain 1457-acnA::tetM (black 2). The ellipses correspond to the 95%
confidence limits from a normal distribution for each cluster. For theOPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 (blackb) was
designated the control class and the remainder of the cells were designated as treated. The OPLS-DA used 1 predictive component and 3 orthogonal
components to yield a R2X of 0.788, R2Y of 0.992 and Q2 of 0.992.
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From the detailed 2D NMR analysis section (please see below),
acetate is approximately twice as concentrated in the 6 h
wild-type sample compared to the 2 h aconitase mutant. The
glucose concentration is effectively reversed. Glucose is twice as
concentrated in the 2 h aconitase mutant compared to the 6 h
wild type sample.

The PCA results were used to guide a subsequent analysis
using OPLS-DA (Figure 2C). The OPLS-DA yielded a reliable
model (R2X 0.788, R2Y 0.992, Q2 0.992). The R2 and Q2 values
represent the goodness of fit and predictability of the model,
respectively. The OPLS-DA scores plot is similar to the PCA
scores plot, except for the limited separation between the 2 h
wild-type and aconitase mutant clusters. Again, this is consistent
with the minimal TCA activity expected for the 2 h wild-type and
aconitase mutant. Also, OPLS-DA emphasizes the difference bet-
ween the control group (6 h wild-type) and the treated classes,
while minimizing contributions from within group variations.
Thus, OPLS-DA generates significantly tighter clusters than PCA.
More importantly, the S-plot and loading plot (supplemental
Figure 2S) generated from the OPLS-DA provides unambiguous
identification of the major contributors to the class separation (i.e.,
1H NMR bins and associated metabolites). Specifically, compar-
ing the 6 h aconitase mutant and the 6 h wild-type samples, which
had the largest separation along PC1 in the PCA 2D scores plot,
identified citrate, isocitrate, and other TCA related metabolites.
Similarly, comparing the 2 h aconitase mutant and the 2 h wild-
type samples, which had the largest separation along PC2 in the
PCA 2D scores plot, identified glucose, acetate and other
nutrients required for cell growth. These results provide strong
support for our subjective analysis of the trends in the 2D PCA
scores plot and demonstrate that not only does PCA and

OPLS-DA differentiate between metabolic profiles, but they also
provide information about specific enzymatic activity and envir-
onmental conditions.

ImpactofEnvironmental StressConditionson theS. epidermidis
Metabolome

Numerous genes and protein complexes are involved in the
transformation of planktonic cells to a biofilm.58 This process
requires that S. epidermidis “sense” changes in its environment
and the availability of nutrients, such as changes in temperature,
O2 levels, osmorality, ethanol, glucose and iron.29,31,33,59�63 It is
reasonable to expect that different external factors would trigger
distinct signaling pathways and mechanisms of biofilm regula-
tion. Correspondingly, different biofilm formation pathways
would presumably induce dissimilar metabolomic profiles. Alter-
natively, a versatile regulation system responsive to disparate
signals would be significantly more efficient. A metabolic signal-
ing pathway is one potential mechanism of rapidly responding to
changing environmental stress conditions. Conceptually, the
environmental flux of essential nutrients and metabolites would
direct the up- or down-regulation of specific metabolic pathways
in response to concentration changes (Le Chatelier’s principle)
to initially reestablish equilibrium without affecting protein
activity. Effectively, a limited or abundant metabolite would
direct the metabolic flow through a specific pathway causing a
cascade affect due to the high interrelationship of the metabo-
lome. Eventually, gene and protein regulation processes would
respond to the perturbed metabolic activity leading to the up- or
down-regulation of specific genes and proteins.

