
Using NMR Metabolomics to Investigate Tricarboxylic Acid
Cycle-dependent Signal Transduction in Staphylococcus
epidermidis*□S

Received for publication, June 8, 2010, and in revised form, September 21, 2010 Published, JBC Papers in Press, September 22, 2010, DOI 10.1074/jbc.M110.152843

Marat R. Sadykov‡, Bo Zhang§, Steven Halouska§, Jennifer L. Nelson‡1, Lauren W. Kreimer¶, Yefei Zhu‡,
Robert Powers§2, and Greg A. Somerville‡3

From the ‡School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0905, the
§Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, and the ¶Department of Biochemistry,
University of Nebraska, Lincoln, Nebraska 68588-0664

Staphylococcus epidermidis is a skin-resident bacteriumand a
major cause of biomaterial-associated infections. The transition
from residing on the skin to residing on an implanted biomate-
rial is accompanied by regulatory changes that facilitate bacte-
rial survival in the new environment. These regulatory changes
are dependent upon the ability of bacteria to “sense” environ-
mental changes. In S. epidermidis, disparate environmental sig-
nals can affect synthesis of the biofilm matrix polysaccharide
intercellular adhesin (PIA). Previously, we demonstrated that
PIA biosynthesis is regulated by tricarboxylic acid (TCA) cycle
activity. The observations that very different environmental sig-
nals result in a commonphenotype (i.e. increasedPIA synthesis)
and that TCA cycle activity regulates PIA biosynthesis led us to
hypothesize that S. epidermidis is “sensing” disparate environ-
mental signals through themodulation of TCA cycle activity. In
this study, we used NMR metabolomics to demonstrate that
divergent environmental signals are transduced into common
metabolomic changes that are “sensed” by metabolite-respon-
sive regulators, such as CcpA, to affect PIA biosynthesis. These
data clarify one mechanism by which very different environ-
mental signals cause common phenotypic changes. In addition,
due to the frequency of the TCA cycle in diverse genera of bac-
teria and the intrinsic properties of TCA cycle enzymes, it is
likely the TCA cycle acts as a signal transduction pathway in
many bacteria.

Staphylococcus epidermidis is a skin-resident, opportunistic
pathogen that is the leading cause of hospital-associated infec-
tions (1). Although the type and severity of diseases produced
by this bacterium varies, its most common infectious manifes-
tation is associated with implanted biomaterials. The dramatic
environmental changes that occur during the transition from

being skin-resident to residing on implanted biomaterials
necessitates the need for changes in the expression of genes
coding for enzymes required for growth in the new environ-
ment. This environmental adaptation often includes activating
transcription of virulence genes; hence, most virulence genes
are regulated by environmental and nutritional signals (2).
Accordingly, a major area of interest in microbiology is deter-
mining how bacteria “sense” and respond to environmental sig-
nals. Given the tremendous diversity of microbial life, it is not
surprising that the mechanisms bacteria employ are equally
diverse. Thesemechanisms include two-component regulatory
systems, alternative � factors, mechanosensors, small RNAs,
riboswitches, and many others. Although remarkable advances
have been made in identifying the response regulators, our
knowledge of signaling mechanisms has lagged behind, the
exception being cell-density signaling.
The tricarboxylic acid (TCA) cycle has been implicated as

regulating or affecting staphylococcal virulence and/or viru-
lence determinant biosynthesis (3–9). The TCA cycle has three
primary functions: (i) to provide biosynthetic intermediates, (ii)
to generate reducing potential, and (iii) to directly produce a
small amount of ATP. The availability of biosynthetic interme-
diates affects the availability of amino acids and nucleic acids.
Increasing the reducing potential alters the bacterial redox bal-
ance, necessitating oxidation reactions via the electron transfer
chain. The small amount of ATP produced directly by the TCA
cycle is amplified many times when the ATP generated by oxi-
dative phosphorylation is considered. In short, the TCA cycle
has a central function in maintaining the bacterial metabolic
status. Importantly, the activity of TCA cycle enzymes is
affected by the availability of nutrients and a variety of stress-
inducing stimuli (9–12); thus, the availability of biosynthetic
intermediates, the redox status, and the energy status can be
altered by nutritional and environmental stimuli. These obser-
vations led us to propose a fourth function for the TCA cycle,
the transduction of external signals into intracellular metabolic
signals that can be “sensed” by metabolite-responsive regula-
tory proteins (2). Fundamental to this hypothesis are the pre-
dictions that disparate environmental stimuli will cause com-
mon metabolic changes and that these metabolic changes will
precede regulatory changes.
Two of the more extensively studied environmental stimuli

