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ABSTRACT Rapid and accurate functional as-
signment of novel proteins is increasing in impor-
tance, given the completion of numerous genome
sequencing projects and the vastly expanding list
of unannotated proteins. Traditionally, global pri-
mary-sequence and structure comparisons have
been used to determine putative function. These
approaches, however, do not emphasize similarities
in active site configurations that are fundamental
to a protein’s activity and highly conserved rela-
tive to the global and more variable structural fea-
tures. The Comparison of Protein Active Site Struc-
tures (CPASS) database and software enable the
comparison of experimentally identified ligand-
binding sites to infer biological function and aid in
drug discovery. The CPASS database comprises the
ligand-defined active sites identified in the protein
data bank, where the CPASS program compares
these ligand-defined active sites to determine se-
quence and structural similarity without maintain-
ing sequence connectivity. CPASS will compare
any set of ligand-defined protein active sites, irre-
spective of the identity of the bound ligand. Pro-
teins 2006;65:124–135. VVC 2006 Wiley-Liss, Inc.

Key words: functional annotation; CPASS; hypo-
thetical proteins; ligand-defined active
sites

INTRODUCTION

Obtaining the biological function of a protein is essen-
tial for determining its potential as a therapeutic target
and its utility as part of structure-based drug design
effort. Furthermore, understanding the biological func-
tion for a protein provides the basis for exploring its cellu-
lar activity. An outcome of various genomics efforts has
been a vast growth in putative protein sequences that
lack any experimental functional annotation.1,2 Sequence
homology has routinely been used as a rapid approach to
assign biological function to these hypothetical proteins
or proteins of unknown function.3 This is based on the
accepted structural biology paradigm that a similarity in
sequence (�30%) implies a corresponding similarity in
both structure and function. At best, sequence homology
provides functional assignment for �50% of the proteins
identified in various proteomes.2,4–6 Structural genomics

is augmenting the functional assignment of these hypo-
thetical proteins by determining the corresponding three-
dimensional structure.7 This permits a functional assign-
ment by identifying proteins of known function that ex-
hibit a similar overall fold to the hypothetical protein.
Structural homology is a more sensitive approach for
assigning function, since there are numerous examples of
proteins with similar folds that lack any significant
sequence homology.8,9 This is consistent with the general
observation that tertiary structures are significantly more
evolutionary stable than protein sequences.10 Neverthe-
less, our analyses of the scientific literature for protein
structures of hypothetical proteins that are emerging
from structural genomics indicate that �60% of the
reported structures correspond to a novel fold or folds that
can not be readily assigned to a biological function as
determined by the authors.

Sequence and structural homology methods primarily
determine ‘‘global’’ similarities between the compared pro-
teins.7 However, the molecular function of a protein is
generally restricted to its identified active site, which may
involve an interaction with small molecular-weight lig-
ands, nucleic acids, or other proteins. Maintaining the
core structural component of the active site is essential
for preserving the functional activity of the protein. As a
result, protein comparisons that focus on global sequence
and structural similarities may miss proteins with con-
served active sites but divergent sequences and struc-
tures. Thus, a more effective means to infer a biological
function of a hypothetical protein would occur through
the identification of the protein’s active site.

Comparative analysis of protein active sites is also criti-
cal for a successful drug discovery program, particularly
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for eliminating potential toxicity pathways. Drug toxicity
is a common cause of failure during clinical trials, where
undesirable protein–ligand interactions are a plausible
mechanism.11 Efforts to eliminate potential toxicity prob-
lems are initially carried-out by screening for drug selec-
tivity against a limited panel, for practical reasons, of
very closely related proteins.12 These protein panels are
usually composed of functionally identical proteins with
high sequence and structural similarity that are identi-
fied by traditional homology methods. Inevitably, this
approach will miss proteins that only exhibit similarity in
the structural characteristics of the active site. This is
particularly problematic for common ligand binding sites,
such as ATP, that are drug discovery targets and are pres-
ent in functionally diverse proteins.13

A number of methodologies are being developed to pre-
dict the location of active sites in novel protein structures.
This is typically accomplished by developing structural
descriptors of active sites for defined protein functional
classes and then fitting these structural templates to novel
folds to identify putative active sites and annotate the hy-
pothetical proteins. A variety of approaches are being
applied that include aligning structures to match a few
consensus or enzymatic catalytic residues,14–23 identifica-
tion of cavities consistent with shapes of known ligands,24

a sequence independent force field to extract common
active site features,25 theoretical prediction of titration
curves,26 using chemical properties and electrostatic
potentials of amino acid residues consistent with active
site characteristics,27,28 neural network analysis of spatial
clustering of residues,29 and conserved residues from mul-
tiple sequence alignments (phylogenetic motifs).20,30

Nevertheless, direct experimental observation of pro-
tein–ligand interactions are a more reliable mechanism
for the proper and accurate identification of protein active
sites. LigBase is an online database that aligns only active
sites present in the protein data bank (PDB) that bind the
identical ligand, using structure and sequence align-
ments.31 Similarly, there are numerous databases that
allow searching of the PDB for compounds present in pro-
tein–ligand complexes.32–35 Unfortunately, these data-
bases lack the ability to globally compare an active site
identified for a novel protein against the entire structural
database, irrespective of the identity of the bound ligand,
to determine the relative similarity in the sequence and
structure of the active sites.

