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Large amounts of data from high-throughput metabolomic experiments are commonly visualized using a
principal component analysis (PCA) two-dimensional scores plot. The question of the similarity or differ-
ence between multiple metabolic states then becomes a question of the degree of overlap between their
respective data point clusters in principal component (PC) scores space. A qualitative visual inspection of
the clustering pattern in PCA scores plots is a common protocol. This article describes the application of
tree diagrams and bootstrapping techniques for an improved quantitative analysis of metabolic PCA data
clustering. Our PCAtoTree program creates a distance matrix with 100 bootstrap steps that describes the
separation of all clusters in a metabolic data set. Using accepted phylogenetic software, the distance
matrix resulting from the various metabolic states is organized into a phylogenetic-like tree format,
where bootstrap values P50 indicate a statistically relevant branch separation. PCAtoTree analysis of
two previously published data sets demonstrates the improved resolution of metabolic state differences
using tree diagrams. In addition, for metabolomic studies of large numbers of different metabolic states,
the tree format provides a better description of similarities and differences between each metabolic state.
The approach is also tolerant of sample size variations between different metabolic states.

� 2009 Elsevier Inc. All rights reserved.
The rapidly growing field of metabolomics seeks to describe and
understand the different metabolic states of an organism. Recent
reviews have described the application of metabolomic methods
to diverse problems, including biomarker discovery, drug metabo-
lism, nutrition, and environmental toxicology [1–5]. A fundamen-
tal question in many metabolomic studies is whether or not an
altered metabolic state (e.g., disease, mutation, diet, drug) being
studied is similar to or different from the reference state. The most
common statistical approach for the analysis of metabolomic data
is principal component analysis (PCA)1 and partial least squares dis-
criminant analysis (PLS–DA) [6–8]. As an illustration, more than 55
metabolomic or metabonomic articles have been published in the
journal Analytical Biochemistry since 2001, with more than 45% of
these articles using PCA, PLS–DA, or a comparable statistical tool.
The focus of the remaining metabolomic articles has been metabolite
identification or methodology development, where a statistical ap-
proach is not employed.

PCA or PLS–DA converts data obtained from high-throughput
instrumental analysis into a qualitative visual presentation (scores
plot) [9,10] showing the clustering of biological samples into either
ll rights reserved.
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similar or different groupings. In some cases, sample data for dif-
ferent metabolic states are clearly separated into distinct clusters
(e.g., wild-type cells vs. mutant cells). Other cases arise where
the separation of data clusters is not so clearly defined. Even
though the presentation of data in principal component (PC) scores
space is the result of a statistical analysis, it is important to empha-
size that the degree of separation between data clusters is not
quantitatively addressed directly by the PCA approach. Recently,
the MetaboAnalyst web server (http://metaboanalyst.ca) has been
developed to provide a robust set of tools for the processing and
analysis of metabolomic data [11]. PLS–DA and other supervised
methods have a tendency to overfit the data and to identify nonex-
istent clustering patterns. MetaboAnalyst includes random forest
[12] and support vector machine [13] methods to determine the
reliability or significance of the PLS–DA discrimination. Similarly,
a SIMCA Cooman’s plot is used to predict class membership based
on the distance to the model [14]. Alternatively, a simple visual
inspection of the resulting scores plot does not provide a statisti-
cally meaningful answer to this basic question: are the clustering
patterns in a scores plot significantly different?

Felsenstein encountered similar problems when attempting to
assign confidence limits to phylogenetic trees [15] and resolved
the problem by applying a bootstrap statistical approach [16,17].
This approach may also be applicable to the analysis of clustering
patterns in scores plots for metabolomic data. The metabolome is
complementary to the transcriptome and proteome, captures the
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functional or physiological state of the cell, and provides a link be-
tween genotypes and phenotypes [18]. Clearly, the range and
quantity of metabolites observed are dependent on both the organ-
ism’s proteome and genome, but direct correlations between gene
expressions and the metabolome are low [19]. Nevertheless,
metabolites have been associated with species evolution [20] and
have been used to differentiate between different fungal species
[21], to differentiate between different Escherichia coli species
[22], and to monitor the adaptive evolution of yeast [23]. Phyloge-
netic trees have also been generated from the analysis of metabolic
networks [24] and reproduce phylogenetic relationships between
species derived from 16S RNA sequences [25]. Given that meta-
bolomics maps reasonably well with phylogeny, it seemed appro-
priate to explore the application of tree diagrams and the bootstrap
method to determine the significance of clustering patterns in
scores plots.

