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Abstract 

Recent developments provide automated analysis of NMR assignments and 3D structures of proteins. 

These approaches are generally applicable to proteins ranging from about 50 to 150 amino acids.  In this 

chapter, we summarize progress by the Northeast Structure Genomics Consortium in standardizing the 

NMR data collection process for protein structure determination, and in building an integrated platform for 

automated protein NMR structure analysis. Our integrated platform includes the following principal steps: 

(i) standarized NMR data collection, (ii) standardized data processing (including spectral referencing and 

Fourier transformation), (iii) automated peak picking and peak list editing, (iv) automated analysis of 

resonance assignments, (v) automated analysis of NOESY data together with 3D structure determination, 

and (vi) methods for protein structure validation.  In particular, the software AutoStructure for automated 

NOESY data analysis is described in this Chapter, together with a discussion of practical considerations for 

its use in a high throughput structure production effort.  The critical area of data quality assessment has 

evolved significantly over the last few years, and involves evaluation of both intermediate and final peak 

lists, resonance assignments, and structural information derived from the NMR data. Methods for quality 

control of each of the major automated analysis steps in our platform are also discussed.   Despite 

significant remaining challenges, when good quality data are available, automated analysis of protein 

NMR assignment and structures with this platform is both fast and reliable.   
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Introduction 
 

With the advent of multidimensional and triple-resonance strategies for determining 

resonance assignments and 3D structures, it has become increasingly clear that protein NMR 

spectra have the quality and information content to allow largely automated and standardized 

analyses of assignments and structures for small proteins. This has been realized over the last 

few years in the development of automated methods for many of the steps in production 

NMR protein structure analysis. These advances are significant demonstrations of NMR as a 

powerful and accessible tool for biophysical chemistry, drug design, and functional 

genomics. In this article, we summarize our efforts in standardizing the NMR data collection 

process, building an integrated platform for automated NMR structure analysis, and 

demonstrating its impact for the NorthEast Structural Genomics consortium (NESG).  

 

Overview of the Automated Protein Structure Analysis Process 

The principal steps of automated NMR protein structure analysis are outlined in Figure 1.  

These include (i) Standardized Data Collection and Organization, (ii) Processing (including 

spectral referencing and Fourier transformation), (iii) Peak Picking and Peak List Editing, (iv) 

Resonance Assignment, and (v) Structure Determination (including analysis of conformation 

constraints, NOESY assignment, RDC data analysis and 3D structure generation).  In 

building an automated data analysis platform, the input and output of each of these steps must 

be organized in a self-consistent way, ideally using a relational database (Baran, et al., 2002, 

Zolnai, et al., 2003). A key issue for automated analysis is validation of completeness, quality, 

and consistency of data generated in each of these principal steps. Recent efforts have 
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focused on Peak List Validation, Resonance Assignment Validation, and Structure Validation. 

A critical issue for automation is data quality. These validation steps, and estimates in 

uncertainties in the derived information, are critical both for defining a robust and reliable 

automation process, and for interpreting the resulting resonance assignments and 3D 

structures. 

 

Standardized Data Collection and Organization 

The Organizational Challenge 

The process of NMR-based protein structure analysis is challenged by requirements for 

properly executing, processing, and analyzing many separate NMR experiments. Unlike 

biomolecular crystallography, which generally involves a single type of data collection 

experiment, an NMR protein structure determination may require proper collection and 

analysis of 10 – 20 individual 2D, 3D, and 4D NMR spectra. These data must be highly self-

consistent, as the input to the structure calculations is a composite generated from across 

these many data sets.   