Towards this end, we have implemented a database and
a suite of programs to compare experimentally identified
protein active sites to infer biological function (Fig. 1). In
this article, we describe the design and application of the
Comparison of Protein Active Site Structures (CPASS)
database and software that enables both the sequence
and structural comparison of ligand-defined active sites to
infer functional activity of hypothetical proteins and to
aid in the design of drug selectivity.

MATERIALS AND METHODS
Design Philosophy

The main feature that the CPASS program is trying to
capture is the similarity in the characteristics of the
active site defined by the positions and types of amino
acids relative to a bound ligand. Unlike other approaches,
CPASS does not reduce the database to a limited collec-

Fig. 1. Schematic diagram of the application of the CPASS database and software to aid in the assignment of biological function to hypothetical
or novel proteins. The bound ligand is colored yellow and the active site residues are colored blue. All molecular images were created using VMD-
XPLOR.36
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tion of consensus templates for each functional family.
Similarly, CPASS does not attempt to simulate generic
features of active sites by using descriptors mimicking im-
portant properties of amino acids. Instead, the CPASS
database is composed of ligand-defined protein active site
structures culled from the protein data bank (PDB).
A total of �34,000 X-ray and NMR structures that are

currently available in the PDB were analyzed for the
presence of a bound ligand. The CPASS database is
expected to be routinely updated. Only protein structures
that contain a bound ligand are included in the CPASS
database. Conversely, structures that do not contain a pro-
tein molecule, but only contain a DNA or RNA molecule
complexed to a ligand were excluded, since they lack any
value in the functional annotation of a protein. The identi-
fication of a ligand within a protein PDB file was deter-
mined by the presence of either a HET or HETNAM re-
cord. Routinely, a single protein PDB file may contain mul-
tiple ligands. Each ligand was extracted separately with a
uniquely defined active site in the absence of a LINK re-
cord in the PDB file. The LINK record identifies bonded
atoms from two residue types. If a protein PDB file con-
tains multiple ligands with a LINK record that connects
these ligands, then all the ligands are extracted as a single
ligand with a single corresponding active site. As an exam-
ple, consider a PDB file that contains both ATP and an
Mg2þ ion. In the absence of a LINK record that connects
the phosphate group from ATP to the Mg2þ ion, two sepa-
rate ligand coordinate files are extracted—one for ATP
and the other for the Mg2þ ion. The two ligand coordinate
files are then used to identify two separate active sites
around ATP and the Mg2þ ion, respectively. Conversely, if
a LINK record was present in the protein PDB file that
indicates a bond between ATP and the Mg2þ ion, a single
ligand file is extracted from the protein PDB file that con-
tains the coordinates for both ATP and Mg2þ ion. This sin-
gle file that contains both ligands will then be used to
determine a single ligand-based active site.
Besides the presence of small molecular-weight ligands

defined by the HET and HETNAM records, a number of
protein PDB structures contain small peptides, DNA, or
RNA sequences complexed to the protein. The CPASS
database also includes these small peptides, DNA, and
RNA sequences (�13 residues) with the corresponding
active site defined by these ligands. The presence of a pep-
tide or small nucleic acid chain in the protein PDB file is
identified by the SEQRES record, where the total number
of residues for a particular chain is �13 and a second pro-
tein chain is defined with >13 residues.
Currently, �42,000 protein–ligand binding sites have

been identified in the PDB. This list excludes common
and abundant buffer reagents, salts, and solvents that
generally exhibit nonspecific binding irrelevant to func-
tional activity. A total of 112 ligands are currently ex-
cluded from the CPASS database, where the vast majority
are common ions (Naþ, Cl�, SO4