that influence S. epidermidis virulence determinant biosynthe-
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sis are iron limitation (13, 14) and ethanol stress (15, 16). The
effect of iron limitation on bacterial growth is primarily
through preventing the activity of enzymes that require iron as
a cofactor and altering transcription of iron-regulated genes (2).
As S. epidermidis has many iron-requiring enzymes (e.g. acon-
itase, serine dehydratase, peptide deformylase, iron-containing
alcohol dehydrogenase, nitrate reductase, etc.), it is reasonable
to expect that the metabolic effects of iron-limited growth are
diverse and not restricted to the TCA cycle. Ethanol denatures
proteins in the cytoplasmic membrane, causing changes in
membrane permeability, which can lead to the loss of mem-
brane integrity (17). With the exception of the succinate dehy-
drogenase complex, most TCA cycle enzymes are not mem-
brane-associated; hence, it is reasonable to predict that the
deleterious effects of ethanol stress are largely independent
of the TCA cycle. Taken together, these observations suggest
that disparate environmental conditions will cause divergent
metabolomic changes. In contrast to this suggestion, our cen-
tral hypothesis predicts that different stresses will cause com-
mon metabolomic changes that are dependent on the TCA
cycle. To test our central hypothesis, we chose to induce envi-
ronmental stress by growing bacteria in an iron-limited
medium or in a medium containing ethanol and assessing the
metabolic changes using NMR metabolomics.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Media, and Growth Conditions—S. epider-
midis wild-type strain 1457 (18) and the isogenic aconitase
mutant strain 1457-acnA::tetM (tetM cassette inserted into
position 856 of the 2,702-bp acnA gene) and �B mutant strain
1457-sigB::dhfr (7, 19) have been described. Strains 1457-codY,
1457-ccpA, 1457-acnA-codY, and 1457-acnA-ccpA were con-
structed using the gene splicing by overlap extension (gene
SOEing) technique (20) to replace the gene of interest with an
antibiotic resistance marker (i.e. ermB or tetM). Primers were
designed to amplify �1-kb regions upstream and downstream
of the gene of interest based on the genome sequence of S. epi-
dermidis strain RP62A. Gene knockouts were confirmed by
PCR and Southern blot hybridization. In addition, strains con-
taining mutations in the single S. epidermidis aconitase gene
were assayed to ensure that no aconitase activity was detected
(data not shown). All strains were grown in tryptic soy broth
without dextrose (TSB;4 BD Biosciences) supplemented with
0.25% glucose (Sigma) or 0.25% 13C6-glucose (Cambridge Iso-
tope Laboratories). Deferrated TSB (DTSB) was prepared by
adding 50 g of Chelex 100 (Sigma) to �1 liter of TSB and stir-
ring at 4 °C for 20 h. After 20 h, the Chelex resin was removed,
1mMMgSO4was added, the volumewas adjusted to 1 liter, and
the medium was filter-sterilized. To induce ethanol stress and
minimize growth defects, ethanol or deuterated ethanol (Iso-
tec) was added to the medium at a final concentration of 4%
(v/v). All cultures were inoculated 1:200 from overnight cul-

tures (normalized for growth) into glucose supplemented TSB,
incubated at 37 °C, and aerated at 225 rpm with a flask-to-me-
dium ratio of 7:1. Bacterial growth was assessed by measuring
the optical density at 600 nm (A600). Antibiotics, when used,
were purchased from Fisher Scientific or Sigma and used at the
following concentrations: chloramphenicol (8 �g/ml), tri-
methoprim (10 �g/ml), and erythromycin (8 �g/ml).
Aconitase Activity Assay—Cell-free lysates of S. epidermidis

were prepared as follows. Aliquots (3 ml) were harvested by
centrifugation (1 min at 20,800 � g) at the indicated times,
suspended in 1.5 ml of lysis buffer containing 90 mM Tris (pH
8.0) and 100 �M fluorocitrate. The samples were lysed in 2-ml
screw cap tubes containing lysing matrix B using a FastPrep
instrument (MP Biomedicals). The lysate was centrifuged for 5
min at 20,800 � g at 4 °C. Aconitase activity in the resulting
cell-free lysate was assayed by the method described by
Kennedy et al. (21). One unit of aconitase activity is defined as
the amount of enzyme necessary to give a �A240 min�1 of
0.0033 (22). Protein concentrations were determined by the
Lowry method (23).
Northern Blot Analysis—Northern blot analysis of transcripts

was performed as described (7). Oligonucleotide primers used
in making DNA probes were designed using the S. epidermidis
RP62A genome sequence. Probes for Northern blotting were
generated by PCR amplification of unique internal regions of
RNAIII and glnA (femC) genes using the following primers:
femC, forward, 5�-GATGTTTGATGGTTCATCTATTGAA-
GGTTTCG-3�; femC, reverse, 5�-GCAGTATCAGTCAATT-
GTAAATCACCTTCAG-3�; RNAIII, forward, 5�-TGAAAAA-
TTTGCTTAATCTAGTCGAGTG-3�; and RNAIII, reverse,
5�-CATGATAAATTGAATGTTGTTTACGATAGC-3�.
DNA probes were labeled using the North2South random