 

Standardized Data Collection  

The challenges of organization for automated data analysis begin with data collection.  As 

protein structure analysis relies on data from many different NMR experiments, it is critical 

that this data be self-consistent and fairly complete.  Self-consistency can be particularly 

problematic when mixing data collected on different NMR spectrometers and/or using 
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different samples of the protein under investigation.  Efforts must be made to minimize 

spectrum-to-spectrum variability.  In our laboratories, we generally collect all the data needed 

for a protein structure analysis back-to-back on the same sample and usually with the same 

NMR instrument.  However, it is not always possible to collect in this manner, and even this 

strategy does not ensure consistency across spectra since sample heating effects can depend 

on decoupler duty cycles, which are different across NMR experiments.  Fortunately, the 

latest generation NMR probes, and particularly cryogenic probes, exhibit less sample heating 

from decoupling than previous generation probes. 

 

Another critical organizational issue for automated data analysis is the use of a 

standardized set of NMR pulse sequences for data collection.  Each implementation of a 

sophisticated NMR experiment involves data collection and processing parameters that are 

unique to that implementation.  It is very difficult to construct an analysis platform that is 

completely flexible with respect to all possible permutations.  Well-defined sets of NMR data 

collection strategies creates the basis for a robust analysis platform, providing consistent 

types of input data and guiding users to a better understanding of which NMR experiments 

are essential, optional (but useful), or superfluous. In general, different protein classes (e.g. 

small 15N, 13C-enriched proteins vs. larger perdeuterated 15N,13C-proteins) require different 

data collection strategies; but a standardized set of experiments for each of these general 

classes can be defined.  Within our “standard data collection sets”, some experiments are 

defined as “required” while others are labeled “optional.” Typically, “optional” experiments 

are only carried out when the quality evaluation of the “required” set deems it necessary.   
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It is also valuable to define the adjustable (sample dependent) and fixed parameters of 

data collection and processing for each NMR experiment in each “standard set.”  For 

example, in generating triple-resonance spectra for automated analysis of resonance 

assignments, we constrain the digital resolution in “matching dimensions of complementary 

spectra” (e.g. the 13C dimensions of HNCA and HNcoCA spectra) to be identical, in order to 

maximize accuracy in matching intraresidue and sequential crosspeaks between these spectra.  

In the activities of our structural genomics project (www.nesg.org), one of the most critical 

innovations providing high-efficiency NMR structure generation has been the establishment 

of standardized data collection strategies and carefully-considered default data collection and 

processing parameters. 

 

The development of a package for employing reduced-dimensionality (RD) NMR 

spectroscopy (Szyperski, et al., 1993) for complete protein resonance assignment (Szyperski, 

et al., 2002) exemplifies this point. The ‘RDpack’ (Y. Xia, D. K. Sukumaran, C. Arrowsmith, 

T. Szyperski, in preparation) comprises pulse sequences, parameter sets, scripts and macros 

for efficient de novo implementation of RD NMR experiments as well as rapid adjustment of 

parameter sets when using VARIAN INOVA spectrometers (Fig. 2). The RDpack is freely 

available for academic users and contains 11 experiments. 3D HαβCαβcoNH, 3D HACAcoNH 

and 3D HCccoNH-TOCSY sequentially correlate proton and carbon shifts of residue i-1 with 

the amide proton and nitrogen shifts of residue i, 3D HαβCαβNH, 3D HNCAHA and 3D 

HαβCαβcoHA provide complementary intraresidue connectivities, and 3D HN<CO,CA> 

 

http://www.nesg.org/
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affords both sequential and intraresidue connectivities. Aliphatic side chains are assigned by 

use of 3D HCCH COSY and TOCSY, while aromatic spin system identification relies on 2D 

HBCBcgcdHD and 2D 1H-TOCSY HCH COSY. All parameter sets offer flags to 

conveniently select (i) central peak acquisition from 13C steady state magnetization 

(Szyperski, et al., 1996), (ii) transverse relaxation optimized spectroscopy (TROSY) 

(Pervushin, et al., 1997) type data acquisition, and (iii) 2H-decoupling. 