�), solvents (water, MES,
DMSO, 2-mercaptanol, glycerol), and chemical fragments
or clusters (acetyl, methyl) (see Supplemental Table 1).
Practical considerations required removing these ligands

because of the significant increase in the total number of
ligand-defined binding-sites in the CPASS database, the
negative impact on the CPASS computational time, and
the minimal benefit to functional identification. As an ex-
ample, the isolated calcium ion (PDB Het ID: CA) is pres-
ent in 2887 structures in the PDB, which results in a total
of 7811 binding sites, which by itself is 30% the size of the
entire CPASS library. While it would be beneficial to
include the functionally relevant calcium binding sites in
CPASS, it is not feasible to differentiate between these
sites and the numerous irrelevant calcium binding sites
present in the various structures. Again, simply including
all the calcium binding sites is currently impractical, es-
pecially when the 7811 binding sites are combined with
other similarly excluded ligands. Additionally, numerous
X-ray structures contain redundant copies of essentially
identical protein–ligand structures based on the number
of structures found within the unit cell. Multiple binding
sites within the same structure are identified and only
one copy is maintained if the ligand-defined active sites
share �80% sequence identity and bind the same ligand.
Thus, the list may be reduced to �26,000 ligand-defined
binding sites, when these multiple copies from the same
PDB coordinate file are eliminated.

The ligands identified from protein–ligand complexes in
the PDB are then used to determine ligand-defined active
sites within the protein structure. The amino acid resi-
dues that comprise an active site are identified by having
at least one atom that is �6 Å from any ligand atom.
Thus, the ligand chemical structure and bound conforma-
tion determines which amino acids within the protein
comprise the active site. Relative changes in the ligand
conformation may result in a corresponding change in the
composition of the ligand-defined active site. The impact
on the active site definition depends on the magnitude of
the conformational change and whether this change
results in either the complete loss or gain of an interaction
with a specific amino acid. In general, ligand conforma-
tional changes have minimal impact on the definition of
the residues that describe the active site, where residues
on the 6-Å peripheral are the most likely to change.

The CPASS active site definition contains the residue
types, the corresponding Ca coordinate positions, and the
shortest distance from any atom in the residue to any
atom in the ligand (di). The same active site information
is then obtained from a protein–ligand complex for a tar-
geted hypothetical or novel protein from experimental
sources. Sequence and structural similarities of ligand-
defined active sites for hypothetical or novel proteins are
then compared against the entire PDB derived ligand-
defined active sites in the CPASS database. Any differen-
ces in ligand conformations between the compared active
sites will have a minimal impact on the calculated simi-
larity, because the sequence and structure of only the
active sites are compared. The ligand structure is not
included in the comparison. Again, a ligand conforma-
tional change may simply result in the addition or exclu-
sion of amino acid(s) residue in the active site definition.
Thus, two similar active site sites would not be missed
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because of ligand conformation changes, since the remain-
der of the residues present in each active site would still
exhibit the expected similarity in sequence and structure.

Similarity Function

There are two uniquely critical features of the CPASS
analysis of ligand-defined protein active sites to identify
similarity in structure and function. First, the CPASS
analysis is independent of the identity of the bound
ligand. Although CPASS allows for the comparison of
active sites that contain the same ligand, it is not neces-
sary. The structure of the ligand is not used in the com-
parison, since it would eliminate any meaning in aligning
active sites with distinct but related ligands. In this man-
ner, the ligand-defined active site obtained for the target
protein can be compared against the entire CPASS data-
base (�26,000 ligand-defined active sites) or any subset of
the database to obtain a meaningful alignment score. Sec-
ond, the sequence and structure alignment of the ligand-
defined database is not dependent on the primary se-
quence connectivity of the protein. In traditional global
sequence or structure homology, the primary sequence
connectivity is a fundamental component of the alignment
analysis, where the insertion of gaps or deleted regions
between the aligned sequences or structures results in a
scoring penalty.37,38 Since the structural organization of a
protein active site typically comprises distal sequence
regions of the protein coming into close contact as a result
of the three-dimensional fold, the primary sequence con-
nectivity is not directly relevant to the sequence and
structural alignment of an active site.
Thus, the CPASS program determines the optimal se-

quence and structural alignment between two compared
active sites without maintaining sequence connectivity.
The CPASS program determines the alignment of two
active sites by maximizing a root-mean-square-difference
(rmsd) weighted BLOSUM6239,40 scoring function (Sab):

