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Application of NMR and Molecular Docking
in Structure-Based Drug Discovery

Jaime L. Stark and Robert Powers

Abstract Drug discovery is a complex and costly endeavor, where few drugs that

reach the clinical testing phase make it to market. High-throughput screening (HTS)

is the primary method used by the pharmaceutical industry to identify initial lead

compounds. Unfortunately, HTS has a high failure rate and is not particularly

efficient at identifying viable drug leads. These shortcomings have encouraged

the development of alternative methods to drive the drug discovery process.

Specifically, nuclear magnetic resonance (NMR) spectroscopy and molecular

docking are routinely being employed as important components of drug discovery

research. Molecular docking provides an extremely rapid way to evaluate likely

binders from a large chemical library with minimal cost. NMR ligand-affinity

screens can directly detect a protein-ligand interaction, can measure a

corresponding dissociation constant, and can reliably identify the ligand binding

site and generate a co-structure. Furthermore, NMR ligand affinity screens and

molecular docking are perfectly complementary techniques, where the combination

of the two has the potential to improve the efficiency and success rate of drug

discovery. This review will highlight the use of NMR ligand affinity screens and

molecular docking in drug discovery and describe recent examples where the two

techniques were combined to identify new and effective therapeutic drugs.
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1 Introduction

The completion of the human genome project [1] coupled with an increase in R&D

investments was widely anticipated to be the cornerstone of personalized medicine

with a corresponding explosion in new pharmaceutical drugs targeting a range of

diseases. Nearly a decade later, the rate at which new drugs enter clinical develop-

ment and reach the market has declined dramatically despite the influx of novel

therapeutic targets and R&D investments. In the past 5 years the number of new

molecular entities (NMEs) receiving FDA approval has decreased by 50% from the

previous 5 years [2]. There are several reasons for this decline, but most stem from

the fact that drug discovery is a complex and costly endeavor. Approximately

80–90% of drugs that reach the clinical testing phase fail to make it to market

[3, 4]. Efforts to reduce costs often lead pharmaceutical companies to invest their

time and money in proven therapies, like “best-in-class” drugs, instead of “first-

in-class” drugs that target new mechanisms of action or diseases. As a result, many

diseases are “orphaned” and lack any therapeutic compounds in the discovery

pipeline. Addressing these issues will require fundamental changes to create

a more efficient drug discovery process.

The enormous costs and high failure rates inherent to the pharmaceutical indus-

try are clearly contributing factors to the declining number and diversity of new

therapeutics. Efforts that minimize costs without restricting research endeavors will

evidently benefit the development of drugs for various human diseases. The avail-

ability of hundreds of whole-genome sequences for numerous organisms provides

an invaluable data set for drug research [1, 5, 6]. Identifying a novel “druggable”

protein target is a critical first step for a successful and efficient drug discovery

effort. Unfortunately, bioinformatics analysis alone does not generally provide

enough information to justify embarking upon an expensive drug discovery pro-

gram [7, 8]. Instead, knowing the three dimensional structure of a protein greatly
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enhances the value of the bioinformatics analysis. Protein structures often provide

insights into the molecular basis of the protein’s biological function and its rela-

tionship to a particular disease. A protein structure also provides detailed infor-

mation on the sequence and structural characteristics that govern ligand binding

interactions. Building a drug discovery effort based on structural information

promises to help in the identification of novel therapeutic targets, in the discovery

of new lead compounds, and in the optimization of drug-like properties to improve

efficacy and safety. Currently, the drug discovery process within the pharmaceuti-

cal industry employs high-throughput screening (HTS) as the primary method for

identifying lead compounds. However, the high false positive rate [9–12] combined

with a significant cost in time and money has encouraged the development of

alternative methods to drive the drug discovery process [13, 14].

Nuclear magnetic resonance (NMR) spectroscopy is uniquely qualified to assist

in making the drug discovery process more efficient [15, 16]. NMR is useful for

several reasons: (1) it directly detects the interaction between the ligand and protein

using a variety of techniques, (2) samples are typically analyzed under native

conditions, (3) hundreds of samples can be analyzed per day, and (4) information

on the binding site and binding affinity can be readily obtained. These features

allow NMR to be an effective tool at multiple steps in the drug discovery pathway,

which includes verifying HTS and virtual screening hits [15, 17–19], screening

fragment-based libraries [15, 20–22], optimizing lead compounds [15, 17, 23, 24],

evaluating ADME-toxicology [25–27], and identifying and validating therapeutic

targets [28, 29]. Nevertheless, there are still intrinsic costs to maintaining an NMR

instrument, screening a compound library, and producing significant quantities of a

protein. One way to significantly reduce experimental costs is to utilize in silico
methodologies to supplement the lead identification and optimization steps of the

drug discovery process [30].

Molecular docking is a computational tool that predicts the binding site location

and conformation of a compound when bound to a protein [30–32]. This approach

has been found to be fairly successful in redocking compounds into previously

solved protein–ligand co-structures [33], where more than 70% of the redocked

ligands reside within 2 Å root mean squared deviation (RMSD) of the actual ligand

pose. During the prediction of protein–ligand co-structures, molecular docking

programs calculate a binding score that allows for the selection of the best

ligand pose. The binding score is typically based on a combination of geometric

and energetic functions (bond lengths, dihedral angles, van der Waals forces,

Lennard-Jones and electrostatic interactions, etc.) in conjunction with empirical

functions unique to each specific docking program [34–39]. A large variety of

docking programs are available that include AutoDock [40], DOCK [41], FlexX

[42], Glide [43], HADDOCK [44], and LUDI [45, 46].

Binding energies are also routinely used to rank different ligands from a com-

pound library after being docked to a protein target. The virtual or in silico
screening of a library composed of thousands of theoretical compounds can be

accomplished in a day with minimal cost [47–49]. Thus, a virtual screen can

significantly accelerate the hit identification and optimization process while
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reducing the amount of experimental effort. However, a virtual screen does have

significant limitations that prevent it from completely replacing traditional HTS

[50–52]. These limitations include inaccurate scoring functions, use of rigid

proteins, and simplified solvation models. In essence, a virtual screen only increases

the likelihood that a predicted ligand actually binds the protein target, experi-

mental verification is essential. Despite the individual drawbacks, NMR ligand

affinity screens and molecular docking are complementary techniques. This review

will highlight the use of NMR ligand affinity screens and molecular docking in

drug discovery and describe recent examples where the combination of the two

techniques provides a powerful approach to identify new and effective therapeutic

drugs.

2 NMR Ligand Affinity Screens

NMR ligand affinity screening is a versatile technique that is useful for multiple

stages of the drug discovery process [15, 17, 22, 53]. This versatility arises from the

ability of NMR to directly detect protein–ligand binding based on changes in

several NMR parameters. A binding event is detected by the relative differences

between the protein or ligand NMR spectrum in the bound and unbound states.

However, the specific type of information obtained about the binding process

depends on whether a ligand-based or target-based NMR experiment is used.