 

Local Data Organization and Archiving  
 

Biomolecular NMR research groups require efficient and simple access to archival NMR 

data, both for routine storage purposes and for the development and testing of novel 

computational methods for data analysis. Common methods of archiving raw NMR data 

[usually in the form of time domain free-induction decay (FID) data] in use in most 

biomolecular NMR laboratories are often inefficient, out-dated, and error-prone, leading to 

frequent loss of valuable data that are both hard and expensive to obtain. The growing 

demands on data organization and formatting in submitting NMR data and structures to 

public databases like the BMRB (Seavey, et al., 1991) and the PDB (Berman, et al., 2000) 

also require simple methods of harvesting NMR data and moving this information from the 

NMR laboratory into appropriate archival formats. This is particularly challenging for the 

several pilot projects in structural proteomics (Chance, et al., 2002, Gong, et al., 2003, 

Heinemann, et al., 2000, Kennedy, et al., 2002, Terwilliger, 2000, Yokoyama, et al., 2000) 

which are being encouraged to submit into the public domain many more data items than 

have been traditionally expected from a conventional structural biology project. The goal of a 
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standardized archive is to not only increase laboratory productivity through organization, but 

also to support future NMR methods development by organizing laboratory data into a format 

which can easily be retrieved, reproduced and shared across the community.  If properly 

organized and archived, these data will be invaluable to the NMR community in efforts to 

develop new data collection and analysis technologies.   

 

 Examples of recently described NMR Laboratory Information Management System 

(LIMS) solutions are the Sesame (Zolnai, et al., 2003) and SPINS (Baran, et al., 2002) 

databases. SPINS (Standardized ProteIn NMR Storage) (Baran, et al., 2002) is an object-

oriented relational database and data model that provides facilities for high-volume NMR 

data archival, data organization, and dissemination of raw NMR FID data to the public 

domain by automatic preparation of the header files needed for simple submission to the 

BMRB (Seavey, et al., 1991).   

 

NMR Spectral Processing 

Several NMR spectral processing issues need to be carefully considered for successful 

automated data analysis. Particularly important are accurate and precise chemical shift 

referencing in the direct and indirect dimensions using IUPAC-defined referencing methods 

(Wishart, et al., 1995) with dimethylsilapentane-5-sulfonic acid (DSS) as the reference 

compound.  Accurate 13C, 15N, and 1H referencing is essential for ensuring the development 

of an accurate database of chemical shift values (Zhang, et al., 2003).  Proper chemical shift 

referencing for aliphatic 13C and 1H resonances is also critical for accurate amino acid typing 
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(Grzesiek and Bax, 1993, Moseley, et al., 2001, Zimmerman, et al., 1997) and secondary 

structure analysis (Wishart and Sykes, 1994), generating information that is used in most 

automated assignment and structure programs.  In our laboratories, we externally calibrate the 

synthesizer offsets on each NMR spectrometer with a sample of 1 mM DSS in 2H2O at 

neutral pH and at multiple temperatures, and then use these calibrations to define the 

corresponding chemical shift value of the carrier offset in each dimension of each NMR 

spectrum (Monleon, et al., 2002). 

 

As with NMR data collection, similar amounts of zero-filling and/or linear prediction, 

and similar window functions should be applied to matching dimensions across spectra to 

provide comparable final digital resolutions (Montelione, et al., 1999, Moseley, et al., 2001).  

This allows the use of the tightest possible “match tolerances” in later steps of automated 

analysis.  We typically zero-fill the direct HN dimension to 1024 complex points and 2-fold 

linear predict and zero-fill each indirect dimension to 256 or 512 complex points.  Even 

though this copious increase in digital resolution goes beyond usual theoretical 

recommendations, such processing can aid peak picking software that does not interpolate 

peak centers well.  The use of linear prediction also suppresses severe Fourier truncation 

artifacts (e.g., sinc wiggles) and reduces line broadening effects of window functions (Koehl, 

1999). This can have a significant impact in crowded regions of a spectrum.  Linear 

prediction generally produces cleaner spectra and better shaped peaks, thus improving the 

performance of the peak picking algorithms, providing higher quality peak lists, and 

ultimately improving the performance of later automated analysis steps (Moseley, et al., 
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2001).  It is also critical to apply ridge-suppression and baseline correction in each spectral 

dimension to improve their quality, which can be very important for later restrictive peak 

picking steps (Monleon, et al., 2002).  