prime labeling kit (Pierce). Electrophoresis, transfer of the RNA
to the Nytran SPC nylon membrane (Whatman), and hybrid-
izationwere done using theNorthernMax kit (Ambion). Detec-
tion was performed using the chemiluminescent nucleic acid
detection module (Pierce).
PIA Immunoblot Assay—PIA accumulation was determined

as described (24).
NMR Sample Preparation—NMR samples for one-dimen-

sional 1H spectra were prepared from 10 independent, 25-ml
S. epidermidis cultures. Two-dimensional 1H-13C HSQC (25,
26) and two-dimensional 1H-1H TOCSY (27) spectra were pre-
pared from three independent 50-ml cultures. The TSB
medium used in the two-dimensional 1H-13C HSQC analysis
contained 0.25% 13C6-glucose (Cambridge Isotope Laborato-
ries). For two-dimensional 1H-13CHSQCand two-dimensional
1H-1H TOCSY involving ethanol stress, deuterated ethanol
(Isotec) was used to minimize the contribution of exogenous
ethanol to the NMR spectra. For one-dimensional 1H NMR
experiments, 2.74A600 units were harvested at each time point,
and for the two-dimensional 1H-13C HSQC and two-dimen-
sional 1H-1H TOCSY experiments, 5.48 A600 units were col-
lected. Bacteriawere harvested by centrifugation (4,000 rpm for
5 min), suspended in 50 mM phosphate buffer in 100% D2O at
pH 7.2 (uncorrected), and lysed using lysingmatrix B tubes and
a FastPrep instrument. The lysates were centrifuged to remove
cell debris and glass beads and then frozen in liquid nitrogen.

4 The abbreviations used are: TSB, tryptic soy broth; DTSB, deferrated TSB; PIA,
polysaccharide intercellular adhesin; HSQC, heteronuclear single quantum
coherence; TOCSY, total correlation spectroscopy; PCA, principal compo-
nent analysis; HPr, histidine-containing protein; CcpA, catabolite control
protein A; PC, principal component.
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All samples were kept at �80 °C until ready for analysis. At the
time of use, a 600-�l aliquot of the cell-free lysate was trans-
ferred to each NMR tube.
NMR Analysis—The NMR spectra were collected on a

Bruker 500-MHz Avance spectrometer equipped with a triple-
resonance, z axis gradient cryoprobe. A BACS-120 sample
changer with Bruker Icon software was used to automate the
NMR data collection. The one-dimensional 1H NMR spectra
collection and principal component analysis (PCA) were per-
formed as describedwithminormodifications (28–30). Briefly,
each multidimensional NMR spectrum (chemical shifts and
peak intensities) was converted to a single point in a multidi-
mensional Cartesian space. Conceptually, each axis corre-
sponds to a specific chemical shift, where the peak intensity is
the value along the axis. PCA identifies a principal component
vector (

3
P1) corresponding to the largest variation in the data set

within this multidimensional space. The second vector (
3
P2) is

orthogonal to the first and represents the next largest variation
in the data set. Each successive vector describes a diminishing
amount of the variability of the data set, where most of the
variability is described by the first two principal components.
The PC1 and PC2 scores (unitless values) are effectively the
individual fit of eachNMR spectrum to

3
P1 and

3
P2. The PC1 and

PC2 scores are usually presented in a two-dimensional plot,
where similar NMR spectra cluster together.
Solvent presaturation used excitation sculpting to efficiently

remove the solvent andmaintain a flat baseline, eliminating any
need for baseline collection that may induce artifacts in the
two-dimensional scores plot (31). Each NMR spectrum was
center-averaged for PCA to minimize any experimental varia-
tions between cultures (32).
Two-dimensional 1H-13C HSQC spectra were collected and

processed as described previously (7). Two-dimensional 1H-1H
TOCSY spectra were collected with WATERGATE solvent
presaturation (33) and a relaxation delay of 2 s. A total of 1,024
data points with a sweep width of 5,000 Hz and 256 data points
with a sweep width of 5,001.324 Hz were collected in the direct
and indirect 1H dimensions, respectively. A total of 16 dummy
scans and 8 acquisition scans were used to obtain each of the
two-dimensional 1H-1H TOCSY NMR spectra. The two-di-
mensional 1H-1HTOCSYNMR spectra were processed similar
to the two-dimensional 1H-13C HSQC spectra, and both spec-
tra were analyzed using NMRView (One Moon Scientific (34))
and Sparky (71) to identify chemical shifts and assign peak
intensities.
The observed NMR peaks in the two-dimensional 1H-13C

HSQC and 1H-1H TOCSY spectra were assigned to specific
metabolites using 1H and 13C chemical shift tolerances of 0.05
and 0.50 ppm, respectively, and the Madison Metabolomics
ConsortiumDatabase (MMCD) (35), the BioMagResBank (36),
and the Human Metabolome Database (37). The presence of
metabolites and metabolic pathways were verified with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (38) and
the MetaCyc (39) databases.
Peak intensities were normalized for each two-dimensional