2.1 Ligand-Based NMR Screens

Ligand-based NMR screens typically monitor the NMR spectrum of a ligand

under free and bound conditions. Distinguishing between a free ligand and

a protein–ligand complex is generally based on the large molecular weight differ-

ence that affects several NMR parameters. Small molecular weight molecules have

slow relaxation rates (R2), negative NOE cross-peaks, and large translational

diffusion coefficients (Dt). If a protein–ligand binding event occurs, the ligand

adopts the properties of the larger molecular-weight protein, increasing R2, produc-

ing positive NOE cross-peaks, and decreasing Dt, all of which can be observed by

NMR [54]. Most ligand-based NMR screens use one-dimensional (1D) 1H-NMR

experiments to monitor these changes, which provide significant benefits for a high-

throughput screen. 1D NMR experiments are typically fast (2–5 min) and routinely

use mixtures without the need to deconvolute [55]. The deconvolution of mixtures

is avoided by ensuring that NMR ligand peaks do not overlap in the NMR spectrum

(Fig. 1). The application of mixtures allows for hundreds to thousands of

compounds to be screened in a single day. Another advantage of ligand-based

NMR methods is the minimal amount of protein required (<10 mM) for each

experiment. Additionally, isotopically labeled proteins are not needed for the
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NMR ligand affinity screen and protein molecular weight is not a limiting factor

[21]. In fact, higher molecular-weight proteins enhance the observation of a binding

event in a ligand-based NMR screen. All of these characteristics make ligand-based

NMR screens a routinely used drug discovery technique.

There are several screening techniques created from ligand-based NMR experi-

ments: line broadening [56], STD NMR [57], WaterLOGSY [58], SLAPSTIC

[59], TINS [60], transferred NOEs [61], FAXS [62, 63], FABS [64, 65], and diffusion

measurements [66, 67]. Each of these methods utilizes a specific NMR parameter that

indicates ligand-binding, such as a change in ligand NMR peak width or diffusion,

a saturation transfer from the protein or solvent to the ligand, anNOE transfer between

the free and bound ligand, a spin-label induced paramagnetic relaxation, or fluorine

chemical shift anisotropy. The choice of which method to use typically depends

upon the protein target and the compound library being screened. In addition,

line broadening and STD, among other techniques, can be used to measure dissocia-

tion constants (KD) [68, 69]. Conversely, ligand-based NMR screens don’t provide

any structural information about the protein–ligand complex.

Fig. 1 An example of the use of a ligand-detect NMR experiment to observe the line broadening

(increase R2) that occurs when one compound, in a mixture of two compounds, binds a protein

target. The 1H-NOESY spectra of nicotinic acid (left structure) and 2-phenoxybenzoic acid

(right structure) in a mixture without protein (top spectrum) and with the protein, p38 MAP

kinase, added (bottom spectrum). The solid and dashed arrows represent the resonances of

nicotinic acid and 2-phenoxybenzoic acid, respectively. In this case, the resonances corresponding

to 2-phenoxybenzoic acid are broadened, indicating binding of this compound to the protein.

(Reprinted with permission from [178], copyright 2001 by Academic Press)
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2.2 Target-Based NMR Screens

A target based screen focuses on changes in the protein (or other target) NMR

spectrum to identify a binding event. Typically, chemical shift perturbations (CSPs)

occur in the protein NMR spectrum upon ligand binding. The complexity and

severe peak overlap in a protein 1D 1H NMR spectrum makes it impractical to

observe subtle CSPs for weak binding ligands. Instead, two-dimensional (2D)

heteronuclear NMR [70–72] experiments are typically used for target-based

NMR ligand affinity screens [73]. 2D1H-13C/15N HSQC/TROSY NMR experi-

ments require a significant increase in experiment time (>10 min) due to the

additional dimension and the need to collect a reference spectrum for the ligand-

free protein. Also, the protein needs to be 15N and/or 13C isotopically labeled.

Importantly, 2D1H-13C/15N HSQC/TROSY NMR experiments provide additional

information about the ligand binding site.

A binding ligand often results in the observation of CSPs of the resonances in a

2D1H-15N- or 1H-13C-HSQC spectrum (Fig. 2a). These CSPs are usually caused by

a change in the chemical environment for residues proximal to the bound ligand or

residues undergoing ligand-induced conformational changes. The availability of

the protein structure and the NMR sequence assignments (correlation of an NMR

resonance with a specific amino acid residue) allows for the CSPs to be mapped

onto a three-dimensional (3D) representation of the protein’s surface. A cluster of

residues on the protein surface with observed CSPs often identifies the ligand-

binding site.

The ligand binding affinity or KD is also routinely determined from CSPs

measured from a series of 2D 1H-13C/15N HSQC/TROSY NMR experiments. The

magnitude of the CSPs at varying ligand concentrations is correlated to the KD for

the protein–ligand complex using the following equation [74, 75]:

CSPobs ¼ CSPmax

KD þ L½ � þ P½ �ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KD þ L½ � þ P½ �ð Þ2 � 4 L½ � P½ �ð Þ

q
2½P� ; (1)

where [P] is the protein concentration, [L] is the ligand concentration, CSPmax is the

maximum CSP observed for a fully bound protein, and CSPobs is the observed CSP

at a particular ligand concentration. A least squares fit of (1) to the experimental

CSP data is used to calculate a KD (Fig. 2b).

As previously mentioned, since target-based screens require the use of multidi-

mensional NMR experiments, data collection is significantly longer relative to

ligand-based NMR screens. Also target-based screens require higher protein

concentrations (>50 mM compared to <10 mM). This severely limits the utility of

target-based NMR screens for the high-throughput analysis of large compound

libraries. Instead, the approach is typically used to validate hits from a high-

throughput screen or the analysis of relatively small fragment-based libraries

[76–78]. A fragment-based library consists of low molecular-weight compounds

(<250–350 Da) that are fragments of known drugs or have drug-like properties
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[79]. Recent advances like the SOFAST-HMQC experiment [80, 81] and the Fast-

HSQC experiment [82] have decreased the time and amount of protein necessary

for a target-based screen. Nevertheless, NMR ligand affinity screens are still very

resource intensive, requiring a significant amount of time and material. Also, since

any high-throughput screen produces a significant amount of negative data (most

ligands don’t bind or inhibit a protein), a more efficient approach is to screen a

library of compounds with a higher probability of binding the protein target. In

effect, a virtual or in silico screen can be used to enrich a library with likely binders.

3 Molecular Docking

An accurate prediction of the interactions between two molecules requires an in-

depth understanding of the energetics that led to a stable biomolecular complex.

Unfortunately, a model that correctly accounts for all the factors involved in a

productive protein–ligand interaction is currently unknown. Further, the problem is

exponentially more complex than just modeling the specifics of a protein–ligand

interaction. A protein contains thousands of atoms that have specific interactions

with each other, with the solvent, and with other ions; in addition to the bound

ligand. Because of this complexity, computational efforts that attempt to model

protein–ligand interactions require significant amounts of processing power and

time. Many efforts that utilize molecular dynamics and distributed computing

[83, 84] are generally limited to a detailed analysis of a single system. These

methods are generally not practical for the majority of researchers interested

in conducting a virtual screen of a library containing upwards of millions of

compounds. To make molecular docking computationally feasible and easily

accessible, many simplifications and trade-offs in the process are necessary.