 

Several high quality NMR processing programs have been developed over the last 

several years, including Felix (Molecular Simulations, Inc., San Diego, USA), NMRPipe 

(Delaglio, et al., 1995), PROSA (Guntert, et al., 1992), VNMR (Varian, Inc., Palo Alto, CA, 

U.S.A), and XWinNMR (Bruker Analytik GmbH, Karlsruhe, Germany). NMR data 

processing requires expert knowledge of many technical concepts and terms, presenting 

barriers to scientists not familiar with the deeper details of NMR spectroscopy.  However, 

many of the parameters associated with the referencing and processing of NMR data, though 

specific to the pulse sequence program and particular spectrometer used to record the data, 

are relatively sample independent.  Given the constraints of the data collection process as 

defined by the NMR pulse sequence, only a few adjustable parameters need to be considered 

by a user, and most of these can be set to usable default values based on general laboratory 

experience.  Accordingly, there are several steps in the analysis of NMR data that may be 

viewed as routine tasks, but often demand non trivial amounts of time, knowledge of NMR 

theory, and familiarity with technical features of the specific data collection methods and/or 

processing software.   

 

 To address these data organization issues, we have developed AutoProc (Monleon, et 

al., 2002), a data dictionary together with a set of software tools designed to allow a non-
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expert in NMR spectroscopy to accurately reference multidimensional NMR spectra, 

generate and run appropriate conversion scripts, and process NMR data using the software 

package NMRPipe (Delaglio, et al., 1995). AutoProc takes as input FID files along with 

libraries of spectrometer and pulse-sequence specific description (table) files.  It converts the 

data into a processing format, references the data in the direct and indirect dimensions using 

spectrometer-specific calibrations, and creates processing scripts suitable for running 

NMRPipe.  It is straightforward to modify AutoProc to work with other script-based 

processing software like Felix (Molecular Simulations, Inc., San Diego, U.S.A.) or PROSA 

(Guntert, et al., 1992).  

 

Peak Picking 

Peak picking represents one of the crucial steps of NMR data analysis that has resisted 

successful automation for the purpose of automated resonance assignment and structure 

determination.   This is due largely to cross peak overlap and artifacts associated with large 

peaks, especially solvent diagonal peaks.  Multidimensional NMR spectra often exhibit 

artifacts of baseline distortions, intense solvent lines, ridges, and/or sinc wiggles.  These 

problems are sometimes exacerbated by different processing methods that can dramatically 

affect line shape, intensity, and resolution of peaks as well as the severity of spectral artifacts. 

 

 Most automated peak pickers (Eccles, et al., 1991, Garrett, et al., 1991, Goddard and 

Kneller, 2000, Herrmann, et al., 2002, Koradi, et al., 1998, Orekhov, et al., 2001) rely on 
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properties of an individual peak along with a model of the noise generated in the spectrum to 

determine whether a peak is valid or not; though, one approach has looked at comparative 

properties of doublets (Andrec and Prestegard, 1998).  Many programs perform restricted 

peak picking or filtered peak picking which is a form of peak list editing where one peak list 

is filtered against another in comparable dimensions (Goddard and Kneller, 2000, Monleon, 

et al., 2002, Zimmerman, et al., 1997).  ATNOS (Herrmann, et al., 2002) is software for 

automated NOESY peak picking. It uses NOESY symmetry relationships along with 

restrictive peak picking against an assigned resonance list to guide the automated peak 

picking while using a ridge detection method to minimize peak picking along ridges. ANTOS 

has been used together with NOESY assignment and the structure determination software 

CANDID(Herrmann, et al., 2002) and DYANA (Guntert, et al., 1997) to iteratively identify 

and assign NOESY cross peaks.  

 

 In our laboratories, peak picking is usually done using the restrictive peak picking and 

peak editing facilities in the program Sparky (Goddard and Kneller, 2000) or XEasy.  