We have previously demonstrated that both Fe limitation and
4% ethanol decrease TCA cycle activity.23 These environmental

Figure 3. (a) 2D PCA scores plot and (b) 2DOPLS-DA comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSBmedia (blackb), with
S. epidermidis 1457 cells grown 6 h in iron-depleted media (DTSB) (redb), with the addition of 4% ethanol (greenb),with the addition of 2% glucose
(blue b), with the addition of 0.06 μg/mL tetracycline (pink b), with the addition of 5% NaCl (orange b), and 6 h growth of aconitase mutant strain
1457-acnA::tetM in standard TSBmedia (black2). The ellipses correspond to the 95% confidence limits from a normal distribution for each cluster. For
the OPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 (blackb) was designated the control class and the remainder of the cells were
designated as treated. The OPLS-DA used 1 predictive component and 4 orthogonal components to yield a R2X of 0.637, R2Y of 0.966 and Q2 of 0.941.
Metabolomic tree diagram generated from the (c) 2D PCA scores plot depicted in (a) and (d) 2DOPLS-DA scores plot depicted in (b). The label colors
match the symbol colors from the 2D scores plot. Each node is labeled with the boot-strap number, where a value above 50 indicates a statistically
significant separation.
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stress factors are known to induce S. epidermidis biofilm
formation.24,30�32 We have also demonstrated that Fe limitation
and 4% ethanol had a similar impact on the S. epidermidis meta-
bolome and altered the activity of CcpA, a metabolite-responsive
regulator. An important role for the TCA cycle in a staphylo-
coccal biofilm metabolic signaling pathway seems apparent,
especially since the TCA cycle is a central metabolic pathway
that interacts with numerous other pathways (Figure 1). Thus,
we propose that the TCA cycle senses environmental stressors
and transduces this signal through the metabolome to activate or
repress the activity of metabolite-responsive regulators, which, in
turn, modulates PIA production, virulence factor synthesis, and
biofilm formation.23 To further support our hypothesis that the
TCA cycle senses disparate environmental signals to regulate
PIA synthesis and biofilm formation, we analyzed changes in
the S. epidermidis metabolome caused by additional environ-
mental stress factors also known to induce an S. epidermidis
biofilm.26,28,33,64

S. epidermidis cultures were treated with 5%NaCl, 2% glucose,
0.06 μg/mL tetracycline, and 400 nM of autoinducer-2 (AI-2,
furanosyl borate diester). Glucose and NaCl were reported to
induce biofilm formation by the regulation of the rbf gene,65

which has been shown to be a regulator of icaR,66 a negative
regulator of the icaADBC operon that is required for PIA
synthesis and biofilm formation.67 Subinhibitory concentrations
of antibiotics enhance icaADBC gene expression28,68 by poten-
tially inhibiting TcaR, a weak negative regulator of icaADBC gene
expression.69 AI-2 is an intercellular signaling molecule that has a
modest effect on staphylococcal biofilms.64 Conversely, if these
additional environmental stress factors impact the S. epidermidis

metabolome in a manner similar to Fe limitation and 4% ethanol,
which is also correlated with TCA cycle inactivation, then these
results would further support the hypothesis that the TCA cycle
acts as a signal transducer as a part of ametabolic signaling network.

The PCA 2D scores plot (Figure 3A) and the associated
metabolic tree (Figure 3C) indicates that S. epidermidis wild-type
cultures grown with the addition of the environmental stressors
4% ethanol, 0.06 μg/mL tetracycline or iron-limitation exhibited
essentially identical metabolomes as the aconitase mutant. Both
the aconitase mutant and wild-type cultures under these stress
conditions formed a large cluster distinct from the cluster of
wild-type cells in standard growth media. These results further
support our hypothesis that environmental stress factors influ-
ence biofilm formation by inactivating the TCA cycle and
redirecting key metabolites into PIA synthesis. Conversely,
growing S. epidermidis wild-type cells in the presence of 5% NaCl
showed no significant effect on the metabolome since the wild-
type cells in the presence and absence of 5% NaCl cluster
together. Similarly, AI-2 did not affect the S. epidermidis meta-
bolome since both the wild-type and aconitase mutant cells in the
presence and absence of 400 nM AI-2 cluster together
(supplemental Figure 5S). Interestingly, S. epidermidis cells
treated with 2% glucose were separated from both the wild-type
and aconitase mutant clusters, implying a different impact on the
metabolome and a unique mechanism of regulating biofilm
formation. Alternatively, the addition of 2% glucose may be
viewed as an intermediary effect, where the metabolome of the S.
epidermidis cells grown with 2% glucose is moving toward the
aconitase mutant cells. Effectively, the amount of glucose added
to the bacterial culture was insufficient to completely inactivate