Fig. 2 (a) An overlay of the 2D 1H-15N HSQC spectra for the protein YndB titrated with

increasing amounts of chalcone. The perturbed residues can be used to identify a consensus

binding site. (b) NMR titration data for YndB bound to chalcone (blue), flavanone (green), flavone
(purple), and flavanol (orange). The magnitude of the chemical shift perturbation can be used to

calculate the dissociation constants for each compound. (Reprinted with permission from [112],

copyright 2010 by John Wiley and Sons)
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Many computer programs are available to perform or assist with molecular

docking. The vast number of docking programs makes it impractical to describe

them all in detail within a single review (for other reviews please see [85–89]). Each

docking program does have some unique features that make them particularly

useful for a given situation or problem. However, nearly all the docking programs

consist of two primary components: docking (or searching) and scoring [30, 31].

Docking refers to the sampling of the ligand’s conformation space and its orienta-

tion relative to a receptor. Scoring is used to evaluate and rank the current pose of

the ligand.

3.1 Docking

The docking process requires, at a minimum, two inputs: the three-dimensional

structures of the receptor (protein) and the ligand. The most common simplification

to the docking process is to keep the structure of the receptor rigid and stationary.

Only the ligand is typically allowed to be flexible as it is docked to the protein.

Keeping the protein rigid significantly minimizes the complexity of the calculation.

Sampling the conformations and orientations of the ligand is done using systematic

or stochastic methods [30, 31].

Systematic search methods attempt to sample all of the possible conformations

of a ligand by incrementing the torsional angles of each rotatable bond. Unfortu-

nately, this technique is computationally expensive due to the exponential increase

in the number of possible conformations (Nconf) as the number of rotatable bonds

increases:

Nconf ¼
YN
i¼1

Yninc
j¼1

360

yi;j
; (2)

where N represents the number of rotatable bonds, ninc is the number of incremental

rotations for each rotatable bond, and yi,j is the size of the incremental rotation for

each rotatable bond. As a result, purely brute force systematic approaches are

generally not used. Instead, most systematic searches require the use of efficient

shortcuts. As an illustration, MOLSDOCK [90] uses mutually orthogonal Latin

squares (MOLS) to identify optimal ligand conformations. Latin squares are an

N � Nmatrix, where each parameter (torsion angle value) occurs only once in each

row and column. Orthogonal Latin squares are two or more superimposed N � N
matrices, where each parameter still only occurs once in each row and column.

MOLS are used to identify the N2 subset of ligand conformations used to calculate

binding energies. Simply, only a small subset of the possible ligand conformations

is sampled to construct the potential surface and identify the minima.

Perhaps the most commonly utilized systematic search method is incremental

construction, which is used by DOCK [41], FlexX [42], E-Novo [91], LUDI

[45, 46], ADAM [92], and TrixX [93]. In this particular method, the ligand is
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split into fragments. The most rigid fragments are often used as the core or anchor

and are docked first into the receptor binding pocket. The remaining fragments are

incrementally added back onto the core fragment, where each addition is systemat-

ically rotated to evaluate the most optimal conformation. Thus, incremental con-

struction drastically reduces the number of possible conformations that need to be

searched in order to identify the optimal pose.

Another systematic approach uses rigid docking in combination with a pre-

defined library of ligand conformations, which is implemented in OMEGA [94],

FLOG [95], Glide [43], and the TrixX Conformer Generator [96]. This technique

generates several low energy conformers for a ligand that are clustered by RMSD.

A representative conformer from each cluster is then docked into the receptor.

The approach is very fast because the docking process keeps the ligand rigid,

eliminating the need to spend computation time on searching torsional space.

A tradeoff for this increase in speed is a potential loss in accuracy, since the binding

potential for all possible conformers may not be explored. Conversely, a major

benefit of the technique is the fact that the library of structural conformers only

needs to be generated once. This is a significant savings in time for the pharma-

ceutical industry, where screening libraries may consist of millions of compounds.

Unlike systematic approaches that attempt to sample all possible ligand confor-

mations, stochastic searches explore conformational space by making random

torsional changes to a single ligand or a population of ligands. The structural

changes are then evaluated using a probability function. There are three types of

stochastic searches: Monte Carlo algorithms [97], genetic algorithms [98], and tabu

search algorithms [99]. The most basic stochastic method is the Monte Carlo

algorithm, which utilizes a Boltzmann probability function to determine whether

to accept a particular ligand pose:

P � exp
�ðE1 � E0Þ

KBT

� �
; (3)

where P is the probability the conformation is accepted, E0 and E1 are the ligand’s

energy before and after the conformational change, KB is the Boltzmann constant,

and T is the temperature. The simple scoring function used by the Monte Carlo

algorithms is more effective than molecular dynamics in avoiding local minima and

finding the global minimum. Alternatively, genetic algorithms utilize the theory of

evolution and natural selection to search ligand conformation space. In this case,

the conformations, orientations, and coordinates of a ligand are encoded into

variables representing a “genetic code.” A population of ligands with random

genetic codes is allowed to evolve using mutations, crossovers, and migrations.

The new population is evaluated using a fitness function that eliminates unfavorable

ligand poses. Eventually, a final population converges to ligands with the most

favorable “genes” or conformations (Fig. 3). Tabu searches, like other stochastic

methods, randomly modify the conformation and coordinates of a ligand, score the

conformer, and then repeat the process for a new conformation. Tabu searches
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utilize a tabu list to remember previous ligand states. A pose is immediately

rejected if it is close to a prior conformation. The tabu list encourages the search

to progress to unexplored regions of conformational space.

3.2 Scoring

While docking algorithms are generally efficient at generating the correct ligand

pose, it is important for the docking program to actually select the correct ligand

conformation from an ensemble of similar conformers. In essence, the scoring

function should be able to distinguish between the true or optimal binding confor-

mation and all the other poses. The scoring function is also used to rank the relative

binding affinities for each compound in the library. Ideally, the scoring function

should be able to calculate the free energy (DGbinding) of the protein–ligand binding

interaction, which is directly related to the KD:

Phenotypes

f(x)

Mapping

Genotypes
ChildChild

Lamarckian
Inverse
Mapping

Mutation

Local search

Parent

Fig. 3 An illustration of the genetic algorithm approach, where the states of the ligand (transla-

tion, orientation, and conformation relative to the protein) are interpreted as the ligand genotype

and the atomic coordinates represent the phenotype. A plot of the change in the fitness function

(f(x)) as the ligand population is allowed to mutate, crossover, and migrate. The genetic evolution

of the ligand effectively samples conformational space where the best conformer is identified by

a minimum in the fitness function (Reprinted with permission from [179], copyright 1998 by

John Wiley and Sons)
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DGbinding ¼ �RTln
1

KD

: (4)

Unfortunately, accurately calculating the binding free energy is very challenging

due to the many forces that influence binding. In molecular docking, there are five

primary types of scoring functions: force field-based, empirical, knowledge-based,

shape-based, and consensus [100–102].