Additional software, AutoPeak (Monleon, et al., 2002), uses peak lists generated from 

manually peak picked 2D 15N-1H HSQC, 13C-1H HSQC spectra as frequency-filters across 

raw peak lists from 3D spectra.  For the peaks which pass these filters, Sparky reports 

linewidth, root mean square fits to Lorenzian line shape, and peak intensity data can be used 

to further filter artifactual entries in the initial peak list table.  Despite the sophistication of 

these automatic peak picking and editing methods, it is generally necessary to follow up with 

further editing (inclusion and exclusion) of peak lists by manual inspection of the spectra. 
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This manual editing is guided by a data completeness quality report generated from initial 

analysis of data [i.e., the examine_spin_systems.pl (ESS) report from the AutoPeak software].  

For an experienced spectroscopist, peak list editing for a typical set of NMR spectra used for 

backbone resonance assignments is completed in about 1 day, and can be streamlined by 

doing some of the peak list editing while some data collection is still in progress (Moseley, et 

al., 2001). 

 

Interspectral Registration and Quality Assessment of Peak Lists 

Quality assessment of input peak lists for further steps in the automated NMR analysis is 

crucial for the success of automation.  We use several quality assessments of peak lists when 

judging if the peak lists are good enough for the later steps of automation.  These include (i) 

peak list registration, (ii) the examine_expected_peaks.pl (EEP) report, and (iii) the 

examine_spin_systems.pl (ESS) reports of the AutoPeak software suite (Moseley, et al., 

2001).  The first quality assessment is the ability to register peak lists to each other in their 

comparable dimensions.  Registration is an often overlooked step that is absolutely required 

for good performance in automated resonance assignment and NOESY assignment steps.   In 

our current platform, a distance matrix approach [calculate_registration (Monleon, et al., 

2002)] is used to register peak lists from different spectra using resonance frequencies 

common to pairs of spectra.  This approach has the added benefit of providing standard 

deviations of matching frequencies that can be used to derive appropriate tolerances for later 

steps in the automated NMR analysis.   These standard deviations, along with a count of the 
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peaks that contributed to their calculation, provide scores that can used to assess the quality 

of the peak lists they come from.  Interspectral registration data, and other (EEP and ESS) 

spin system quality reports provided by the AutoPeak software suite, are used to determine if 

a set of peak lists is of good enough quality for automated NMR analysis, and to identify 

problematic or incomplete peak lists. 

 

AutoAssign - Automated Analysis of Backbone Resonance Assignments 

Significant progress has been made recently in automated analysis of resonance assignments, 

particularly using triple-resonance NMR data.  Several laboratories are developing programs 

that automate either backbone or complete resonance assignments (reviewed in refs (Baran, 

et al., 2004, Moseley and Montelione, 1999, Zimmerman and Montelione, 1995)). Most 

automated programs use the same general analysis scheme which originates from the 

classical strategy developed by Wüthrich and co-workers (Billeter, et al., 1982, Wagner and 

Wuthrich, 1982, Wuthrich, 1986).   

 

Most commonly used algorithms for automated analysis of resonance assignments 

include  the following steps (Moseley and Montelione, 1999):  i) register peak lists in 

comparable dimensions (registering/aligning); ii) group resonances into spin systems 

(grouping); iii) identify amino acid type of spin systems (typing); iv) find and link sequential 

spin systems into segments (linking); and v) map spin system segments onto the primary 

sequence (mapping).  Different automation programs implement each step with varying 

degrees of success; however, overall robustness is often dictated by the performance of the 
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weakest step.  The different automated resonance assignment programs are typically 

categorized by the methods they use in the mapping step. These methods include simulated 

annealing/Monte Carlo algorithms (Buchler, et al., 1997, Leutner, et al., 1998, Lukin, et al., 

1997), genetic algorithms (Bartels, et al., 1996, Bartels, et al., 1997), exhaustive search 

algorithms (Andrec and Levy, 2002, Atreya, et al., 2000, Coggins and Zhou, 2003, Guntert, et 

al., 2000), heuristic comparison to predicted chemical shifts derived from homologous 

proteins (Gronwald, et al., 1998), and heuristic best-first algorithms (Hyberts and Wagner, 

2003, Li and Sanctuary, 1997, Zimmerman, et al., 1994, Zimmerman, et al., 1997).  