Figure 4. (a) 2D PCA scores plot and (b) 2DOPLS-DA comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSBmedia (blackb), 6 h
growth of aconitase mutant strain 1457-acnA::tetM in standard TSB media (black 2), aconitase mutant strain 1457-acnA::tetM in iron-depleted media
(DTSB) (red 2), with the addition of 4% ethanol (green 2), with the addition of 2% glucose (blue 2), with the addition of 0.06 μg/mL tetracycline
(pink2), andwith the addition of 5%NaCl (orange2). The ellipses correspond to the 95% confidence limits from a normal distribution for each cluster.
The four ellipses correspond to clusters formed by (i) wild-type S. epidermidis 1457 cells, (ii) aconitase mutant strain 1457-acnA::tetM in standard TSB
media, (iii) aconitase mutant strain 1457-acnA::tetM inDTSB or with the addition of 4% ethanol, and (iv), aconitase mutant strain 1457-acnA::tetMwith
the addition of 2% glucose, 0.06μg/mL tetracycline, or 5%NaCl. For theOPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 (blackb)
was designated the control class and the remainder of the cells were designated as treated. The OPLS-DA used 1 predictive component and 2 orthogonal
components to yield a R2X of 0.488, R2Y of 0.976 and Q2 of 0.961. Metabolomic tree diagram generated from the (c) 2D PCA scores plot depicted in
(a) and (d) 2D OPLS-DA scores plot depicted in (b). The label colors match the symbol colors from the 2D scores plot. Each node is labeled with the
boot-strap number, where a value above 50 indicates a statistically significant separation.
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the TCA cycle. It has been previously shown that different strains
have different glucose uptake rates and different sensitivities to
glucose-induced biofilm formation.70,71

The PCA results were used to guide a subsequent analysis
using OPLS-DA (Figure 3B) and the corresponding metabolo-
mics tree diagram (Figure 3D). The OPLS-DA analysis yielded a
reliable model (R2X 0.637, R2Y 0.966, Q2 0.941), and results
identical to PCA. The wild-type cells in the presence and absence
of 5%NaCl were defined as the controls and, as expected, formed
a single cluster in the 2D scores plot. S. epidermidis wild-type
cultures grown with the addition of the environmental stressors
4% ethanol, 0.06 μg/mL tetracycline or iron-limitation again
formed a single cluster with the aconitase mutant in the 2D
OPLS-DA scores plot. Also similar to the PCA results, the
S. epidermidis cells grown with 2% glucose formed a unique cluster.
Thus, the corresponding metabolomics tree diagram identified
three distinct clusters with bootstrap values of 100. The OPLS-
DA results further support our hypothesis that environmental
stress factors influence biofilm formation by inactivating the
TCA cycle and redirecting key metabolites into PIA synthesis.

To verify the observed effect on the S. epidermidismetabolome
is due to inactivating the TCA cycle as opposed to other potential
factors, the S. epidermidis aconitase mutant strain was also grown
with the addition of 4% ethanol, 0.06 μg/mL tetracycline, 2%
glucose, 5% NaCl or under iron-limitation conditions. If the im-
pact of these stress conditions is primarily through the inactiva-
tion of the TCA cycle, then the metabolome of the aconitase
mutant strain should be unperturbed. Otherwise, if the stress
conditions induce additional or alternative responses, then changes
in the metabolome should be observed. The 2D PCA scores plot
(Figure 4A) and metabolomic tree (Figure 4C) indicate the stress
conditions did not affect the metabolome of the aconitase
mutant. The aconitase mutant with and without the stress con-
ditions forms a large cluster distinct from the wild-type cluster.
Importantly, this includes the addition of 2% glucose. This
implies the addition of 2% glucose to wild-type S. epidermidis
resulted in an incomplete inactivation of the TCA cycle instead of