NMR spectrum by dividing by the average peak intensity. The
triplicate data sets were then used to calculate average intensi-
ties for each peak observed in the two-dimensional spectra for

strain 1457, 1457-acnA, ethanol stress, and iron limitation. A
percentage of error was calculated for each peak by dividing the
standard deviation by the average peak intensity. The average
peak intensities were then used to calculate a percentage of
difference relative to the wild-type bacteria in TSB medium.
Peaks with calculated percentage of differences greater than
five times the average percentage of error were considered to
have either decreased or increased concentrations relative to
thewild-type strain 1457. Peakswith less than a 5-fold deviation
were considered similar. Secondary peaks assigned to the same
metabolite were required to have the same relative change in
intensity to be classified as a metabolite with an increase or
decrease in concentration.
Metabolomic Dendrogram—The relative clustering patterns

in the PCA two-dimensional scores plots were quantitatively
analyzed using a tree diagram and bootstrapping technique
(40). The PC1 and PC2 scores for each set of 10 duplicate NMR
spectra representing a specific metabolic state (iron limitation,
ethanol treatment, etc.) were used to calculate an average PC
score and standard deviation. Any PC scores outside 2 standard
deviations were removed, and a new average was calculated.
The average PC scores represent the center of a cluster of NMR
spectra (metabolic state) in the two-dimensional scores plot.
The process is repeated for each set of 10 duplicate NMR spec-
tra. Distances between the average PC positions for each met-
abolic state are then calculated using the standard equation for
a Euclidean distance to create a distance matrix.
To assess the significance of the similarity (overlap) or differ-

ence (separation) observed between pairs of clusters in the two-
dimensional scores plot, standard bootstrappingmethods were
also applied (41, 42). Briefly, the average PC scores were recal-
culated by randomly selecting points from the data set. Dis-
tances were recalculated between the clusters using the new
average PC scores to create a new distance matrix. The process
was repeated until 100 different distancematrices were created
and transferred to version 3.68 of the PHYLIP (43) suite of
software programs. PHYLIP calculates a tree for each distance
matrix and then determines a consensus tree. The program
calculates a bootstrap value for each node, which is simply the
number of times the node appears in all 100 trees. Bootstrap
values below 50% imply a statistically insignificant separation.
Conversely, as the bootstrap number increases above 50%, the
confidence in the tree branch or separation increases.

RESULTS

Disparate Environmental Stresses Create a Metabolic Block
in the TCA Cycle—To determine whether ethanol stress and
iron limitation alter TCA cycle activity, the specific activity of
aconitase in S. epidermidis strain 1457 at 2 (exponential
growth) and 6 h (post-exponential growth) after inoculation
was assessed (Fig. 1). As expected, iron-limited growth and eth-
anol stress prevented the post-exponential growth phase in-
crease in the specific activity of the iron-requiring enzyme
aconitase, creating a metabolic block in the TCA cycle (Fig. 1).
Although ethanol-stressed bacteria are in the post-exponential
growth phase at 6 h after inoculation, their growth is slower,
which slows the consumption of glucose, and excess glucose
can repress transcription of TCA cycle genes. Irrespective of
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the mechanism by which ethanol repressed aconitase-specific
activity, the normal post-exponential growth phase increase in
TCA cycle activity did not occur. These data demonstrate that
environmental stresses whose deleterious effects are substan-
tially different from one another have a similar effect on TCA
cycle function.
Environmental Stimuli Elicit TCA Cycle-dependent Meta-

bolic Changes—The TCA cycle provides biosynthetic interme-
diates, ATP, and reducing potential; therefore, alteration of
TCAcycle activitywill alter themetabolic status of a bacterium.
To determine the metabolic changes associated with iron limi-
tation, ethanol stress, and TCA cycle inactivation, NMR
metabolomic analysis (28, 29) was used to assess the stressed
and non-stressed metabolomes of strains 1457 and the TCA
cycle inactive strain 1457-acnA. Specifically, S. epidermidis
strains 1457 and 1457-acnAwere grown for 2 or 6 h inTSB,TSB
with 4% ethanol, or DTSB. Following acquisition of the NMR
spectra, the table of integrals was used for PCA (Fig. 2A). As
expected, during the exponential growth phase, PCA revealed
that the effects of ethanol stress and iron limitation on the
metabolome were largely independent of the TCA cycle (sup-
plemental Fig. S1). This was expected due to the normal repres-
sion of TCA cycle activity during nutrient-rich growth (Fig. 1)
(8, 44). Despite the TCA cycle being repressed during the expo-
nential growth phase, the different stresses induced common
metabolomic changes (Table 1). In contrast to the exponential
growth phase, PCA of post-exponential growth phase metabo-
lomes revealed that ethanol stress and iron limitation induced
metabolomic changes very similar to TCA cycle inactivation
(Fig. 2A and Table 2). In addition, these data highlight the rel-
ative insensitivity of the metabolome of strain 1457-acnA to
ethanol stress and iron-limited growth, confirming that the
major effect of these stressors is dependent upon the TCA
cycle. That being said, the more diffuse clustering of ethanol-
stressed metabolomes of both the wild-type and the aconitase
mutant strains suggest that ethanol stress had TCA cycle-inde-
pendent metabolomic effects (Fig. 2A). The TCA cycle-inde-
pendent effects are likely due to the denaturation of membrane
proteins not related to electron transport or the TCA cycle.