 

We develop and use the automated backbone resonance assignment program 

AutoAssign (Moseley, et al., 2001, Zimmerman, et al., 1997). AutoAssign is a constraint-

based expert system (heuristic best first mapping algorithm) designed to determine backbone 

HN, Hα, 13C', 13Cα, 15N, and 13Cβ resonance assignments from peak lists derived from a set of 

triple resonance spectra with common HN-15N resonance correlations.  The original 

implementation of AutoAssign was written in LISP with a Tcl/Tk-based graphical user 

interface (GUI) (Zimmerman, et al., 1997).  The current version of AutoAssign is written in 

C++ with a Java-based GUI (Moseley, et al., 2001).  The program can handle data obtained 

on uniformly 15N-13C doubly-labeled; uniformly or partially-deuterated, 2H-15N-13C triply-

labeled; and selectively methyl-protonated, uniformly or partially-deuterated, 2H-15N-13C 

triply-labeled protein samples.   

 

AutoAssign requires five different types of peak lists but may use up to nine different 
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types of peak lists representing data obtained from a variety of triple resonance experiments 

and a 15N-HN HSQC spectrum.  These nine types of peak lists represent information from the 

following nine types of experiments: HSQC*, HNCO, HNCACB*, HNcoCACB*, HNCA*, 

HNcoCA*, HNcaCO, HNcaHA, and HNcocaHA. Those peak lists marked by an asterisk are 

required by the program; however, using all nine types of data obtains the best performance 

(Moseley, et al., 2001). 

 

  Key components of the processing, peaking picking, and automated assignment software,  

AutoProc (Monleon, et al., 2002), NMRPipe (Delaglio, et al., 1995), AutoPeak (Monleon, et 

al., 2002), Sparky (Goddard and Kneller, 2000) and AutoAssign (Moseley, et al., 2001, 

Zimmerman, et al., 1997), have been integrated together to provide a platform for rapid 

analysis of resonance assignments from triple resonance data.  This prototype “integrated 

backbone resonance assignment platform” (Monleon, et al., 2002) was applied to data 

collected from the small protein bovine pancreatic trypsin inhibitor (BPTI) using a first-

generation high-sensitivity triple resonance NMR cryoprobe. Seven NMR spectra were 

recorded in each of two sessions on a 500 MHz NMR system, requiring 36.6 hrs and 5.5 hrs 

of data collection time, respectively. Fourier transforms were carried out using a cluster of 

Linux-based computers, and complete analysis of the seven spectra collected in each session 

was carried out in about 2 hrs. Nearly complete backbone resonance assignments and 

secondary structures (based on chemical shift data) for a 58-residue protein were determined 

in less than 30 hours, including data collection, processing and analysis time. In this optimum 

case of this small well-behaved protein providing excellent spectra, extensive backbone 
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resonance assignments could also be obtained using less than 6 hours of data collection and 

processing time. These results demonstrate the feasibility of high throughput triple resonance 

NMR for determining resonance assignments and secondary structures of small proteins.  

 

Automated Analysis of Sidechain Resonance Assignments 

While several approaches have been found to provide robust automation of backbone 

resonance assignments, a robust approach to automated sidechain assignments is not yet 

generally available.  The program GARANT (Bartels, et al., 1996) supports automated 

backbone and sidechain assignments.  Recently, a combined approach of using GARANT 

and AUTOPSY (Koradi, et al., 1998) together demonstrates promising results in automating 

both peak picking and resonance assignments, including many sidechain aromatic 1H 

resonance assignments (Malmodin, et al., 2003).   