Sab ¼
Xi¼n; j¼m

i; j¼1

dmin

di
ðe�Drmsdi; j Þ2pi; j

Drmsdi; j ¼
rmsdi; j � 1 rmsdi; j > 1 A

0 rmsdi; j � 1 A

�
ð1Þ

where active site a contains n residues and is compared
with active site b from the CPASS database, which con-
tains m residues, pi,j is the BLOSUM62 probability for
amino acid replacement for residue i from active site a with
residue j from active site b, Drmsdi,j is a corrected root-
mean-square-difference in the Ca coordinate positions
between residues i and j, and dmin/di is the ratio of the
shortest distance to the ligand among all amino acids in
the active site, compared with the current amino acid’s
shortest distance to the ligand. Sab is only summed over
the optimal alignment for residue i from active site a with
residue j from active site b. It is not summed over all possi-
ble combinations of i and j. If the number of residues are
not identical between active sites a and b (n=m), then the

additional residues will not have a corresponding match.
Each residue can be used only once in the alignment. If
active site a contains unmatched residues, then no contri-
bution is made to Sab, which effectively reduces the maxi-
mal possible score that can be achieved for active site a. As
an example, if active site a contains an unmatched Ala, a
score of 0 is added instead of a possible maximum score of
4 if active site b contained an appropriately aligned Ala.
The active sites that are being compared are typically in
distinct coordinate axes, and so aligning the coordinates in
an optimal arrangement without the use of the primary
sequence connectivity requires an iterative approximation
guided by maximizing this scoring function.

The BLOSUM62 probability matrix was chosen based
on the reported evaluation of a number of matrixes, where
BLOSUM62 was identified as the best matrix.40 BLO-
SUM62 is also widely used to construct sequence align-
ments and is the default matrix for BLAST.41

The calculated rmsd between residues i and j is cor-
rected by 1 Å (Drmsdi,j) to account for structural varia-
tions less than 1 Å that are typically within the experi-
mental accuracy of the two aligned structures. Similarly,
squaring the Drmsdi,j weighting function softens the neg-
ative impact of larger rmsd values (>2–5 Å) and still
allows for a positive (nonzero) contribution to the scoring
function. These rmsd values are consistent with generally
accepted measures of accuracy for predicted protein–
ligand models and imply a potential functional rele-
vance.42 Thus, a continuous Drmsdi,j weighting function
is created by simply subtracting 1 Å from the observed rmsd
value, where a negative value is set to zero. So, an
observed rmsdi,j of 1.3 Å would result in a Drmsdi,j of 0.3 Å
and a resulting 0.741 weighting function on the BLO-
SUM62 probability. Conversely, an observed rmsdi,j < 1.0
Å would result in a Drmsdi,j of 0 Å and a resulting 1.0
weighting function on the BLOSUM62 probability.

Since the active site is defined by a strict distance cut-
off, relatively large errors may arise in the alignment
score due to small structural changes that may occur at
the active site boundary. To minimize this effect, the score
is also scaled by the shortest distance from an amino acid
in the active site to the ligand to de-emphasize amino
acids that are at the 6-Å boundary. As an illustration, con-
sider an active site of a targeted protein that contains an
alanine where the methyl protons are exactly at the 6-Å
limit. The remaining alanine atoms are all beyond the 6-Å
limit. The active site of a reference protein does not
include this alanine as part of its active site definition
because the alanine methyl protons are 6.1 Å from any
ligand atom and beyond the 6-Å limit. Thus, because of
this 0.1-Å change and the corresponding presence and ab-
sence of alanine in the two active site definitions, the sim-
ilarity scoring function would decrease by 4.0, when these
two active sites are compared. Assuming the shortest dis-
tance from any atom in the ligand to any atom in the
active site is 2 Å, the impact on the similarity score is
reduced to 1.33 by using the dmin/di (2 Å/6 Å) scaling. Con-
versely, the distance scaling also places more emphasis on
active site amino acids that are closer to the ligand and
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are presumably more important in both the affinity and
selectivity of the bound ligand.

Active Site Similarities

The CPASS program generates two outputs: (i) similar-
ity score and (ii) a file containing the sequence alignment
of the two active sites. The similarity score (S) is simply
the ratio of the scoring function determined by comparing
a protein target active site against a reference active site
(Sab) from the CPASS database, with the scoring function
of a protein target active site compared against itself (Saa).

S ¼ Sab=Saa 3100 ð2Þ

A similarity score is calculated for each comparison.
Using the entire CPASS database would result in �26,000
similarity scores. The similarity score is not symmetrical
and depends on the order of the comparison. This arises
because the scoring function is dependent on the size or
the number of amino acids that defines the active site.

Consider comparing a hypothetical or novel protein com-
plexed with adenine against the CPASS database. It is
plausible that reference proteins that are complexed with
ATP, NAD, or FAD may exhibit a high similarity based on
a near complete overlap with the adenine component of
their ligand-defined active sites with the adenine com-
plexed to the hypothetical protein. The reverse compari-
son would yield a significantly smaller similarity score,
since a single adenine would only represent a subset of an
active site defined by ATP, NAD, or FAD.