A software program named PCAtoTree was developed to quan-
titatively analyze clusters of PC values. The program converts met-
abolomic data expressed as PC scores into a series of Euclidean
distance matrices that can be used to generate metabolic trees
and the corresponding bootstrap values. The resulting tree dia-
grams are intended to be used in combination with the original
scores plot to decipher the significance of cluster similarity or dif-
ferences. Importantly, the tree diagrams should not be interpreted
as a hierarchal representation of the original metabolomic data
[26].

Materials and methods

The PCAtoTree program (available on request) was written in
the Awk scripting language running under the Linux operating sys-
tem. The PCAtoTree program uses data from a PC scores plot gen-
erated by SIMCA (Umetrics, Kinnelon, NJ, USA). For each separate
metabolic state, the PCAtoTree program calculates the average of
each PC and the related standard deviations. Next, any data points
having a PC value that is more than 2 standard deviations from the
respective average are removed. The average PC values are then
recalculated, and these average values define the cluster center
for each metabolic state. To be consistent with the typical two-
dimensional (2D) PC scores plots commonly found in the literature,
the results presented here were calculated using only the first two
PCs [27,28]. However, metabolomic data analysis often requires
the use of additional components. The PCAtoTree program was
written to accommodate eight PCs and can be expanded if neces-
sary to include more PCs.

Distances between the average PC positions for each metabolic
state are calculated using the standard equation for the Euclidean
distance between two points:

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDPC1Þ2 þ ðDPC2Þ2 þ . . .

q
ð1Þ

Because this distance matrix is calculated from the average PC
position for each metabolic state, there is a single unique distance
between any given pair of metabolomic states. Although it is pos-
sible to calculate the distances between every possible combina-
tion of data point pairs, the analysis of these distances is
complicated primarily by the rapid progression in the total number
of distances to be calculated with each successive data point. Also,
it will not fundamentally change the definition of the cluster center
but will unnecessarily complicate the bootstrapping analysis. Fur-
thermore, a Euclidean distance does not capture direction, so an
average distance from every possible combination of data points
will overestimate the separation of closely spaced states. A similar
circumstance occurs for a data set with a relatively large standard
deviation, where the larger distances will skew the average
separation.
Most important, the PCAtoTree program randomly resamples
the data for each metabolic state to apply standard bootstrapping
methods to assess the significance of the similarity (overlap) or dif-
ference (separation) observed between pairs of data clusters. For
each metabolic state (e.g., wild-type state), the program randomly
draws data points from the data set to determine an average PC
score. It is important to note that the PCA analysis was performed
only once and each round of bootstrapping uses the same PC scores
data set. Data points previously flagged as outliers remain ex-
cluded. A particular data point may be chosen more than once or
completely excluded in the new average PC calculation, but the to-
tal number of data points randomly drawn is equivalent to the ori-
ginal size of the data set. The new PC average values are then used
to calculate a new distance matrix. Resampling is repeated until a
total of 100 distance matrices have been created. The resulting dis-
tance matrix file is transferred to version 3.68 of the PHYLIP suite
of software programs (http://www.phylip.com) [29,30] for com-
pletion of the bootstrapping and visualization of the results as met-
abolic tree diagrams.

Specifically, the Fitch program in PHYLIP performs a weighted
least-squares analysis of the 100 Euclidean distance matrices from
PCAtoTree to minimize the distances between the nodes [31]. The
minimized distances are used to generate a summary metabolic
tree. Virtually all metabolomic studies incorporate a reference or
control group (e.g., wild-type cells, healthy subjects). This group
is defined as the out-group for the purposes of the Fitch distance
program. Fitch also produces a family of individual metabolic tree
diagrams that are analyzed using the PHYLIP Consense package
with the majority rule extended setting. Consense counts the num-
ber of times an identical branch is found. When the number of
bootstrap steps (and therefore the number of individual trees) is
100, these values represent the percentage that a given branch ap-
pears. Using the majority rule extended setting [32], bootstrap val-
ues below 50% indicate that none of the possible branch patterns
appears even 50% of the time and implies a statistically insignifi-
cant separation. Similarly, portions of the metabolic tree without
a bootstrap value should be treated as unresolved. As bootstrap
values rise above 50%, the confidence described by the tree branch
also increases. Obviously, bootstrap values of 100% indicate com-
plete statistical confidence in the overlap or separation of the met-
abolic states shown by the tree. Trees were visualized using the
PHYLIP DrawGram program.