 

The principal challenge in automated analysis of sidechain resonances is 

incompleteness in experimental peak lists generally available for this task.  Most published 

efforts in automating sidechain resonance assignments (Bartels, et al., 1997, Coggins and 

Zhou, 2003, Hyberts and Wagner, 2003) focus on HCCcoNH-TOCSY (Grzesiek, et al., 1993 

, Logan, et al., 1992, Montelione, et al., 1992), and use statistical comparisons to 13C 

sidechain resonance values of amino acid residues to assign the chemical shifts.  These HN-

detected 13C-13C TOCSY spectra are simple to interpret, but are often quite incomplete.   

Generally, no single spectrum has all side chain carbon resonances due to differences in 
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TOCSY transfer efficiencies for short chain and long chain amino acids, although more 

complete data can sometimes be obtained by co-adding spectra recorded with different 

isotropic mixing times (Celda and Montelione, 1993).  While fairly complete HCCcoNH-

TOCSY data can sometimes be obtained for proteins of < 10 KDa, and analyzed 

automatically with published methods, relaxation effects generally prevent the experiment 

from working well with larger proteins unless they are partially deuterated  (Farmer and 

Venters, 1995, Gschwind, et al., 1998, Lin and Wagner, 1999).  For these reasons, a robust 

approach for automated sidechain assignments should utlize HCCcoNH-TOCSY recorded 

with multiple mixing times, as well as other data such as HCCH-COSY (Bax, et al., 1990, 

Ikura, et al., 1990, Kay, et al., 1990 ) and/or HCCH-TOCSY (Bax, et al., 1990, Fesik, et al., 

1990) 

 

Resonance Assignment Validation Software 
 

As with peak picking, quality assessment of resonance assignments is crucial for robustness 

in later steps of the automated NMR analysis.  For this purpose, we have developed a set of 

computer utilities called the Assignment Validation Software (AVS) suite (Moseley, et al., 

2004) for rigorously evaluating and validating a set of protein resonance assignments before 

submission to the BMRB and/or use in subsequent structure and/or functional analysis, 

without the need of a 3D structure. They serve the purpose of providing strict consistency 

checks for detecting possible errors and identifying ‘suspicious’ assignments that deserve 

closer scrutiny prior to NOESY spectral analysis and 3D structure generation.  
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AutoStructure - Automated Analysis of NOESY data 

One of the principle goals of automated structure determination programs involves iterative 

analysis of multidimensional NOESY data. Several fully automated heuristic approaches for 

NOESY interpretation and structure calculation have been developed, including NOAH 

(Mumenthaler and Braun, 1995, Mumenthaler, et al., 1997), ARIA(Nilges, 1995, Nilges, et 

al., 1997), CANDID (Herrmann, et al., 2002), AutoStructure (Huang, et al., 2003), a self-

consist constraint analysis method implemented in XPLOR (Kuszewski, et al., 2004) and 

other generally less developed programs (Adler, 2000, Grishaev and Llinas, 2002, Gronwald, 

et al., 2002). The NOAH, ARIA, and CANDID programs utilize an iterative top-down data 

interpretation approach, having the following steps in common: i) Ambiguous proton-proton 

interactions from unassigned NOESY cross peaks, together with unambiguously assigned 

proton-proton interactions are incorporated into structure calculations and generate a new set 

of model structures; ii) ambiguous proton-proton interactions are iteratively trimmed using 

the resulting model structures if they are far apart in the intermediate model structures. One 

key difference between NOAH and ARIA/CANDID is how ambiguous peaks are converted 

into distance constraints: NOAH creates an unambiguous constraint for each ambiguous 

proton-proton interactions while ARIA/CANDID uses an ambiguous constraint strategy 

(Nilges, 1995, Nilges, et al., 1997) which only generates one ambiguous distance constraint 

for each ambiguous peak.  