Taken together, these data demonstrate that diverse environ-
mental stimuli elicit common metabolic changes that require
the TCA cycle.

FIGURE 1. The temporal induction of aconitase-specific activity is inhib-
ited by dissimilar stressors. Aconitase activity was assessed during the
exponential (2 and 4 h) and post-exponential (6 h) growth phases during
growth in DTSB or TSB containing 4% ethanol. The data are presented as the
mean and S.E. of two independent experiments each determined in triplicate.

FIGURE 2. Environmental stressors cause metabolomic perturbations
similar to TCA cycle inactivation. A, PCA two-dimensional scores plot com-
paring non-stressed, ethanol-stressed, or iron-limited cultures of strains 1457,
1457-acnA, and 1457-sigB::dhfr grown for 6 h. Symbols and colors are defined
in the figure. The ovals are manually drawn to identify clusters of related
samples and to guide the reader. They are not statistically relevant. The rela-
tive contribution of each principal component is indicated in the parentheses.
B, metabolic tree generated using the PCA scores plot data demonstrating
the relationship between stresses and strains. Bootstrap values are indicated
on the dendrogram branches. Bootstrap values below 50% imply a statisti-
cally insignificant separation; conversely, as the bootstrap number increases
above 50%, the confidence in the tree branch or separation increases.

TABLE 1
Metabolites that have increased or decreased concentrations
relative to the wild-type strain 1457 at 2 h after inoculation
Metabolites whose concentrations were changed under all stress conditions relative
to the wild-type strain grown in TSB are shaded in gray.

a The intracellular concentration was considered to be increased or decreased
when the percentage of difference in the NMR peak intensities was 5-fold
greater than the percentage of error observed in the peak intensities between
triplicate NMR spectra.

b Due to peak overlap, we are unable to determine whether the metabolite is acetyl-
glutamine or acetyl-glutamate; however, we note that acetyl-glutamine is uncom-
mon in prokaryotes.
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The commonmetabolomic response to environmental stim-
uli can bemore easily observed by a recently developedmethod
to visualize PCA data (40). By calculating an average position
for each data set, such that each PC value (PC1, PC2, etc.) is
treated as an axis in a Cartesian coordinate system, a distance
matrix can be generated. Correspondingly, methods developed
for representing genetic distances in phylogenetic trees can be
used to create a metabolomic dendrogram (43) (Fig. 2B). Using
this approach, it becomes clear that stress-induced metabolo-
mic responses are very similar to the metabolome of the acon-
itase-deficient strain 1457-acnA. As with the two-dimensional
scores plot (Fig. 2A), the higher bootstrap values in the dendro-

gram for ethanol-stressed cultures also indicate that ethanol
has TCA cycle-independent effects on the metabolome.
S. epidermidis grown in TSB under aerobic conditions have

two distinct metabolic states: the nutrient-rich exponential
phase and the nutrient-limited post-exponential phase. The
transition from nutrient-rich conditions to nutrient-limited
growth coincides with the transition from generating ATP by
substrate-level phosphorylation to using oxidative phosphory-
lation. The reduced dinucleotides that drive oxidative phos-
phorylation are primarily derived from the TCA cycle; thus,
inhibiting TCA cycle activity (Fig. 1) hinders the transition to
oxidative phosphorylation and the post-exponential growth
phase (8, 44). Iron-limited growth of strain 1457 or aconitase
inactivation did not significantly alter the growth rate, although
aconitase inactivation did increase the lag phase (data not
shown). Both aconitase inactivation and iron-limited growth
caused an early entry into the stationary phase; as such, the
growth yield was decreased. As stated, the addition of 4% etha-
nol decreased the growth rate; therefore, it slowed the con-
sumption of glucose. Based on these observations, it was rea-
sonable to hypothesize that post-exponential growth phase (6
h)-stressed metabolomes will be more similar to an unstressed
exponential growth phase (2 h) metabolome than to the un-
stressed metabolome of post-exponential growth phase of cul-
tures. As expected, PCAs of unstressed strain 1457 cultures,
grown for 2 or 6 h, form separate subsets in a three-dimensional
scores plot (Fig. 3). Consistent with our hypothesis, PCAs of
post-exponential growth phase-stressed and acnAmutant cul-
tures were more closely associated with the unstressed expo-
nential growth phase metabolome of strain 1457 than with the

TABLE 2
Metabolites that have increased or decreased concentrations
relative to the wild-type strain 1457 at 6 h after inoculation
Metabolites whose concentrations were changed under all stress conditions relative
to the wild-type strain grown inTSB are shaded in gray.

a The intracellular concentration was considered to be increased or decreased
when the percentage of difference in the NMR peak intensities was 5-fold
greater than the percentage of error observed in the peak intensities between
triplicate NMR spectra.

b Due to peak overlap, we are unable to determine whether the metabolite is acetyl-
glutamine or acetyl-glutamate; however, we note that acetyl-glutamine is uncom-
mon in prokaryotes.

c The percentage of difference in the NMR peak intensities of these metabolites fell
just below the 5-fold cutoff in the percentage of error observed in the peak inten-
sities between the triplicate NMR spectra.