Simulated metabolic PCA data were used to illustrate the boot-
strapping process (Fig. 1). Data points were randomly generated in
Excel to produce four clusters of 10 points each: (i) circles had
average PC1 and PC2 scores corresponding to �5.94 and �2.72,
respectively, and standard deviations of 0.89 (PC1 axis) and 1.00
(PC2 axis); (ii) triangles had average PC1 and PC2 scores corre-
sponding to �5.94 and 0.28, respectively, and standard deviations
of 0.99 (PC1 axis) and 1.00 (PC2 axis); (iii) diamonds had average
PC1 and PC2 scores corresponding to �3.91 and 2.28, respectively,
and standard deviations of 0.98 (PC1 axis) and 1.00 (PC2 axis); and
(iv) squares had average PC1 and PC2 scores corresponding to 4.93
and 0.28, respectively, and standard deviations of 0.74 (PC1 axis)
and 1.00 (PC2 axis). The squares cluster is placed to the far right
side of the PC scores plot to represent the reference or control met-
abolic state. The circles, triangles, and diamonds clusters are placed
near each other on the left side of the PC scores plot and represent
different metabolic states of interest. Open symbols represent the
original data set and remain fixed.

Closed symbols represent the average center position obtained
from random resampling of the data. These points move to reflect
different possible resampling results. Fig. 1A represents the case
where the resampling has resulted in the average center of the dia-
mond data set being closest to the average center of the triangle
data set. The Euclidean distance between the triangles and dia-
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Fig. 1. Examples of PC scores plots with the corresponding Euclidean distance matrices and metabolic trees. Open symbols represent simulated experimental data points.
Closed symbols represent the cluster center positions calculated after random sampling of the respective data sets. Panel (A) presents the case where the centers of triangles
and diamonds are closest together. Panel (B) presents the case where the triangles and circles have the smallest separation.
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monds is 1.68 U, and the metabolic tree shows the diamonds and
triangles grouped together. Fig. 1B represents the case where
resampling of the same experimental data has produced a new sit-
uation where the triangle center is now closest to the center for the
circle metabolic state. The distance between the triangles and cir-
cles is 2.50 U, but the distance between the triangles and diamonds
has now increased to 3.20 U. This scenario produces a metabolic
tree that now pairs the triangles and circles. After repeating the
bootstrap process 100 times, a single consensus distance for each
pair of cluster centers should emerge. These consensus distances
could be expressed as a distance matrix, although it would be dif-
ficult to readily discern relationships among the values. The tree
format provides a more readily interpretable format in which to
view the groupings, relative distances between groups, and (most
important) the bootstrap values.

The application of tree diagrams to analyze metabolomic PCA
data was demonstrated using previously published results, where
experimental procedures for cell culture growth, sample prepara-
tion, PCA protocols, and nuclear magnetic resonance (NMR) data
collection, processing, and analysis were described in detail
[27,28]. Specifically, tree diagrams were generated from the analy-
sis of 8-azaxanthine activity in Aspergillus nidulans [27] and D-
cycloserine activity in Mycobacterium smegmatis [28].
Results

PC scores data points were manually generated in Excel to ex-
plore the relationship between cluster overlap and the resulting
bootstrap value. Again, four data sets were used with the cluster
on the far right, representing the reference or control metabolic
state. Data sets representing the three remaining metabolic states
were adjusted to have the same average PC1 value and then over-
lapped along the PC2 axis. The spread (i.e., standard deviation) of
the clusters in the PC2 dimension was empirically adjusted so that
the standard deviations of all three clusters differed by no more
than 0.02. One of these clusters (circles) was then incrementally
separated along the PC2 axis, and the resulting data sets were ana-
lyzed. The results of these simulations are presented in Fig. 2.