Force field-based scoring functions [30, 31] are used to calculate the free energy

of binding by combining the receptor–ligand interaction energy and the change in

internal energies of the ligand based on its bound conformation (Fig. 4). The

internal energy of the receptor is usually ignored since the receptor is kept rigid

in most docking programs. The protein–ligand binding energies are typically

defined by van der Waal forces, hydrogen bonding energies, and electrostatic

energy terms. The van der Waals and hydrogen bonding terms often utilize a

Lennard-Jones potential function, while the electrostatic terms are described by a

coulombic function. Unfortunately, these interaction energies were originally

derived from measuring enthalpic interactions in the gas phase. Of course,

receptor–ligand binding interactions actually occur in an aqueous solution, which

introduces additional interactions between the solvent molecules, the receptor, and

the ligand. Protein–ligand binding energies are also dependent on the entropic

changes that occur upon binding, which include torsional, vibrational, rotational,

and translational entropies. Most entropy and solvation-based energy terms can’t be

calculated using force field-based scoring functions. As a result, force field-based

scoring functions are incomplete and inaccurate.

Empirical scoring functions [103–106] are similar to force field-based scoring

functions since they use a summation of individual energy terms. But empirical

scoring functions also attempt to include solvation and entropic terms. This is

typically achieved by using experimentally determined binding energies of

known ligand–receptor interactions to train the scoring system using regression

analysis. Empirical scoring functions are fast, but the accuracy is completely

dependent upon the experimental data set used to train the scoring function.

In general, empirical scoring functions are reliable for ligand–receptor complexes

that are similar to the training set.

Knowledge-based scoring functions [107–109] are fundamentally different from

force field-based and empirical scoring functions. Knowledge-based scoring

functions don’t attempt to calculate the free energy of binding. Instead, these

scoring functions utilize a sum of protein–ligand atom pair interaction potentials

to calculate a binding affinity. The atom pair interaction potentials are generated

based upon a probability distribution of interatomic distances found in known

protein–ligand structures. The probability distributions are then converted into

distance-dependent interaction energies. In this manner, knowledge-based scoring

functions allow for the modeling of binding interactions that are not well under-

stood. The approach is also very simple, which is useful for screening large com-

pound libraries. Unfortunately, knowledge-based scoring functions are designed
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to reproduce known experimental structures, and the binding score generated has

little relevance to an actual binding affinity. This is an issue similar to empirical

scoring functions; the accuracy of the scoring function is strongly dependent on the

similarity of the protein–ligand complex to the training data set.

As implied, shape-based scoring functions are based on a shape match between

the ligand and the ligand binding site [110]. These scoring functions are typically

used as prefilters to eliminate compounds that are unable to fit into the ligand

binding site [111, 112]. Shape-based scoring functions are very fast, but are limited

relative to more accurate scoring functions that calculate binding affinities. Shape-

based scoring functions typically generate smooth energy surfaces using Gaussian

functions [111], which are more tolerant to atomic variations and make protein

a b

c

d van der waals H-bond Electrostatic

φ

Distance (rij) Distance (rij) Distance (rij)

E
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E
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y

E
ne
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Fig. 4 (a) A representation of p38 mitogen-activated protein kinase structure bound to BIRB796

and (b) an expanded view of the binding site. (c) A representation of the hydrogen-bonding (red)
and electrostatic interactions (green) between the atoms of the protein and the atoms of the ligand.

(d) A representation of three force-field energy terms (van der Waals, hydrogen-bonding, and

electrostatic) as distance between the interacting atom pairs change. (Reprinted with permission

from [30], copyright 2004 by the Nature Publishing Group)
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clash interactions “softer.” This essentially helps minimize the effect of small

structural variations that may occur during ligand binding.

While the above scoring methods are generally useful in describing protein–

ligand interactions, the simplifications used in each approach limits the overall

accuracy in predicting the correct docked ligand pose [113, 114]. The major

weakness of most docking programs has been shown to be the scoring function.

One approach to compensate for this deficiency is to use a consensus score from

a combination of scoring functions to rescore a docked pose. Consensus scoring

[31, 115] has been shown in several examples to improve docking results compared

to a single scoring function. However, like individual scoring functions, the

improvement is not consistent and the proper choice of scoring functions to

calculate a consensus score is typically based on trial and error.

3.3 Protein Flexibility

Proteins are inherently flexible and undergo a range of motions over different time

scales, and thus the use of rigid protein structures by molecular docking is prob-

lematic [116, 117]. This is especially troublesome for therapeutic targets where

only an apo-structure is available. Conformational changes upon ligand-binding

may range from small perturbations in side chain conformation at the site of ligand

binding to large rearrangements of the entire protein structure. Not accounting for

such structural changes during ligand docking can drastically alter the ability to

identify reliable protein–ligandmodels correctly [118–122]. Conversely, attempting

to dock a large library of flexible ligands to a completely flexible protein structure

using molecular dynamics is too computationally expensive to be practical.

Several approaches to “solve” the protein flexibility problem have been

explored. The first generally applicable approach utilized soft docking in the

scoring function, which reduces the van der Waals repulsion terms in the empirical

scoring function [123, 124]. This allows for some overlap between ligand and

protein atoms. While this approach is simple and fast, it can only accommodate

very small changes in side chain conformations. Other approaches attempt to

implement protein structural changes into the docking process. For example, a

library of side chain rotamers for residues only in the ligand binding site is routinely

used [40, 125]. This dramatically reduces the number of active rotatable bonds

during the docking process and has a lower computational cost compared to

molecular dynamics. However, the inclusion of a library of rotamers in the docking

protocol is significantly slower than rigid protein docking. Furthermore, the

approach is limited to local side chain conformational changes.

The most common docking technique that attempts to account for protein

flexibility uses multiple protein structures. The ensemble of structures is expected

to represent the range of conformations sampled by the protein and has the benefit

of being able to evaluate both small and large conformational changes. The

molecular docking is repeated for each individual protein conformation, which
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results in a proportional increase in computational time. Also, the results may be

ambiguous, since there may be several equally valid ligand poses for each different

protein conformation. This is especially apparent in virtual screening approaches

where enrichment factors suffer when docking to multiple structures (please see

Sect. 3.4). This is likely due to an increase in the number of false positives among

the top hits [126]. Ensemble docking is an alternative to docking multiple structures

that removes the ambiguity [118]. All the protein structures from the ensemble are

superimposed in order to generate an average structure or an average receptor grid.

The docking is then performed against the average structure or average receptor

grid (Fig. 5). The ensemble docking approach allows for a single docking at a

significantly lower computational cost; however, it may suffer from accuracy

problems if the ensemble is biased towards the unbound form of the protein.

Effectively, a biased ensemble may negate the goal of incorporating protein

flexibility if it represents a single conformation.