FIGURE 3. PCA three-dimensional scores plot comparing non-stressed,
ethanol-stressed, or iron-limited cultures of strains 1457 grown for 6 h
with that of strain 1457 grown for 2 h. Symbols and colors are defined in the
figure. The ovals are manually drawn to identify clusters of related samples
and to guide the reader. They are not statistically relevant. The relative con-
tribution of each principal component is indicated within the parentheses.
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strain 1457 post-exponential growth phase metabolome (Fig.
3). These data suggest that any stress that interferes with TCA
cycle function results in a metabolome similar to an unstressed
exponential phase culture.
Metabolomic Changes Are Largely Independent of the

�B-mediated General Stress Response—In staphylococci, �B

controls the general stress response and as such is activated
during stress conditions, growth phase transitions, and mor-
phological changes (45, 46). As stated previously, the regulation
of many virulence determinants is affected by environmental
stresses; therefore, the stress-dependent activation of �B has
been an important area of research into the environmental reg-
ulation of staphylococcal virulence determinants (47–49).
Interestingly, �B does not directly respond to most environ-
mental signals, suggesting another path to transduce stress sig-
nals that is independent of �B. To test this possibility, an S. epi-
dermidis sigB mutant strain (1457-sigB::dhfr) (19) was grown
for 2 or 6 h in TSB, TSB with 4% ethanol, or DTSB and the
metabolomes were analyzed by NMR spectroscopy. The PCA
scores plot demonstrates that the majority of metabolomic
changes associated with iron limitation and ethanol stress
occur largely independent of �B (Fig. 2A). Additionally, the
metabolomic dendrogram confirms that the stressor-induced
metabolic changes observed in strain 1457-sigB::dhfr are most
closely associated with those in the TCA cycle mutant strain
1457-acnA (Fig. 2B). Taken together, these data demonstrate
that environmental stresses can alter the staphylococcal
metabolome by a largely �B-independent mechanism that
requires the TCA cycle.
Metabolomic Changes Precede Genetic Changes—Metabolo-

mic data demonstrate that ethanol stress, iron limitation, and
TCAcycle inactivation decrease the intracellular concentration
of Gln relative to the wild-type strain grown in TSB medium
(Tables 1 and 2). The two more likely explanations for the
decreased intracellular concentration of Gln are: (i) the stres-
sors alter enzymatic activity, causing a decrease in the concen-
tration of Gln; or (ii) the stressors decrease transcription of
genes involved in the biosynthesis of Gln, resulting in a
decreased concentration ofGln. If the first possibility is correct,
then stressors will cause an increase in the transcription of Gln
biosynthetic genes as bacteria attempt to compensate for the
decreased availability of Gln. If the second possibility is correct,
then stressors will cause a decrease in the transcription of Gln
biosynthetic genes. To determine which of these two possibili-
ties was correct, we performed Northern blot analysis on glu-
tamine synthetase (femC; also known as glnA) (Fig. 4). The data
suggest that the first possibility is the more correct one; specif-
ically, bacteria are responding to metabolomic changes by
increasing transcription of genes necessary to counterbalance
those changes. Interestingly, in untreated wild-type cultures,
the post-exponential growth phase concentration of Glu and
Gln increased between two and five times that of the exponen-
tial growth phase concentration (data not shown), and this
increase correlated with a post-exponential growth phase
decrease in glnA mRNA levels (Fig. 4). Similarly, Gln and Glu
were not detected in the NMR spectra of the aconitase mutant
strain, and this correlated with a high level of glnA mRNA in
both the exponential and the post-exponential growth phases.

The correlation between Gln and Glu concentrations and glnA
mRNA levels is consistent with aGlnR-dependent regulation of
glnA transcription (2). This correlation was maintained for
Gln/Glu-sufficient or -insufficient conditions; however, the
intermediate concentrations of Gln and Glu found during eth-
anol stress and iron-limited growth (data not shown) produce
mixed glnA mRNA levels (Fig. 4). These data suggest that for
the concentrations of Gln and Glu to affect glnA transcription,
the stress-induced concentration change must be sufficiently
large.
CcpA Responds to TCA Cycle-associated Metabolomic