The bootstrap value increases asymptotically as a function of
the relative cluster separation distance (Fig. 2, top panel), which
is defined as the distance between the cluster centers divided by
the standard deviation of the cluster spread. Cluster standard devi-
ations of 1 and 2 were used during the simulations. When the re-
sults were normalized to the relative distance, the curves
overlapped (data not shown). The solid line represents the best-
fit curve to simulations done using 10 data points per cluster. Point
a in the top panel of Fig. 2 represents the case where the three clus-
ters, with standard deviations of 2, were completely overlapped as
shown in Fig. 2A below. The corresponding metabolic tree has one
branch representing the squares and a second branch where the
diamonds, triangles, and circles are grouped together.

Point b in the top panel of Fig. 2 represents a separation of the
circles from the diamonds and triangles by 1 relative distance unit
(see Fig. 2B). The spread of the data clusters was kept constant at 2
standard deviations. Visual analysis of Fig. 2B shows that a high de-
gree of cluster overlap remains at this relative distance. However,
the average bootstrap value for point b was 81%. The correspond-
ing consensus metabolic tree, obtained from 81 of 100 random
samplings of the data set, now has three branches. Squares and cir-
cles each form separate branches, and the third branch is the pair-
ing of the triangles and diamonds. When the relative distance is
increased to 3 (point c in top panel of Fig. 2), the bootstrap value
has clearly reached the 100% upper limit. Each of the 100 sam-
plings of the data set produced the same three-branched tree de-
scribed for point b. Even at a relative distance of 3, the circles do
not appear to be completely separated from the diamonds and tri-
angles. This result illustrates that the tree diagrams can identify
statistically distinct clusters that are not readily apparent by visu-
ally inspecting PCA scores plots.

The dashed line in Fig. 2 (top panel) represents the best-fit
curve for results obtained when the number of data points per
cluster was reduced from 10 to 6. As the number of data points
per cluster decreases, even greater separation of the clusters is re-
quired to achieve the same bootstrap value. Even at a relative dis-
tance of 5, the bootstrap value has not yet reached 100%. This
clearly demonstrates the inherent value in obtaining replicates of
10 or more to statistically differentiate between multiple meta-
bolic states [33]. Assuming a normal distribution, the accuracy of
the average position for the cluster will improve with the number
of data points or, alternatively, an outlier may have a diminished
impact on distorting the true center for the cluster. As the number



Fig. 2. Top panel: Best-fit curves obtained from simulations of bootstrap value as a function of relative cluster separation distance. The solid line was calculated using 10 data
points per cluster. The dashed line was calculated using 6 data points per cluster. Middle panels: Selected PC scores plots used for simulations (10 data points per cluster,
cluster standard deviation = 2): (A) relative distance = 0; (B) relative distance = 1; (C) relative distance = 3. Bottom panels (D–F): Metabolic trees corresponding to the PC
scores plot shown above.
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of data points increases, the probability of selecting any given
point during the bootstrapping step is diminished and the distribu-
tion of data points away from the average also decreases. As a re-
sult, the cluster’s center is more consistently defined and the range
of distances calculated during the bootstrapping step will diminish
with increasing data points, which in turn will decrease the vari-
ability in the number of distinct nodes and increase the bootstrap-
ping number. Importantly, shifting of the curves shown in Fig. 2
(top panel) depends only on cluster size and not the standard devi-
ation because the graphs overlap perfectly for different standard
deviation values. Of course, the graphs do indicate that if the stan-
dard deviation for a cluster does increase, the separation between
clusters would need to increase proportionally to maintain a sim-
ilar bootstrap percentage.

For simulations with four metabolic states, the minimum boot-
strap value was consistently around 35–38%. Presumably, the low-
er limit bootstrap value reflects clustering occurring at a higher
probability than random chance would allow. For three overlapped
clusters, a pairing would need to occur more than 33% of the time.
When the number of metabolic states is increased to five, the lower
limit of the bootstrap value decreases proportionally to the num-
ber of distinct metabolic states. However, the precise relationship
between the lower limit of the bootstrap value and the number
of metabolic states remains unclear. But the absolute value of the
minimal bootstrap number is basically irrelevant because a boot-
strap number below 50% is generally considered as insignificant.