To simplify the utility of CPASS and the interpretation
of the CPASS output, a web-based interface has been
developed that will be accessible through our website
http://bionmr-c1.unl.edu/ (Fig. 2). The CPASS output con-
tains a list of all the aligned active sites, with a similarity
score above the cut-off, typically 30%, that is directly
linked to a graphical display of the aligned active sites,
using Chime.43,44 Additional information listed is the se-
quence alignment, the Ca rmsd-weighted function, the
rmsd-weighted BLOSUM62 scores, and the protein and
ligand identity from the PDB file.

Fig. 2. Screen shots of the web interface to CPASS (a) entry form for active site comparison, (b) list of the active sites with the highest similarity
to target protein, (c) graphical display of the aligned active sites’ structures, sequence alignments, Ca rmsd weighted function, rmsd-weighted BLO-
SUM62 scores, and information about the aligned protein and its bound ligand. A hyperlink in the similarity list in (b) links to the display in (c).
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RESULTS AND DISCUSSION
Validation of CPASS

The primary application of the CPASS program is to aid
in the functional annotation of hypothetical or novel pro-
teins by comparing experimentally-defined ligand based
active sites. This is based on the premise that the se-
quence and structural composition of a protein active site
is uniquely defined by the biological function of the
protein. It is generally accepted that a global similarity
in either sequence or tertiary fold of a protein is corre-
lated to its function.7 The underlying hypothesis in the
application of CPASS is that a biological function may
also be assigned to a protein, based on similarities in the
characteristics of experimentally defined ligand based
active sites in the absence of global sequence or structure
homology.45

To address this hypothesis and validate the utility of
the CPASS program, a general comparison of active site
structures with known outcomes was conducted. The re-
solving power of ligand-defined active sites to identify pro-
tein function was ascertained by comparing ATP and pyri-
doxal 50-phosphate (PLP) active sites from a variety of
functionally distinct proteins. One hundred and seventy
six ATP binding sites and 294 PLP binding sites were iden-
tified from structures in the PDB. The ATP binding sites
were clustered into 19 functional classes based on the
enzyme classification in the BRENDA database.46,47 Simi-
larly, the PLP binding sites were clustered into 20 func-
tional classes. The ATP binding sites were compared with

each other for a total of 30,976 comparisons. The PLP bind-
ing sites were compared with each other for a total of
86,436 comparisons. The calculations took �1–2.5 days on
a 16-node Beowulf Linux cluster, where each comparison
averaged �40 s. For each protein, the best match for each
functional class was identified. Comparisons between pro-
teins with �95% sequence similarity were excluded from
identifying the best match. As an example, a phospho-
transferase (PDB ID:1TQP) from Archaeoglobus fulgidus
exhibits the highest similarity (52%) to a phosphotransfer-
ase (PDB ID:1PHK) from Oryctolagus cuniculus. Global
sequence alignment of 1TQP with 1PHK using ClustalW48

yielded an alignment score of only 8%. Conversely, the best
match of a phosphotransferase to an alkyltransferase
(PDB ID:1G64) is 15%. As anticipated, a higher average
similarity score was always seen between proteins of iden-
tical function (diagonal) than functionally distinct proteins
(off-diagonal) (Fig. 3). The results were independent of the
type of ligand (ATP, PLP) or protein function. Nevertheless,
the relative range of average similarity scores did vary by
the function of the proteins. Comparison of ATP or PLP
binding sites from functionally identical proteins resulted
in relatively high similarity scores (�40–100%). Con-
versely, functionally distinct proteins generally yielded rel-
atively low similarity scores despite binding the same
ligand. Thus, the highest observed similarity score for a hy-
pothetical protein determined by comparison against the
CPASS database would identify the protein(s) that has
the highest probability of sharing a similar function with
the hypothetical protein.