a novel mechanism of biofilm regulation. Again, the PCA results
were used to guide a subsequent analysis using OPLS-DA
(Figure 4B) and the corresponding metabolomics tree diagram
(Figure 4D). The OPLS-DA analysis yielded an acceptable
model (R2X 0.488, R2Y 0.976, Q2 0.961), and results very similar
to PCA. The lower R2X is consistent with the larger spread
observed within the two primary clusters. The wild-type cells
were defined as the controls and, as expected, the aconitase
mutant with and without the stress conditions formed a single
large cluster. Consistent with the PCA analysis, the single cluster
also contained the addition of 2% glucose. The OPLS-DA scores
plot, along with the metabolomics tree diagram, suggests sub-
clusters are present within the large aconitasemutant cluster. But,
the aconitase mutant data is spread throughout this cluster, such
that an ellipse that corresponds to the 95% confidence limit for
the aconitase mutant data encompasses the two other apparent
subclusters. This result indicates that within the resolution of the
PCA and OPLS-DA model, no statistical difference is observed
between the metabolomes of the aconitase mutant with and
without the stress conditions. Critically, the S-plot and loading
plot obtained from the comparison between the wild-type cells
and the aconitase mutant treated with the stress conditions was
identical to the S-plot and loading plot generated from the
comparison between the wild-type cells and the untreated
aconitase mutant cells (please see supplemental Figures 3S, 4S).
Again, this supports the conclusion that the addition of the stressors
did not perturb the metabolome of the aconitase mutant cells.

Detailed Analysis of Changes to the S. epidermidisMetabo-
lome Caused by Environmental Stress

An overall correlation between themetabolomes of S. epidermidis
under stress and TCA cycle inactivation provides further sup-
port for our hypothesis that environmental conditions induce
biofilm formation though the regulation of the TCA cycle.23

Specifically, the disparate signals of 2% glucose, 4% ethanol,
0.06 μg/mL tetracycline and iron-limitation are all sensed by the
TCA cycle. To further support our hypothesis, a detailed analysis

Figure 5. Overlay of (a) 2D 1H�13C HSQC spectra and (b) 2D 1H�1H TOCSY spectra comparing wild-type S. epidermidis strain 1457 (red) and
aconitase mutant strain 1457-acnA::tetM (black) grown for 6 h in standard TSB media augmented with 0.25% 13C-glucose. NMR resonances
corresponding to specific metabolites are labeled, where citrate is circled.
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of changes to the S. epidermidis metabolome caused by these
environmental stress factors was necessary. We previously re-
ported an analysis of changes in the metabolome of S. epidermidis
caused by TCA cycle inactivation that resulted in an increase in
PIA production.16 Among other observed changes, amino-acids
derived from TCA cycle intermediates (Asn, Asp, Gln, and Glu)
exhibited a decrease in concentration. Correspondingly, an in-
crease in concentrations was observed for the PIA biosynthetic
precursors UDP-N-acetyl-glucosamine and fructose-6-phos-
phate. A similar approach using 2D 1H�13C HSQC and 2D
1H�1H TOCSY NMR spectra was applied to quantitate meta-
bolite changes in the S. epidermidis metabolome caused by
Fe-limitation and 4% ethanol (Figure 5).23