It should be noted that the simulations presented in Fig. 2 were
designed to focus on the separation of one data set (circles) from
two overlapped clusters (diamonds and triangles). In these simula-
tions, one group (squares) was defined as the reference or control
data set and deliberately placed far away from the remaining three
data sets (metabolic states). In addition, two groups (diamonds and
triangles) were generated with essentially identical center posi-
tions for the clusters. Both of these constraints likely favored in-
creased statistical significance for the intentional separation
examined in the simulations.

To illustrate the application of this approach to actual NMR PCA
scores data, we reexamined previously published data for a study
of the interactions between the fungal cells of A. nidulans and the
drug 8-azaxanthine (AZA) [27]. There are four metabolic states to
be considered: the wild-type A. nidulans, the wild-type cells treated
with AZA (which inhibits the enzyme urate oxidase), the urate oxi-
dase deletion mutant of A. nidulans, and the urate oxidase deletion
mutant treated with AZA. PCA of this system suggested that three
of these metabolic states (wild-type treated with AZA, mutant, and
mutant treated with AZA) were similar to each other and distinctly
different from the wild-type metabolic state (see Fig. 3A).

Further analysis of the PC 2D scores data from the original study
using the PCAtoTree program are also presented in Fig. 3A. As ex-
pected, the resulting tree diagram shows that the wild-type data
cluster is clearly separated from the other samples. However, in
the original data set, the wild-type with drug data appeared to
be adjacent to the mutant and mutant with drug data in PC space.
This small separation was attributed to some residual urate oxi-
dase activity remaining in the presence of the drug [27]. Based
on a qualitative visual analysis, there did not appear to be sufficient
justification for separation of these groups. With development of
the PCAtoTree program, this issue can be addressed more quantita-
tively. In 100 of 100 cases, the mutant and mutant with drug data
were clustered together. Likewise, in 100% of the cases, the separa-



Fig. 3. (A) PC scores plot and corresponding metabolic tree for the A. nidulans fungal mutant and drug-treated samples. The labels correspond to A. nidulans urate oxidase
mutant (green �), wild-type with AZA (red j), urate oxidase mutant with AZA (blue d), and wild-type cells (black �). wt, wild-type. (B) PC scores plot and corresponding
metabolic tree for the M. smegmatis mutants and drug-treated samples. The labels correspond to wild-type (mc2155, blue j), D-alanine racemase null mutant (TAM23, black
d), D-alanine racemase overproducing DCS-resistant mutant (GPM14, pink �), undefined DCS-resistant mutant (GPM16, green N), and TAM23 complemented with wild-type
d-alanine racemase gene (TAM23–pTAMU3, yellow .). Cells treated with DCS to wild-type (purple j), TAM23 (red d), GPM14 (brown �), GPM16 (light blue N), and TAM23–
pTAMU3 (orange .). Bootstrap values above 50% are indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.) (Reprinted with permission from Refs. [27] and [28], Copyrights 2006 and 2007 by American Chemical Society).
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tion between wild-type with drug and the two mutant data sets
was maintained. This result demonstrates the improved resolution
of data clusters made possible by using a metabolic tree approach.

A metabolomic study of the effects of D-cycloserine (DCS) on
mycobacterial metabolism provides a more challenging system to
easily analyze using a PCA 2D scores plot [28]. In particular, sample
populations for the 10 different metabolic states range from 6 to
20. The original PCA scores plot and the resulting metabolic tree
are shown in Fig. 3B. At the bottom of the tree, the D-alanine race-
mase null mutant (TAM23) cells are clearly separated from the
remaining 9 metabolic states. Next, the wild-type (mc2155), D-ala-
nine racemase overproducing DCS-resistant mutant (GPM14),
undefined DCS resistant mutant (GPM16), and TAM23 comple-
mented with wild-type D-alanine racemase gene (TAM23–pTAM-
U3) cells are found on the left side. These were originally
reported as clustering together. The metabolic tree analysis shows
that the TAM23–pTAMU3 separates from this group 97% of the
time. Clearly, these similar cell lines have small, but significant,
variations from each other. The branch leading to the cells treated
with DCS has a bootstrap value of 100, indicating a complete sep-
aration of the drug-treated samples from the non-drug-treated
samples. Within the group of five cell lines treated with DCS, the
DCS–GPM14 and DCS–TAM23 were associated with each other
67% of the time. Other associations within the DCS-treated samples
occurred at even lower levels. This more quantitative analysis does
not contradict any conclusions presented in the original report.
Discussion