3.4 Virtual Screening and Assessment

Using molecular docking to identify lead candidates is an attractive approach for

the pharmaceutical industry; it allows for the rapid evaluation of millions of

chemical compounds while using minimal resources compared to traditional

HTS. The process by which molecular docking is used to rank compounds within

a library based on a predicted binding affinity is known as virtual screening [127,

128]. The potential benefit to drug discovery has inspired the development and

evaluation of numerous virtual screening methodologies. A virtual screen requires a

balance between optimizing speed and maximizing accuracy. Specifically, the goal

of a drug discovery virtual screen is the rapid and efficient separation of a small

subset of active compounds from a relatively large random library of inactive

compounds. Unfortunately, determining the effectiveness of a specific virtual

screening process is challenging, where independent evaluators routinely generate

inconsistent results [87, 129–131].

The ambiguous nature of the results from a virtual screen requires additional

methods to evaluate its success. Typically, a virtual screening process is evaluated

against a protein target with a set of known binders. Assessing the performance of

a virtual screen is primarily based on the accuracy of the predicted ligand pose and

binding affinity. The correct binding pose is often evaluated by calculating the

RMSD between the docked and experimental ligand structures. The evaluation of

binding affinity is typically based on the accurate ranking of known binders instead

of the absolute scores because of the known limitations with calculating a binding

energy. Other modes of performance assessment involve evaluating enrichment and

generating diverse hit lists.

In a virtual screening protocol, every compound in a library (Ntot) is docked to

the protein and a corresponding binding score is calculated. The binding score for

the ligand’s best docked pose is used to rank the ligand relative to the entire library.
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A virtual screen never results in all the truly active compounds being top ranked.

Instead, most virtual screening protocols set a binding score or ranking threshold to

identify the predicted active compounds or “hits.” In general, top ranked compounds

are expected to be enriched with active compounds compared to a random selection

(Fig. 6a). A high enrichment factor (EF > 10) is considered the benchmark of success

for a virtual screening [132]. Enrichment is dependent on sensitivity (Se) and specific-
ity (Sp). Sensitivity represents the true positive rate, which is the ratio of true positives
(TP) found by the virtual screening vs the total number of actives (A) in the library. The
number of actives corresponds to both true positive (TP) and false negative (FN):

Se ¼ TP

TPþ FN
: (5)

P1 P2 P3 P4

Structural
superimposition

P5

Docking

Optimization
Min(E(x,y,z,θ,φ,ψ,m))

Ligand

Ligand P3

Fig. 5 A cartoon illustration of ensemble docking, where five individual protein structures are

superimposed to create a single scoring parameter for the docked ligand. Ensemble docking

minimizes the computational effort since a single docking occurs to select the best conformer

instead of five separate molecular docking simulations. (Reprinted with permission from [118],

copyright 2007 by John Wiley and Sons)
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Specificity is the measure of the true negative rate, which represents the ratio of

true negatives (TN) to the total number of inactive compounds. The number of

inactive compounds corresponds to both true negatives (TN) and false positives (FP):

Sp ¼ TN

TN þ FP
: (6)

The enrichment factor is a common method for evaluating the enrichment

capabilities of a virtual screen:

EF ¼
TP

TPþFP

� �
TPþFN
Ntot

� � : (7)

The enrichment factor is dependent upon the ratio of active compounds to

the total number of compounds in the library. As a result, enrichment scores are

difficult to compare between virtual screens with different libraries. Also, the

enrichment factor does not distinguish between high and low ranking compounds.

Perhaps the more popular approach for evaluating enrichment is to generate

a receiver operating characteristic (ROC) curve [133]. The ROC curve is a plot of

the true positive rate (Se) against the false positive rate (1�Sp) at varying thresholds
for determining a hit. A ROC curve allows for the evaluation of a virtual screening

method without using an arbitrary scoring threshold. Enrichment occurs when the

resulting data point at a particular threshold resides above the diagonal (Se ¼
1�Sp), which corresponds to a random selection of compounds. In a perfect virtual
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Fig. 6 (a) A theoretical distribution of compounds in a virtual screen based upon the docking

score. The overlap between active and inactive compounds indicates that the scoring threshold

used to identify a hit by virtual screening is critical. (b) A ROC curve is used to evaluate the

enrichment of a virtual screen and select a scoring threshold. A ROC curve that approaches Se ¼ 1

and 1-Sp ¼ 0 represents perfect enrichment. The area under the ROC curve (AUC) represents the

probability that a true active is identified. (Reprinted with permission from [131], copyright 2008

by Springer)
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screen where every active compound is identified as a hit and every inactive

compound falls below the threshold, the ROC curve approaches the top left corner

(Se ¼ 1 and 1�Sp ¼ 0) (Fig. 6b).

Hit list diversity is also an important consideration for the success of a virtual

screen since there is more value in identifying a few unique compounds instead of

many compounds all based on the same chemical scaffold. One way that diversity

can be determined is by comparing the structural similarities of hits from a virtual

screen by using the Tanimoto index [134] and then clustering the results. Basically,

a Tanimoto index is calculated based on the fraction of similar chemical sub-

structures present in two structures. Generally, 1,365 chemical substructures

are used to describe a structure. The substructures include individual elements,

two-atom substructures, single rings, condensed rings, aromatic rings, other rings,

chains, branches, and functional groups:

TI ¼ C

Aþ Bþ C
; (8)

where A represents the substructural features present in the first structure, B repre-

sents the substructural features present in the second structure, and C represents

the substructural features common to both structures. Identical structures have

a TI score of 1, where completely dissimilar structures have a TI value of 0.

4 Combining Molecular Docking with NMR Ligand
Affinity Screens

The vast majority of initial leads in drug discovery are identified from HTS

[13, 135, 136]. Pharmaceutical companies have invested heavily in developing

and maintaining large chemical libraries (>1,000,000 compounds), which are

screened using automated, biological assays intended to monitor a specific response

or biological effect [136]. Unfortunately, HTS is extremely inefficient due to the

high cost of developing, maintaining, and screening such large libraries of

compounds. Furthermore, the random search for an effective drug in the vastness

of chemical space (~1060 compounds) [137] is almost guaranteed to fail. Thus,

HTS hit rates are typically very low, where <0.5% of compounds exhibit any

inhibitor activity in an assay [138]. Correspondingly, HTS assays are highly ineffi-

cient since most of the screening effort is spent on the analysis of negative data.

Additionally, HTS assays, by nature, are mechanistic “black boxes,” and a response

does not provide any information on the mechanism of inhibition. This often leads

to numerous false positives from undesirable interactions [11, 12, 139] that may

lead the drug discovery project astray. Improving the efficiency of drug discovery

requires the implementation of advanced techniques that better guide the selection

of lead candidates without sacrificing speed.
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Ideally, an entirely in silico approach to screening a large compound library

would significantly improve efficiency and reduce costs [140, 141]. However,

several assessments of virtual screens have concluded that, without prior in-depth

analysis of the protein’s ligand binding site, only a marginal improvement in

finding successful leads is observed relative to standard HTS [32]. NMR can

complement a virtual screen by providing rapid experimental validation of lead

compounds. NMR allows for a ligand-binding event to be directly observed instead

of relying on false-positive prone activity assays. Also, NMR provides detailed

structural information about the ligand binding site and the orientation of the bound

ligand. An NMR ligand affinity screen can be used to validate upwards of thousands

of predicted hits from a virtual screen [142]. Thus, combining NMR with virtual

screens may provide a more efficient approach to lead identification and drug

discovery.