Changes—Ethanol stress, iron limitation, and TCA cycle
inactivation increased the post-exponential growth phase
concentration of glucose-6-phosphate (Table 2). Glycolytic
intermediates such as glucose-6-phosphate and fructose-
1,6-bisphosphate increase the ATP-dependent phosphory-
lation of the histidine-containing protein (HPr) by enhanc-
ing the activity of the HPr kinase (50). The increase in
phosphorylated HPr enhances its interaction with the catab-
olite control protein A (CcpA) (51–53). CcpA primarily
functions as a repressor; however, it also activates transcrip-
tion of genes involved in fermentation and overflow metab-
olism (52, 54). In addition to the concentration of glucose-
6-phosphate being increased by TCA cycle stress, the
concentrations of several fermentation products or interme-
diates (i.e. lactate, acetate, and acetaldehyde) and the small
phosphodonor acetyl phosphate (an indicator of overflow
metabolism) were also increased (Table 1), consistent with a
change in CcpA-mediated regulation. The repressor CodY
also contributes to the regulation of overflow metabolism
(54); however, CodY responds to the intracellular concentra-
tions of branched chain amino acids (55). TCA cycle stress did
not alter the concentrations of branched chain amino acids
beyond the 5-fold threshold (Table 1), suggesting that the
increase in overflow metabolism was independent of CodY.
In Staphylococcus aureus, CcpA enhances biofilm formation

and PIA biosynthesis, whereas CodY represses PIA synthesis

FIGURE 4. Northern blot analysis of RNAIII and glnA mRNA levels in the
exponential (2 h) and post-exponential (6 h) phases of growth. To ensure
that equivalent quantities of RNA were loaded in the gel, 23 S and 16 S rRNA
were visualized by ethidium bromide staining and used as loading controls
(bottom panel). The results are representative of at least two independent
experiments.
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(56, 57). In S. epidermidis, ethanol stress, iron limitation, and
TCA cycle inactivation enhance biofilm formation and PIA
synthesis (7, 13, 14, 16, 24, 58). Based on the metabolomic data
and published observations, it was reasonable to hypothesize
that PIA biosynthesis was regulated in response to TCA cycle-
associated metabolomic changes by a CcpA-dependent and
CodY-independent mechanism. To test this hypothesis, ccpA
and codY deletion mutants were constructed in strains 1457
and 1457-acnA, and the amount of cell-associated PIA was
determined after 6 h of growth (Fig. 5). Consistent with previ-
ous observations (7), TCAcycle inactivation (strain 1457-acnA)
dramatically increased the accumulation of PIA, whereas nei-
ther CodY nor CcpA had a dramatic effect on the post-expo-
nential growth phase amount of PIA.When the codYmutation
was introduced into an aconitase mutant background, PIA
accumulation resembled the response in strain 1457-acnA, sug-

gesting that TCA cycle-associated changes in PIA biosynthesis
are independent of CodY. In contrast to the codY-acnA double
mutant, the ccpA-acnA double mutant failed to produce PIA,
strongly suggesting that some TCA cycle-associatedmetabolo-
mic changes (i.e. glucose-6-phosphate) are sensed by CcpA,
which in turn activates PIA biosynthesis.
TCA Cycle Stress Decreases RNAIII Transcription—In S. au-

reus, inactivation of the TCA cycle increases the transcription
or stability of the riboregulator RNAIII of the accessory gene
regulator (Agr) system (8, 9). Conversely, increasing TCA cycle
activity decreases the transcription or stability of RNAIII (59).
The causal relationship betweenTCAcycle activity andRNAIII
transcript levels in S. aureus led us to examine whether dispar-
ate environmental conditions would similarly affect RNAIII
transcription or message stability in S. epidermidis. In contrast
to S. aureus, TCA cycle inactivation decreased RNAIII tran-
scription or stability during the exponential and post-exponen-
tial growth phases in S. epidermidis (Fig. 4). Importantly, etha-
nol stress and iron limitation decreased RNAIII transcription
or stability in a similar manner to TCA cycle inactivation (Fig.
4). In total, these data suggest that environmental stresses act
through the TCA cycle to elicit transcriptional changes to at
least two of the major staphylococcal virulence regulators (i.e.
CcpA and RNAIII).

DISCUSSION

In the life cycle of S. epidermidis, the transition from a skin-
resident, commensal state to adhering on implanted biomate-
rials represents a dramatic environmental change. In most
pathogenic bacteria, environmental changes are accompanied
by changes in the transcription of virulence genes; thus, en-
vironmental signals (e.g. nutrient replete, iron-limiting, or

oxygen-limiting growth conditions)
commonly regulate virulence gene
transcription (2, 60–64). Although
S. epidermidis has relatively few vir-
ulence determinants, one of its pri-
mary pathogenic effectors is the
exopolysaccharide PIA (65–68).
Previously, we demonstrated that
PIA biosynthesis is regulated by
TCA cycle activity; specifically, re-
pression of TCA cycle activity dra-
matically enhances transcription of
PIA biosynthetic genes (icaADBC)
and PIA accumulation (7, 24, 59). In
this study, we demonstrate that dis-
similar environmental signals de-
crease TCA cycle activity (Fig. 1),
resulting in common metabolomic
changes (Fig. 2 and Tables 1 and 2;
summarized in Fig. 6) that alter the
activity of metabolite-responsive reg-
ulators such as CcpA (Fig. 5). These
data lead us to propose that it is the
TCA cycle itself that is “sensing” the
environmental transition and trans-
ducing this information into meta-

FIGURE 5. CcpA is required for PIA synthesis during TCA cycle stress. PIA
immunoblot assay of strain 1457 and isogenic mutants of acnA, codY, ccpA,
codY/acnA, and ccpA/acnA grown for 6 h in TSB. The results are representative
of three independent experiments.