2D NMR spectra improve metabolite identification by redu-
cing the complexity and congestion of 1D 1H NMR spectrum by
spreading the information into two-dimensions. Additionally, the
2D 1H�13CHSQC experiment allows for monitoring the flow of
carbon-13 through the metabolome from a specifically 13C-
labeled metabolite. Alternatively, the 2D 1H�1H TOCSY spec-
trum monitors all detectable metabolites with a bias to metabo-
lites with the highest concentration. This may include the
carbon-13 labeled metabolites observed in the 2D 1H�13C
HSQC spectrum in addition to nonisotope labeled metabolites
produced from other carbon sources. Therefore, the 2D 1H�13C
HSQC and 2D 1H�1H TOCSY NMR spectra are complemen-
tary experiments for metabolomics and allow for a more com-
plete analysis of metabolite concentration changes. Specifically,
S. epidermidis wild-type cells and the aconitase mutant cells were
grownwith andwithout stress factors and harvested during either
the exponential or postexponential phase with and without the

addition of 13C-glucose. A total of 12 different bacterial culture
conditions were prepared in triplicate for both the 2D 1H�13C
HSQC and 2D 1H�1H TOCSY NMR experiments for a
minimum of 72 bacterial cultures or NMR experiments. To
maintain consistency, S. epidermidiswild-type cells were used as a
reference and prepared with each bacterial culture set.

Differences in metabolite concentrations between the stresses,
the bacterial growth phases, the aconitase mutant cells, and the
wild-type cells were based strictly on detecting changes in peak
intensities in the 2D 1H�13C HSQC and 2D 1H�1H TOCSY
NMR experiments. To minimize contributions from experimen-
tal variability, three levels of normalization were used. First,
metabolite concentrations were normalized based on the total
number of cells grown for each culture. Second, the peak
intensities in each NMR spectrum were normalized by the
spectrum’s average peak intensity. Third, each individual peak
was normalized by scaling by the largest intensity observed for
that peak across the set of NMR spectra. The intensity of peaks
assigned to each metabolite within a spectrum were averaged and
then averaged across the triplicate NMR data set. Relative
changes in peak intensities (metabolite concentrations) were com-
pared to the S. epidermidis wild type metabolome and are
displayed as bar graphs in Figure 6. Importantly, the metabolites
identified from the 2D NMR experiments were also consistent
with the metabolites identified as the major contributors to class
distinction in the 2D OPLS-DA plots (Figures 3 and 4). The
OPLS-DA S-plots and loading plots (please see supplemental
Figures 3S, 4S) identifies the relative contribution of each bin
(1H NMR chemical shift) to the clustering in the corresponding
2D scores plot. Each NMR bin with a high reliability (p(corr)[1]

Figure 6. Bar graphs showing the percent change in metabolite concentrations relative to wild-type S. epidermidis strain 1457 grown in standard TSB
media. Metabolite concentration changes were measured after 2 and 6 h bacterial growths for the aconitase mutant strain 1457-acnA::tetM in TSBmedia
(light yellow 9), aconitase mutant strain 1457-acnA::tetM with iron-depletion (dark yellow 9), aconitase mutant strain 1457-acnA::tetM with the
addition of 4% ethanol (orange9), wild-type S. epidermidis strain 1457 with iron-depletion (dark purple9), and wild-type S. epidermidis strain 1457 with
the addition of 4% ethanol (light purple9). Positive values represent increased concentrations while negative values represent decreased concentrations
with respect to S. epidermidis strain 1457 grown in standard TSB media. The metabolite names were abbreviated as follows: ACA (Acetaldehyde), ACE
(Acetate), ACP (Acetyl-P), AKG (R-ketoglutarate), ALAAc (Acetyl-alanine), AMI (4-Aminobutanoate), ARG (Arginine), ASN (Asparagine), ASP
(Aspartate), CIR (Citrulline), CIT (Citrate), ETH (Ethanol), F6P (Fruc-6P), G1P (Gluc-1P), G6P (Gluc-6P), GAL (Galacturonic-acid), GAL1P
(R-D-Gala-1P), GLN (Glutamine), GLR (Glucuronate), GLS (D-glucosamine), GLS6P (Glucosamine-6P), GLSAc (N-Ac-D-glucosamine), GLSAc6P
(Acetyl-glucosamine-6P), GLU (Glutamate), GLUAc (Acetyl-glutamate), GLY (Glyceraldehyde), HIS (Histidine), ICI (Isocitrate), INO (Ino, Ade,
Xan), LAC (Lactate), ALA (alanine), LEU (Leucine), LYS (Lysine), MANAc (N-acetyl-D-mannosamine), MET (Methionine), MIN (myo inositol),
MSE (selenomethionine), NEUAc (N-Ac-neuraminate), ORN (Ornithine), ORNAc (Acetyl-ornithine), PEP (Phosphoenolpyruvic acid), PRO
(Proline), RIB (D-ribose), SAM (S-adenosyl-methionine), SER (Homoserine), SUCSER (O-Succinyl-L-homoserine), UDPGLR (UDP-glucoronate),
UDPGLSAc (UDP-NAc-D-glucosamine), VAL (Valine).