Fig. 3. A contour plot of the percent similarity determined from the CPASS analysis of (a) 294 pyridoxal 50-phosphate binding sites and (b) 176
ATP binding sites are plotted according to protein function. The diagonal compares proteins of identical function. Contours are plotted in 10% incre-
ments as indicated by the color chart, where the lowest observed contour is 30%.
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Comparison of the ATP and PLP similarity plots (Fig. 3)
clearly indicates a difference in the absolute magnitude of
some of the off-diagonal peaks. A number of the PLP off-di-
agonal peaks indicate a 50–60% similarity between differ-
ent functional classes, whereas the maximum off-diagonal
peaks are 30–40% in the ATP plot. Also, more of the off-di-
agonal peaks are >30% in the PLP plot, where a majority
of the ATP off-diagonal peaks are <30%. These observa-
tions reflect the relative evolutionary pathways of the ATP
and PLP binding sites. Evolutionary analysis of PLP-de-
pendent enzymes indicates only four independent lineages
(completely different folds) resulting from two distinct di-
vergent events (reaction specific, substrate specific) from a
primordial PLP protein.49 All PLP-dependent enzymes cat-
alyze amino acid metabolism and as a result share impor-
tant mechanistic features that include (i) covalent bond
between PLP and a lysine residue, (ii) amino acid binding
site proximal to PLP for transimination with substrate,
(iii) formation of a planer coenzyme-substrate aldimine
adduct, and (iv) optimization of noncovalent interaction
between the protein and the PLP–substrate complex.
These mechanistic requirements suggest that PLP caused
evolutionary restraints relative to ATP-dependent pro-
teins. Thus, the evolutionary analysis of PLP-dependent
enzymes that indicates close relationships within this pro-
tein family is consistent with the high off-diagonal similar-
ities observed in the CPASS analysis, using a narrower
functional classification. As an example, CPASS indicates
a 63.1% similarity between hydroxymethyl transferase
(E.C. 2.1.2) and amino acid acetyl transferase (E.C. 2.3.1),
which are both members of the a-family and closely related
in the PLP phylogenic map.49

Although PLP-dependent enzymes appear to share a
common evolutionary pathway, a similar relationship is
not expected across the more functionally diverse family
of ATP binding proteins. Clearly, the significant differen-
ces in function between actin and kinase proteins would
imply a very distinct and unrelated evolutionary pathway.
In fact, identifying an evolutionary relationship between
divergent members of the kinase family alone is challeng-
ing.50 These different functional classes of ATP binding
proteins separately and distinctly optimized an ATP bind-
ing site specific to the functional needs of the protein. Any
similarity in the ATP binding site would result from con-
vergent evolution.45,51,52 Again, this lack of a strong evo-
lutionary relationship between the various ATP binding
proteins is consistent with the relatively low off-diagonal
similarity scores observed in the CPASS analysis.
The value of the CPASS analysis is also illustrated by a

comparison of the global pair-wise sequence identity
determined by ClustalW48 for the 176 ATP-binding sites
with the CPASS similarity score (Fig. 4). A general linear
correlation between the CPASS and ClustalW alignment
scores is expected and observed. Clearly, as the global
sequence identity increases, a corresponding increase in
the similarity of the active sites would also occur. This is
fundamental to the application of sequence alignment to
assign function. The two circled areas in the graph indi-
cate regions that significantly deviate from this linearity.

Region (a) corresponds to CPASS similarity scores that
are significantly higher than the corresponding ClustalW
scores. This indicates a high similarity in the sequence
and structure characteristics of active site for proteins
with extremely low (<20%) sequence alignment. These
low sequence alignments are not expected to yield a func-
tional annotation, but are consistent with the observation
that numerous homologous proteins structures exhibit
high global sequence diversity.53 Again, by emphasizing
active site structural alignments with an inherently
higher level of conservation relative to global sequence
alignments, an increase in the probability of obtaining a
functional annotation can be achieved using CPASS.

Region (b) in Figure 4 corresponds to low CPASS simi-
larity for proteins with high sequence alignments. Pro-
teins that have multiple ATP binding sites, which are
sequence and structurally distinct, will result in low
CPASS scores, when these distinct active sites are com-
pared. This is an expected result and provides a negative
control for validating CPASS. Of course, the overall se-
quence similarity would be high, even though the two
ATP binding sites being compared are quite different.

Functional Annotation of Hypothetical Proteins

Further validation of the utility of CPASS to assist in
the functional annotation of hypothetical proteins was
ascertained by analyzing two structures of hypothetical
proteins recently reported in the literature that serendipi-
tously contained a bound ligand. The 2.0 Å X-ray struc-
ture of yeast hypothetical protein YBL036C contained a
covalently attached pyridoxal 50-phosphate. CPASS com-
parison against 294 active sites containing pyridoxal 50-
phosphate indicated that the best match (42% similarity)
corresponded to an alanine racemase (Fig. 5).

The function of YBL036C had been tentatively identified
as an alanine racemase.54 Comparison of YBL036C against
a structural database identified alanine racemase and orni-