4.1 Identification of New Therapeutic Targets

The functional assignment of unannotated proteins is essential to the drug discovery

process. Greater than 40% of protein sequences encoded in eukaryotic genomes

consist of proteins of unknown function and represent an important opportunity to

identify new therapeutic targets [143]. Assigning a function to an uncharacterized

protein is an arduous and time-consuming task. The process often requires detailed

biochemical studies that may include analyzing cell phenotypes through knockout

libraries, monitoring of gene expression levels, or utilizing pull-down assays

[144–147].

Since the interactions of proteins with other biomolecules or small molecules is

the basis of a functional definition or classification, identifying the functional

ligand, the functional epitope or ligand binding site, and the 3D structure of the

protein–ligand complex are invaluable for a functional annotation. A functional

epitope or ligand binding site is evolutionarily conserved relative to the rest of the

protein structure in order for the protein to maintain its biological function. There-

fore, proteins that share similar binding site structures are expected to be functional

homologs and bind a similar set of ligands [28, 29]. Correspondingly, numerous

in silico approaches attempt to infer a function for an uncharacterized protein by

predicting ligand binding sites using geometry-based, information-based, and

energy-based algorithms [148–150]. Unfortunately, unambiguously identifying

the ligand binding site on a protein can be challenging without experimental

evidence, especially for proteins with no known function.

Functional Annotation Screening Technology using NMR (FAST-NMR) [28, 29]

is one approach that combines HTS by NMR with molecular docking and bio-

informatics analysis in order to assign a function to a protein (Fig. 7). In this

process, a compound library that contains approximately 430 biologically relevant

compounds [151] is screened by NMR using a multistep approach [152]. First,

a ligand-based screen using 1D NMR1H line-broadening experiments identifies
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potential binders. These hits are then verified in a target-based screen using a 2D
1H-15N HSQC experiment, where the occurrence of CSPs allows for the identifica-

tion of the ligand binding site. Molecular docking is used to generate a rapid

protein–ligand co-structure [121] that serves as input for the Comparison of Protein

Active-Site Structures (CPASS) program [153]. CPASS compares the sequence

and structure of this NMR modeled ligand binding site to ~36,000 unique experi-

mental ligand binding sites from the RCSB Protein Databank [143]. Thus, a protein

of unknown function can be annotated from a protein with a known function that

shares a similar ligand binding site [154]. The FAST-NMR and CPASS approach

has been used for the successful annotation of two hypothetical proteins, SAV1430

from S. aureus [29] and PA1324 from P. aeruginosa [155]. It has also been used

to identify a structural and functional similarity between the bacterial type III

secretion system and eukaryotic apoptosis [156].

The FAST-NMR approach was recently applied to protein YndB from Bacillus
subtilis to generate a functional annotation [112]. FAST-NMR was augmented

by the inclusion of a virtual screen using the Nature Lipidomics Gateway library

that contains ~22,000 lipids. Eight major categories of lipids are represented

in the library (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol

lipids, prenol lipids, saccharolipids, and polyketides), which are further divided into

a total of 538 distinct subclasses. The initial goal was to identify lipid scaffolds that

Fig. 7 A flow diagram of the FAST-NMR process. Mixtures of biologically active compounds are

first assayed in a ligand-based 1D line broadening screen against the protein of interest.

Compounds that are identified as hits are then verified using CSPs from a 2D 1H-15N HSQC

experiment that define a binding site on the protein surface. The CSPs are used to guide and filter

an AutoDock molecular docking calculation to generate a protein–ligand co-structure. The ligand

binding site defined by the co-structure is then compared to other experimental binding sites in the

PDB using CPASS. (Reprinted with permission from [28], copyright 2008 by Elsevier)

Application of NMR and Molecular Docking in Structure-Based Drug Discovery



preferentially bound YndB to infer the natural ligand. OMEGA [94] was used to

generate a database of ~10,000,000 conformers from the lipid library. The program

FRED was then used to dock the lipid conformer library to YndB. FRED [111] used

rigid docking based on shape complementarity and a consensus scoring system to

rank the ligands. The relative enrichment for each lipid class was calculated at

different thresholds. Only one lipid category, the polyketides, had a positive relative

enrichment, where all of the polyketides identified belonged to the flavonoid class

of lipids. Within the flavonoids, three subclasses emerged as favorable hits from

the virtual screen, where chalcones/hydroxychalcones, flavanones, and flavones/

flavonols accounted for 44.9%, 28.6%, and 14.3% of the top 50 hits, respectively.

trans-Chalcone, flavanone, flavone, and flavonol were selected to represent each

class. The compounds were titrated into YndB to confirm binding and to measure

KD. The titrations were followed using a series of 2D 1H-15N HSQC NMR

experiments, where CSPs were measured to calculate KDs (Fig. 2). trans-Chalcone
(KD <1 mM), flavanone (KD 32 �3 mM), flavone (KD 62 � 9 mM), and flavonol

(KD 86 � 16 mM) were all shown to bind YndB in the same ligand binding site with

KDs that mimicked the virtual screen ranking. Chalcones and flavonoids have not

been identified among the natural products of Bacillus organisms, but are important

precursors to plant antibiotics. The screening results are consistent with the symbi-

otic relationship between B. subtilis and plants. B. subtilis YndB is proposed to be

part of a stress-response network that senses chalcone-like molecules during a

plant’s response to a pathogen infection. The stress-response may induce B. subtilis
sporulation or the production of antibiotics to assist in combating the plant

pathogens.

4.2 Rapid Protein–Ligand Structure Determination

A protein–ligand complex is instrumental to a structure-based approach to drug

discovery. A new protein–ligand structure is required for each iteration of the lead

modification process, until the compound has been evolved into a drug candidate.

As a result, rapid protein–ligand structure determination benefits the drug discovery

process. There are several methods that utilize NMR CSPs from a protein–ligand

binding interaction with molecular docking to generate a corresponding co-structure.

Some recent techniques include the McCoy and Wyss method [157], LIGDOCK

[158], NMRScore [159], AutoDockFilter [121], QCSP-Steered Docking [160], and

HADDOCK [44]. Basically, the CSPs are used to guide the docking process

qualitatively and then to steer or filter the docking quantitatively. The docked

model is validated by an agreement with the experimental CSPs.

AutoDockFilter (ADF) utilizes a post-filtering approach for rapidly

(~35–45 min) generating a co-structure. First, CSPs from the 2D 1H-15N HSQC

spectrum are mapped onto the protein surface to define the AutoDock 4.0 3D search

grid. A 100 docked ligand poses are generated within the CSP defined search grid.