FIGURE 6. Summary of post-exponential growth phase metabolic changes associated with TCA cycle
stress. Metabolites in green represent an increased concentration relative to the wild-type strain. Metab-
olites in red represent a decreased concentration relative to the wild-type strain. Metabolites and path-
ways in black are inferred from the data, but they are inconclusive. Glucose-6-P, glucose-6-phosphate;
GlcN-6-P, GlcN-6-phosphate.
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bolic signals that activate or repress the activity of metabolite-
responsive regulators to modulate the expression of PIA and
other virulence determinants.
As S. epidermidis transitions from residing on the skin to

being implanted in a host, it enters into an environment where
free iron is present at a concentration of 10�18 M (61), a condi-
tion antagonistic to TCA cycle activity (Fig. 1) (9, 11). Similarly,
this transition dramatically decreases the availability of free
oxygen (the partial pressure of atmosphericO2 is 159mmHg at
sea level, and this decreases to an estimated 3–5 mm Hg at the
host cell level), a condition that is also antagonistic to TCA
cycle activity. Taken together, this type of environmental tran-
sition is accompanied by conditions that are inhibitory to TCA
cycle activity and stimulatory to PIA biosynthesis (7, 24). In
other words, the transition from an external environment to an
internal environment represses TCA cycle activity and primes
S. epidermidis for PIA synthesis, which enhances biofilm for-
mation and increases the likelihood of establishing a biomate-
rial-associated infection.
The significance of the data presented here is 5-fold. First, it

establishes amechanism by which well established regulators (e.g.
CcpA) participate in responding to environmental stresses. Sec-
ond, these data suggest how disparate environmental stimuli can
cause common phenotypic changes (e.g. iron limitation and etha-
nol stress both increase PIA synthesis and biofilm formation (13,
69)). Third, these data suggest that a difficulty in attributing the
effects of an environmental stimulus, such as iron limitation, to a
specific regulator, such as the ferric uptake regulator (Fur) (70), is
that many of the effects are due to metabolite-responsive regula-
tors reacting to changes in themetabolome.Fourth,S. epidermidis
has a second general stress response system that is largely inde-
pendent of the �B-controlled general stress response (Fig. 2).
Finally, in bacteria, threemetabolic pathways (Embden-Meyer-
hof-Parnas, pentose phosphate, and TCA cycle) produce the 13
biosynthetic intermediates needed to synthesize all macromol-
ecules in a bacterial cell. Therefore, by linking virulence factor
synthesis to the TCA cycle, bacteria are connecting virulence to
the availability of biosynthetic intermediates needed to synthe-
size virulence determinants.

CONCLUSION

TCA cycle stress alters the intracellular concentrations of
metabolites (Tables 1 and 2) relative to those of the wild-type
strain 1457. If the change in the concentration of ametabolite is
sufficiently large, then the activity of a regulator that can
respond to one of those metabolites may be altered. Therefore,
these data present an exceptional opportunity to identify regu-
lators that coordinatemetabolism and virulence in S. epidermi-
dis. Although a considerable amount of research needs to be
done to determine which metabolite-responsive regulators are
involved in responding to TCA cycle-associated metabolomic
changes, the work presented here sheds light on how environ-
mental signals alter the bacterial metabolic status to regulate
adaptation to a new environment.
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Nucleic Acids Res. 33, 6083–6089

40. Werth, M. T., Halouska, S., Shortridge, M. D., Zhang, B., and Powers, R.
(2010) Anal. Biochem. 399, 58–63

41. Efron, B., Halloran, E., and Holmes, S. (1996) Proc. Natl. Acad. Sci. U.S.A.
93, 13429–13434

42. Felsenstein, J. (1985) Evolution 39, 783–791
43. Retief, J. D. (2000)Methods Mol. Biol. 132, 243–258
44. Somerville, G. A., Saïd-Salim, B., Wickman, J. M., Raffel, S. J., Kreiswirth,

B. N., and Musser, J. M. (2003) Infect. Immun. 71, 4724–4732
45. Wu, S., de Lencastre, H., and Tomasz, A. (1996) J. Bacteriol. 178,

6036–6042
46. Bischoff, M., Dunman, P., Kormanec, J., Macapagal, D., Murphy, E.,
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