3751 dx.doi.org/10.1021/pr200360w |J. Proteome Res. 2011, 10, 3743–3754

Journal of Proteome Research ARTICLE

∼ 1 or �1) and a high magnitude (p[1] > 0.1 or < �0.1) was
assigned to a metabolite that was also found to be present in the
Figure 6 bar graph.

An inactivated TCA cycle caused concentration changes for 55
metabolites involved in the amino sugar pathway, glycolytic
pathway, several amino acid pathways, and the TCA cycle. The
NMR data shows the amount of cellular glucose in the 6 h
postexponential wild-type strain was reduced by 80% compared
to the 2 h exponential phase. The amount of cellular acetate was
increased by 25%. As expected, the inactivation of the TCA cycle
in the aconitase mutant resulted in the accumulation of a large
concentration of acetate. Acetate was the most intense peak in
the 6 h cultures for the wild-type and aconitase mutant strains
shown in Figure 5. There were also noticeable differences in the
aconitase mutant metabolome. Peaks corresponding to the amino
acids derived from the TCA cycle intermediates such as Asn,
Asp, Gln, and Glu were not present. Not surprisingly, a large
amount of citrate was also seen, since the inactivated aconitase
prevents the conversion of citrate to isocitrate. Other metabo-
lites associated with the glycolytic pathway were up-regulated.
Similarly, some amino sugar and aromatic metabolites were
up-regulated except for the significant down-regulation of
UDP-glucuronate.

As expected from the clustering pattern in the 2D PCA scores
plot, the direction of carbon flow in cells under stress was similar to
the aconitase mutant cells, but dramatically different from wild-
type cells during post exponential growth. A decrease in the con-
centration of amino acids derived from TCA cycle intermediates
such as Asp, Asn, Glu, and Gln shows that the TCA cycle is still
repressedwhen the cells are under stress. Instead the carbon flow is
redirected back into the glycolytic pathway as indicated by an
increase in concentrations for phosphoenolpyruvate (PEP), acet-
aldehyde, and fructose 6-phosphate. The carbon flow was also di-
rected into the amino sugar pathway with an increase in concen-
trations forUDP-N-acetylglucosamine,N-acetyl-neuraminate, and
N-acetyl-D-mannosamine. UDP-N-Acetylglucosamine is an im-
portant precursor to PIA formation. Again, the detailed analysis
of changes in the metabolome of S. epidermidis provides additional
support for the role of TCA cycle activity in a metabolic signaling
pathway that transduces disparate external stimuli into internal
metabolic signals that facilitate biofilm formation. Effectively, the
observed changes in the metabolome caused by disparate external
stimuli are consistently suppressing TCA cycle activity and indu-
cing PIA synthesis required for biofilms.