The PCAtoTree approach was developed to address the question
of overlap versus separation of data clusters in PC scores plots pro-
duced by metabolomic studies. This question is critical to the inter-
pretation of scores plots produced from PCA and similar statistical
techniques. Overlapped data clusters suggest a similar metabolic
process, whereas separated data clusters imply different underly-
ing metabolic mechanisms. The overlap/separation issue is further
complicated as the number of metabolic states included in the
study increases. However, due to difficulties with the proper appli-
cation of common statistical tests (e.g., univariate T test, analysis of
variance [ANOVA], multivariate ANOVA [MANOVA]), this question
has not been addressed until now.

The PCAtoTree approach recognizes that the overlap/separation
issue can be rephrased more quantitatively in terms of distances
between the centers of the data clusters. Another advantage of
the bootstrap approach is that it is less sensitive to the number
of data points per cluster. This facilitates comparisons when the
control and sample populations are of different sizes, as was the
case in the mycobacterial study of Halouska and coworkers [28].
Even though the approach can be applied to samples of variable
size, one should keep in mind that larger sample populations are
still desirable.

Tree branches with bootstrap values below 50% suggest overlap
of the data clusters in PC scores space or an insignificant separa-
tion. In the metabolic studies, these metabolic states would be con-
sidered as essentially identical. Conversely, bootstrap values
greater than 50% indicate that the corresponding branch of the
metabolic tree occurs more often than alternative branching pat-
terns. As seen in Fig. 2, bootstrap values greater than 50% are pos-
sible even when visual analysis of the data confirms that
substantial overlap of the clusters remains. This illustrates a
strength of the tree diagram approach: an unbiased analysis of
cluster centers identifies separations that are not easily visualized.

The issue of cluster overlap or separation can now be expressed
in more quantitative terms using tree diagrams with bootstrap val-
ues. However, in the simplest sense, the question of whether or not
two clusters are overlapped has only two answers: overlapped or
not overlapped. The bootstrap value does not provide a definitive



Analysis of metabolomic PCA data using tree diagrams / M.T. Werth et al. / Anal. Biochem. 399 (2010) 58–63 63
answer to the overlap question in all cases, but it does provide a
useful measure of the confidence in the resulting interpretation
of the experimental data. Our analysis also clearly demonstrates
that increasing the number of replicate data points significantly
improves the reliability of differentiating between two clusters.
Fig. 2 illustrates a dramatic increase in the bootstrap number from
a doubling in the number of data points while keeping all other
factors constant. Effectively, a larger number of replicate data
points better define the cluster’s center, and this in turn allows
an improved differentiation between clusters that are still visibly
overlapped. This result also makes clear the challenge involved in
attempting to assess the degree of cluster overlap or separation
by visual inspection alone.

Application of the PCAtoTree approach to the drug metabolism
results of Forgue and coworkers [27] demonstrated that the sepa-
ration of the wild-type with drug metabolic state from the mutant
metabolic states was small but significant by virtue of the fact that
it was found in all 100 cases. A higher level of confidence can now
be placed in a previously uncertain observation. In the case of the
mycobacterial metabolism study by Halouska and coworkers [28],
the clear overlap of the five DCS-treated samples can now be ex-
pressed as occurring 100 of 100 times. A claim of separation of
TAM23–pTAMU3 from the three nearby groups (mc2155, GPM14,
and GPM16) is based on 97 of 100 results, whereas a claim of sep-
aration of GPM16 from mc2155 and GPM14 is supported at the
lower level of 74 of 100 results.

In summary, the PCAtoTree approach addresses the question of
similarity, or difference, between metabolic states in a metabolo-
mic experiment. Bootstrapping provides a more quantitative mea-
sure of the confidence in a claim of separation or overlap of
experimental data clusters. The approach is applicable where sam-
ple populations between metabolic states vary significantly. Also,
tree diagrams will greatly simplify the analysis of complex meta-
bolic studies that involve numerous experimental conditions
where the visual inspection of clustering patterns is extremely
challenging.
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