Second, the CSPs are used to filter the ligand conformers and select the best pose
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with the AutoDockFilter (ADF) program. ADF calculates a pseudodistance (dCSP)
based on the magnitude of the CSPs and compares it to the shortest distance (dS)
between any atom in the residue that incurred the CSP with any atom in the docked

ligand pose. A violation energy is attributed to each protein residue that is further

from the docked ligand pose then predicted by the CSP pseudodistance. The sum of

these violation energies generates an overall NMR energy (ENMR) for the docked

ligand conformer:

ENMR ¼ k
Xn
i¼1

ðDDistÞ2DDist ¼ dCSP � dS dCSP < dS
0 dS � dCSP

�
: (9)

The conformer with the lowest NMR energy corresponds to the best protein-

ligand co-structure based on a consistency with the experimental CSPs. The NMR

energy also provides a qualitative way to evaluate the reliability of the co-structure,

with high NMR energies correlating to unreliable co-structures (Fig. 8).

NMRScore [159] is very similar to ADF. NMRScore uses poses generated by

AutoDock and seven other docking programs. CSPs are calculated for each pose

using DivCon, where a CSP RMSD is determined between the calculated and

experimental CSPs. The best pose corresponds to the conformer with the lowest

CSP RMSD. The McCoy and Wyss method [157] also uses simulated chemical

shift changes. But, unlike the NMRScore approach, the docked ligand is replaced

by a number of randomly placed amino-acid probes within the ligand binding site.

Proton chemical shifts, primarily from ring-current effects, are calculated for the

protein with and without the docked amino-acid probes. The proton chemical shifts

are calculated using the SHIFTS program [161], where CSPs are determined based

on the difference between the two sets of calculated proton chemical shifts.

The best pose for the amino-acid probe is chosen based on a minimal difference

between the experimental and calculated proton CSPs. The ligand is then docked to

the protein by aligning the ligand with the amino-acid probes.

Instead of simulated chemical shifts, the HADDOCK [44] and LIGDOCK [158]

programs use CSPs to define ambiguous interaction restraints (AIRs) [162]. AIRs

are an intermolecular distance restraint between all atoms of the residue with the

CSP and all atoms of the ligand. Importantly, other experimental information (STDs,

mutational data, etc.) can also be used to define AIRS. HADDOCK and LIGDOCK

employ a three-tiered approach to refining the protein–ligand complex. First, the

ligand is docked to a rigid protein structure. Next, the protein–ligand structure is

refined with simulated annealing in torsional space [163]. Finally, the structure is

optimized with explicit solvent to remove any remaining structural problems.

HADDOCK and LIGDOCK are particularly beneficial since the protein–ligand

co-structure is directly refined against the experimental CSPs. The methods do

suffer from long computation times and potential difficulties with proper parameter-

ization of the ligand. HADDOCK was initially developed to dock protein–protein

interactions and was later modified to accommodate ligands, whereas LIGDOCK

was specifically designed to generate protein–ligand co-structures.
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Gonzalez-Ruiz and Gohlke describe a conceptual hybrid (QCSP-Steered

Docking) of the AutoDockFilter and the HADDOCK/LIGDOCK procedures, effec-

tively combining the best features of both methods [160]. AutoDock 3.0.5 was

modified to incorporate a new hybrid scoring scheme utilizing the DrugScore target

function [164] with an amended CSP energy function. Basically, AutoDock is used

to generate poses similar to AutoDockFilter, but when an energetically acceptable

pose is obtained, CSPs are calculated for the pose. The calculated CSPs are based

only on ring current effects [165] from aromatic rings in the ligand. A comparison

between the calculated and experimental CSPs is used to calculate an energy

violation. Instead of an absolute difference, a Kendall’s rank correlation coefficient

is used to account for magnitude differences between the experimental and calcu-

lated CSP values. The pose with the lowest DrugScore and CSP energy is chosen.

Thus, QCSP-Steered Docking is as fast as AutoDockFilter, but allows for direct

refinement against the experimental CSPs like HADDOCK/LIGDOCK.

Fig. 8 A comparison of the NMR docking energy from AutoDockFilter to the rmsds between

the best docked ligand conformers and the experimental protein–ligand co-structure. An

improved correlation is observed for the docking of ligands to the bound form of the protein

(circles) compared to the apo-protein structure (squares). The red data points correspond to

AutoDockFilter docking results using experimental CSPs for staphylococcal nuclease (PDB-ID:

1EY0, 1SNC) [180–182]. The yellow data points correspond to a docking to the apo-structure of

acetylcholinesterase (PDB-ID:1ACJ, 1QIF) that resulted in a high rmsd. However, the inclusion

of side chain flexibility for residues in the ligand binding site resulted in an improved docking

and lower rmsd. (Reprinted with permission from [121], copyright 2008 by the American

Chemical Society)
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4.3 Lead Identification

Several recent approaches have investigated the combination of NMR and molecu-

lar docking for identifying inhibitors for specific proteins. Typically, these

approaches apply one of two methodologies: (1) a virtual screen of a large com-

pound library followed by validation of potential binders by NMR or (2) a frag-

ment-based screen using NMR followed by the use of molecular docking to

generate a protein–ligand co-structure for optimization.

Virtual screening followed by NMR validation is perhaps the most commonly

used combination of these two techniques. Several recent studies have highlighted

the use of this approach [166–169]. Branson et al. [166] used a virtual screen with

NMR to identify inhibitors of lupindiadenosine 50,5000-P1,P4-tetraphosphate (Ap4A)
hydrolase. These proteins are found in eukaryotes, prokaryotes, and archaea and

have been proposed to be involved in several biological functions, ranging from

apoptosis, DNA repair, to gene expression. In bacteria, it has also been shown to be

involved in pathogenesis, which makes this a potential target for developing

antimicrobial agents. There is also a significant difference in sequence between

the bacterial and animal forms of the protein, which makes this even more attractive

as a drug target. In this study, a virtual screen using DOCK 4 [41] was performed

on Ap4A hydrolase from Lupinusangustifolius with a database of ~120,000

compounds. The docked poses from DOCK were reranked according to consensus

scoring using six different scoring functions, where the top 100 ranked ligands were

selected and then filtered again to remove all compounds with a logP of 3 or greater

in order to select for compounds likely to be water soluble. The result was seven

compounds, of which six were commercially available. These six compounds were

then subjected to isothermal titration calorimetry to identify any inhibition of

hydrolase activity. From that analysis, one compound (NSC51531), which contains

a 1,4-diaminoanthracene-9,10-dione core, showed significant binding affinity

(~1 mM KD) and was chosen for analysis by 2D 1H-15N HSQC. The NMR analysis

showed CSPs consistent with the ATP binding site of the protein. In addition,

introducing NSC51531 to the human Ap4A hydrolase showed non-specific binding

and had no apparent toxic effects against human fibroblasts. This is likely due to

structural differences between the binding sites of the lupin and human forms of

Ap4A hydrolase. Potentially, a scaffold based upon NSC51531 could result in an

inhibitor with specificity towards the bacterial form of the protein leading to an

effective microbial agent (Fig. 9a).