Fig. 4. Comparison of the CPASS active site similarity score and
the global percent sequence similarity determined by ClustalW48 for the
176 ATP binding sites. The circled areas represent significant devia-
tions from a linear relationship between CPASS and ClustalW indicated
by the straight line. Region (a) corresponds to high active site CPASS
similarity scores for proteins with low global sequence similarity. Region
(b) corresponds to proteins with multiple distinct ATP binding sites,
where CPASS similarity is expected to be low.
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thine decarboxylase as globally similar in tertiary fold to
YBL036C, where all three proteins exhibit a similar TIM-
barrel fold. Nevertheless, a poor alignment of YBL036C
against alanine racemase was obtained using the entire
TIM-barrel fold. Also, the structure of YBL036C could not
be determined by molecular replacement using the alanine
racemase structure. A brute-force alignment using a subset
of the alanine racemase that included the PLP active site
resulted in a significant improvement with a 1.72 Å rmsd.
Manual comparison of the YBL036C and alanine racemase
active sites suggested a significant similarity to justify test-
ing for D-alanine racemase activity. YBL036C was shown
to exhibit D- to L-alanine racemase activity. Thus, the
CPASS assignment of YBL036C as an alanine racemase is
consistent with the previously reported detailed structural
and biochemical analysis.
Similarly, a 2.2 Å X-ray structure of hypothetical protein

YecO from Haemophilus influenzae contained a bound S-
adenosyl-L-homocysteine and is amenable to CPASS analy-
sis. CPASS comparison against 46 structures containing
S-adenosylmethionine and one structure containing S-
adenosyl-L-homocysteine indicated that the best match
(35% similarity) corresponded to a glycine N-methyltrans-

ferase. This example illustrates the use of CPASS to com-
pare ligand-defined active sites, using related but chemi-
cally distinct ligand structures. In this case, S-adenosyl-L-
homocysteine is a processed cofactor (Fig. 5).

The function of YecO has been identified as a methyl-
transferase.55 Again, this was based primarily on struc-
tural comparison using DALI56 and VAST,57 along with
the presence of S-adenosyl-L-homocysteine. Methlytrans-
ferase have extremely low sequence homology (3–18%),
but most methyltransferase bind the cofactor in a similar
manner. Glycine N-methyltransferase binds S-adenosyl-
methionine in a drastically different binding mode, com-
pared with other methyltransferase, and was identified as
one of the structures most similar to YecO. Again, the
CPASS assignment of YecO as a methyltransferase is con-
sistent with the previously reported detailed structural
analysis. CPASS identified glycine N-methyltransferase
as exhibiting a similar active site structure as YecO is also
consistent with this previous analysis. These results sup-
port the general application of the CPASS database and
software to assign a biological function to novel or hypo-
thetical proteins, by comparing experimentally determined
active sites.

Fig. 5. Top: Comparison of the pyridoxal-50phosphate defined active sites for (a) yeast hypothetical protein
YBL036C (PDB ID:1B54) and (b) alanine racemase (PDB ID:1RCQ). Bottom: Comparison of the S-adenosyl-L-ho-
mocysteine defined active site for (c) hypothetical protein YecO from Haemophilus influenzae (PDB ID:1IM8) with
the (d) S-adenosylmethionine defined active site for glycine N-methyltransferase (PDB ID:1KIA). The residues
aligned by CPASS are colored blue in the structures, and the active site sequence alignments are shown below the
structures. Pyridoxal-50phosphate, S-adenosyl-L-homocysteine, and S-adenosylmethionine are colored yellow.
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Comparison of CPASS to Other Methods

CPASS shares a similarity in concept to other techniques
that are being developed to infer function for hypothetical
proteins.14–19,58 Like CPASS, these approaches are using
information about the protein’s active site to make a corre-
lation with a known protein and assign a function to the
unknown protein. Nevertheless, the application and details
of the CPASS approach are fundamentally distinct from
these other methods. For example, the ‘‘Fuzzy Functional
Form’’ (FFF) described by Fetrow and Skolnick59 was de-
veloped to provide genome-wide functional annotation,
using only the amino acid sequences for each hypothetical
protein. The success of the FFF approach is monitored by
the number of correctly annotated proteins instead of its abil-
ity to correctly annotate a specific protein, which is the objec-
tive of CPASS. Thus, the computational speed and broad cov-
erage requirements of FFF result in significant compromises
relative to CPASS that included a simplified and limited
active site comparison and the complete absence of experi-
mental data. The three-dimensional protein structure, the
identity of the active site, and protein–ligand complex struc-
tures are unknowns in FFF. In fact, the aim of FFF is to pre-
dict the structure and identity of the active site simply from
the sequence of the hypothetical protein and a few structure
templates for proteins of known function.17 This is a very
laudable but challenging goal. Conversely, CPASS depends
on the experimentally determined structure and the unam-
biguous ligand-defined active site to provide functional infor-
mation for a single protein.
Briefly, FFF predicts a 3D structure for each hypotheti-

cal protein, by threading the sequence into 2–3 structures
for proteins of a specific function.60 Second, FFF uses a
consensus active site defined from a sequence alignment
of functionally annotated proteins, where an active site
residue must be present in �50% of the aligned sequen-
ces. A functional assignment is then made if the threaded
sequence is consistent with one of the template structures
and if all the conserved active site residues overlap with
the structural template.
Unlike CPASS, only a few highly conserved amino acids