Conversely, the change of the carbon flow in the 2 h growth is
minimal. Again, this is consistent with the low TCA activity and

Figure 7. Cytoscape40 network depicting the metabolite concentration changes caused by the inactivation of the TCA cycle. Nodes colored red
correspond to metabolites with an increase in concentration due to TCA inactivation. Nodes colored green correspond to metabolites with a decrease in
concentration due to TCA inactivation. Nodes colored gray correspond tometabolites that are not observed in theNMR spectra, do not have a reference
NMR spectrum (or assignment), or did not exhibit a significant concentration change. Metabolic pathways are labeled on the network. The metabolite
names were abbreviated as described in the legend to Figure 6.
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the similar clustering in the 2D PCA scores plot between the
aconitase mutant and wild-type 2 h growth (Figure 2b). Ob-
viously, stress factors cannot suppress an already inactive TCA
cycle. Instead, the catabolic conversion of glucose into inter-
mediates throughout the glycolytic pathway proceeds as ex-
pected with a slight change since pyruvate is also produced.
Much of the carbon-13 from glucose was still directed to the
production of acetate. The NMR data indicates cellular acetate
concentrations were similar across the 2 h bacterial cultures, but
an increased amount of acetyl-phosphate was accumulated under
stress conditions. This confirms that when an abundant amount
of glucose is present, it is processed by glycolysis and pyruvate
dehydrogenase into acetyl-CoA and converted into acetyl-
phosphate for use in substrate level phosphorylation. The excre-
tion of acetate into the culture medium helps pH homeostasis
due to the large flux of acetate.72 Aside from the glycolytic
pathway, the NMR data indicates that wild-type bacteria tend to
utilize glucose more efficiency based on small decreases in amino
sugar and aromatic metabolites.

Metabolic Rearrangements during TCA Cycle Stress
The metabolome of S. epidermidis is not a series of indepen-

dent isolated metabolic pathways, but instead is a complex
interconnected network. Thus, metabolic pathways connected
to the TCA cycle are also affected by changes in TCA cycle
activity. To visualize the cascade effect of inactivating the TCA
cycle, a metabolic network was constructed using Cytoscape.40

The metabolic network (Figure 7) was generated by manually
associating each metabolite to its corresponding pathway from
the KEGG54 database and then using the automated biological
network modules integrated into Cytoscape.73,74 The network
connects the 37 metabolites identified by NMR whose concen-
trations are either increased (red) or decreased (green) by an
inactivated TCA cycle. Only metabolites affected by a minimally
active TCA cycle under all circumstances (aconitase mutant and
stress factors) are highlighted on the network map. It is im-
portant to note that NMR is not able to identify every metabolite
affected by perturbing the metabolome. The concentrations or
stabilities of some metabolites are simply below the NMR
detection limit. These intervening and undetected metabolites
are colored gray in the metabolic network. The network shows
the TCA cycle as the central pathway where common metabo-
lites connect the urea cycle, alanine metabolism, and glycolysis/
gluconeogenesis that then leads to amino sugar metabolism and
other metabolites associated with PIA synthesis.

’CONCLUSION

The systematic analysis of the S. epidermidismetabolome using
NMR provides further evidence for a metabolic signaling net-
work for biofilm formation that involves the TCA cycle. Inactiva-
tion of the TCA cycle enables metabolic precursors to flow into
pathways associated with PIA synthesis, an important compo-
nent of S. epidermidis biofilm formation. Disparate environmental
stress conditions known to induce biofilm formation were shown
to perturb the metabolome of S. epidermidis in a manner similar
to an aconitase mutant. Effectively, iron-depletion, and the
addition of ethanol, tetracycline, and glucose resulted in the
inactivation of the TCA cycle. Furthermore, a detailed analysis of
the specific changes to the S. epidermidis metabolome indicates
that essentially the same set of metabolites affected by TCA cycle
inactivation are also affected by environmental stress conditions.
A network map identified the TCA cycle as playing a central role

in the proposed signaling pathway that also involves the urea
cycle, alanine metabolism, glycolysis/gluconeogenesis, amino
sugar metabolism and other metabolites associated with PIA
synthesis. Interestingly, the addition of NaCl or autoinducer-2
did not induce any effect on the S. epidermidis metabolome or
effect TCA cycle activity, suggesting these factors must act
through a distinct process from the other environmental factors.
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