Veldcamp and coworkers [169] utilized a similar method that targeted the

chemokine CXCL12, which activates the CXCR4 receptor shown to be involved

with cancer progression. In this approach, nearly 1.5 million compounds from the

ZINC database [170] were screened using DOCK 3.5 [171] against the region of

CXCL12 that interacts with CXCR4. Specifically, a sulfotyrosine (sY21) was

targeted since it was anticipated to be an important residue for the CXCL12-

CXCR4 interaction. The top 1,000 hits were manually inspected to identify five

compounds with a favorable interaction with sY21. These five compounds were
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then screened using 2D 1H-15N HSQCs, which showed that four of the compounds

bound weakly, but specifically, to CXCL12 in the region of interest. The strongest

binder, ZINC 310454, had a KD of ~64 mM. Additional NMR screens with analogs

to ZINC 310454 showed the importance of the carboxylic acid and naphthyl group,

since analogs lacking these features showed no binding in the 2D 1H-15N HSQC

experiments. Furthermore, a calcium flux assay demonstrated that 100 mM ZINC

310454 inhibited CXCL12-mediated signaling. Correspondingly, ZINC 310454

may be a useful scaffold for drug development (Fig. 9b). The results also reinforced

the validity of chemokines as a target for drug discovery.

Using molecular docking to screen a large compound library does reduce the

time and resources relative to an HTS assay, but it still suffers from an unfocused

approach. In general, virtual screens or HTS assays don’t efficiently sample chemi-

cal space or improve the diversity of hits. Molecular modeling also requires a priori

knowledge of the binding site to guide the virtual screen, which may be difficult

when dealing with new potential therapeutic targets. One approach to these

problems may be to utilize NMR as the primary screening tool and molecular

Fig. 9 (a) The inhibitors to lupin Ap4A hydrolase, where NSC51531, NSC232476, and

NSC89768 were identified by the virtual screen and NSC86169, NSC300513, and NSC401611

were structural analogs of NSC51531. (Reprinted with permission from [166], copyright 2009 by

the American Chemical Society). (b) A representation of the interaction between the three

sulfotyrosine groups of chemokine CXCL12 and the N-terminal region of the G-protein-coupled

receptor CXCR4. Virtual screening and NMR identified 3-(naphthalene-2-carbonylthiocarbo-

moylamino)benzoic acid (ZINC 310454) as a possible inhibitor of the binding between

CXCL12 and CXCR4, which was verified with a calcium flux assay. (Reprinted with permission

from [169], copyright 2010 by the American Chemical Society). (c) The docked pose of fragment

F152 (magenta) in the active site of human peroxiredoxin 5 with the hydroxyl groups oriented

towards catalytic cysteine (C47). (Reprinted with permission from [174], copyright 2010 by PLoS)
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docking to generate protein–ligand co-structures. Since it is not practical to use

NMR to screen the large library of compounds typically utilized by HTS or virtual

screening, a more focused approach with a smaller compound library is employed.

Fragment-based screening utilizes a significantly smaller library consisting of

simple, low molecular-weight (<250–350 Da) molecules [15, 20–22]. These frag-

ment-like molecules typically have weaker binding affinities (millimolar range)

compared to hits found in high-throughput screens (micromolar range), but NMR is

sensitive enough to detect these weak protein–ligand interactions. Importantly,

fragment-based libraries are more efficient in covering chemical space. Simply,

the number of possible compounds decreases drastically as the number of atoms is

reduced. Thus, a smaller chemical library actually covers a larger percentage of

chemical space. An even greater structural diversity can be achieved by chemically

linking multiple fragments. This also results in an additive improvement in

binding affinity. Evolving a drug from smaller fragments in this manner has the

added benefit of improving ligand efficiency, which typically results in a more

bioavailable compound that minimizes non-specific and unfavorable interactions

[172, 173].

A recent study [174] by Barelier and colleagues utilized fragment-based screen-

ing by NMR and molecular docking in the investigation of the human peroxi-

redoxin 5 (PRDX5) ligands. Peroxiredoxins are important enzymes that catalyze

the reduction of hydroperoxides through a conserved cysteine. However, very few

ligands have been identified that bind these proteins despite the availability of

crystal structures for PRDX5 bound with benzoate (PDB ID: 1HD2, 1H40) [175].

A compound library of 200 fragment compounds was screened by NMR using STD

and WaterLOGSY experiments, where six fragments were identified as binders.

STD experiments were also used to calculate the binding affinities for the six

fragment molecules, which were in the 1–5 mM range. Since the 1D experiments

did not provide information about the location of the binding site, AutoDock 4 [40]

was used to dock the fragments to the PRDX5 protein structure. The docking was

done against the entire protein structure; a grid search focusing on the

benzoate ligand binding site was not used. Not surprisingly, ambiguous results

were obtained. The molecular fragments bound to several locations on the PRDX5

structure that were indistinguishable based on binding energies.

Of necessity, the NMR backbone assignments for PRDX5 were obtained to

enable the identification of the ligand binding site by monitoring CSPs in 2D
1H-15N HSQC experiments. All the fragments were shown to generate a similar

set of CSPs consistent with a binding site that included the proposed catalytically

active cysteine. The docked binding conformation was also further confirmed from

CSPs for derivatives of these fragments. Analysis of the PRDX5 structure with the

docked fragments identified the presence of a potentially important hydroxyl

functional group that was pointed towards the catalytic cysteine (Fig. 9c). Interest-

ingly, the benzoate compound found in the PRDX5 crystal structure did not show

binding by NMR. But, derivatives of benzoate that included a hydroxyl functional

group showed improved affinity, further indicating the importance of this hydroxyl

group in ligand binding to PRDX5. These results provide further validation of the
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value of combining fragment-based NMR screens with molecular docking to

generate chemical leads.

While fragment-based screens have been shown to be an effective approach to

drug discovery, NMR ligand affinity screens require more time and material than

a virtual screen. However, fragment-based screens are extremely helpful for new

therapeutic targets with unknown binding sites. Also, the approach has the added

benefit of providing information about the druggability of the protein target. There

is a correlation between the hit rate of a fragment-based NMR screen and the ability

of the protein target to bind drug-like compounds with high affinity [176, 177].

5 Concluding Remarks

Significant advances continue to be made in the fields of molecular docking and

NMR ligand affinity screens that are benefiting drug discovery. Molecular docking

provides an extremely rapid way to evaluate likely binders from a large chemical

library with minimal cost. Unfortunately, limitations in the accurate ranking of true

binders by molecular docking programs require further experimental validation.

Conversely, NMR ligand-affinity screens can directly detect a protein–ligand

interaction, can measure a corresponding KD, and can reliably identify the ligand

binding site. However, NMR-ligand affinity screens are resource intensive and are

generally limited to relatively small chemical libraries. Thus, the strengths and

weakness of virtual screens and NMR ligand affinity screens are perfectly comple-

mentary. Combining the two screening techniques has the potential of significantly

improving the efficiency of drug discovery. The combination of NMR and molecu-

lar modeling techniques has been shown to enable the rapid determination of

reliable protein–ligand co-structures, the identification of new therapeutic targets,

and the successful discovery of new drug leads.
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