are used to define an active site instead of a complete
description for all the active site residues. Conversely,
FFF requires that the predicted active site for the hypo-
thetical proteins contain an exact match with the consen-
sus active site, where CPASS provides a similarity score
that allows for homologous amino acid substitution.
Again, speed dictates this requirement in FFF, but the
detailed comparison that is achieved by the precise com-
parison of �26,000 ligand-defined active sites with CPASS
is lost, potentially resulting in incorrect structural align-
ments and false assignments. Consider a simple hypothet-
ical example, if a consensus active site contains a con-
served aliphatic amino acid (Ala, Ile, Leu, Val), but nei-
ther of these residues is consistently present (�50%) in
the aligned sequences, then FFF will not include this
descriptor as part of its active site definition. As a result,
a hypothetical protein that contains an Arg at this posi-
tion would equally and probably incorrectly match the
consensus active site. There is no differentiation from

other hypothetical proteins that correctly contain this
conserved amino acid type. Conversely, CPASS utilizes
each individual active site for the sequence alignment,
where the presence of Arg would result in a negative
impact on the CPASS similarity score.

Furthermore, consider large functional families that
contain hundreds of members, such as kinases and
PTPases. Numerous functional subclasses potentially
exist within these large families, where a consensus
active site across the entire family is inappropriate, but
accurately delineating membership within the subclasses
and correctly defining a consensus active site for each
subclass may be challenging.50 The accuracy of the func-
tional assignment for FFF is strongly dependent on the
correct description of these consensus active sites. These
issues are avoided in CPASS by using the entire ligand-
defined active site for comparison (all the individual ki-
nase, PTPase along with other protein active sites are
used). CPASS specifically identifies which protein-ligand
complexes in the CPASS database and shares a homolo-
gous active site with the hypothetical protein. This aspect
of CPASS is more computationally intensive relative to
FFF, since it requires a comparison of �26,000 ligand-
defined active sites comprising upwards of �25 amino
acids each. But, the structural threading is similarly com-
putationally expensive in the FFF protocol requiring a
limited number of structural templates.

Other approaches similar to FFF also attempt to predict
function or identify active sites through the use of homol-
ogy models based on known protein structures.18,19 These
models generally suffer from an abundance of false posi-
tives because of the accuracy of the threading procedure.
An accurate threaded structure requires 60% of residues
in the hypothetical sequence to occupy structurally analo-
gous sites in the target structure.61 Thus, the sequence
for the hypothetical protein needs to share more than 50%
sequence identity with the protein structure template.62

Nevertheless, any sequence can be threaded into a struc-
ture template and simply evaluated by an empirical energy
function, resulting in incorrect predicted folds. CPASS does
not attempt to predict a structure for a hypothetical pro-
tein but requires the availability of this structure and
avoids the uncertainty generated by a predicted structure.
Effectively, FFF and other similar programs are analogous
to global sequence alignments, but utilize a structural
homology filter to refine the global sequence alignment.

Application of CPASS in Drug Discovery

An important issue in drug discovery is designing selec-
tivity into chemical leads to avoid undesirable activity
that may cause toxic side-effects in clinical trials.63

Improving the affinity of a chemical lead against a defined
protein target can be readily quantified, but determining
the relative selectivity against all potential targets is
impractical. The main challenge is in identifying proteins
that may be inadvertent targets of the chemical lead.
Again, global sequence or structural homology to the pro-
tein target is the major method of identifying proteins
with a potential affinity to the chemical lead. Unfortu-
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nately, this does not yield a thorough analysis of the pro-
teome or a prediction of ligand affinity, since the compari-
son is not specific to the active site. CPASS provides an
additional approach to identifying potential cross-reactiv-
ity between proteins of diverse function by identifying
related ligand-biding sites. The ATP and PLP binding-site
analysis indicates that the highest observed similarity is
between proteins of identical function (Fig. 3). Neverthe-
less, there are a number of examples where functionally
distinct proteins share >30–40% similarity (off-diagonal),
such as ATPases and cell division proteins for the ATP
binding proteins and hydrolyase and ammonia-lyase for
the PLP-dependent enzymes. Again, CPASS will not pro-
vide a complete analysis of the entire proteome, since it is
limited to the representative protein structures and func-
tions in the PDB. But, CPASS will assist in improving the
selectivity of chemical leads by expanding the list of rele-
vant proteins beyond those proteins that are functionally
related to the target. Thus, CPASS can identify a broader
spectrum of proteins to use in biological assays to test for
activity and selectivity against potential drug candidates.
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