 

AutoStructure (Huang, et al., 2003) uses a iterative bottom-up topology-constrained 

approach to analyze NOE peak lists and generate protein structures. AutoStructure first 
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builds an initial fold based on intraresidue and sequential NOESY data, together with 

characteristic NOE patterns of secondary structures, including helical medium-range NOE 

interactions and interstrand β-sheet NOE interactions, and unique long-range packing NOE 

interactions based on chemical shift matching and symmetry considerations. Unassigned 

NOESY cross peaks are not used in structure calculations. Additional NOESY cross peaks are 

iteratively assigned using intermediate structures and the knowledge of high-order topology 

constraints of α-helix and β-sheet packing geometries. This protocol, in principal, resembles 

the methodology that an expert would utilize in manually solving a protein structure by 

NMR. The program AutoStructure has been combined with the structure generation programs 

DYANA(Guntert, et al., 1997) or XPLOR/CNS(Brunger, 1992, Brunger, et al., 1998). 

  

The control-flow of AutoStructure 

The first step of AutoStructure (Fig. 3) is to match the chemical shifts from the NOESY peak 

list with the chemical shifts from the resonance assignment table using a loose match 

tolerance ∆1 (typical values are 0.05 ppm for 1H and 0.5 ppm for 13C or 15N). Aliased peaks 

can be directly matched to unaliased chemical shifts; there is no need for manually unfolding 

aliased peaks or generating aliased chemical shifts. AutoStructure builds an ambiguous 

distance network (GANOE) from the chemical shift matching, in which nodes represent protons 

from resonance assignment table, and edges represent NOE cross peaks linking all possible 

matched proton pairs. The rest of the steps of AutoStructure involve building a heuristic 

subgraph (HGNOE) from GANOE, which is as close to the true distance network (representing 

the true 3D structures) as possible.  
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In step 2, HGNOE is initialized using all well-matched (within a tighter tolerance ∆2) 

NOE-linked proton pairs that are connected by only two-, three-, or four- covalent bonds 

(Wuthrich, et al., 1983), or belong to one of the HαHN(i,i+1), HβHN(i,i+1), or HNHN(i,i+1) 

sequential NOE connections, commonly observed in protein NOESY spectra.(Billeter, et al., 

1982) These close proton pair connections are anticipated from the amino acid sequence of 

the protein. A similar approach of reliably finding identifiable intraresidue and sequential 

NOESY peaks is often used by experts in the process of manual analysis of NOESY data. At 

this step, AutoStructure also attempts to minimize site-specific chemical shift differences 

between resonance assignment table and the NOESY peak list, due to interspectral variations 

of temperature and sample conditions. If proton hi is involved in at least three NOE 

interactions (degree of vertex hi ≥ 3), its resonance frequency δ(hi) in the refined resonance 

assignment list R′ is updated with the median value derived from these linked NOE cross 

peaks. Match tolerances (∆1) for those protons with refined chemical shifts are set to a 

narrower tolerance and linking edges with large mismatches resulting from these protons with 

updated chemical shift values are removed from GANOE. This step simulates the expert 

analysis process of refining chemical shift values to be used in NOESY analysis from the 

frequencies of interpreted NOESY cross peaks.  

  

After refining the resonance assignment table with intraresidue NOESY data, 

AutoStructure identifies helices and β-sheets, including inter-strand alignments, by 

discovering patterns of NMR data that characterize secondary structures. This part of the 
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algorithm uses chemical shift index (CSI) values,(Wishart and Sykes, 1994)  3J(HN-Hα )  scalar 

coupling data,(Wuthrich, 1986)  and characteristic NOE contact patterns. These NOE contact 

patterns, characteristic of canonical secondary structures, are identified in GANOE and then 

added into the HGNOE heuristic distance network using constraints implied by unique features 

of these secondary and tertiary structures already identified by the NMR data. At the same 

time, edges that represent linked proton pairs which are inconsistent with the geometries of 

identified secondary structures are removed from GANOE. In these ways, both local and long-

range constraints indicated by the secondary structure topology are used to further build 

HGNOE from GANOE prior to the actual structure generation process.  

 

At the end of Step 2, AutoStructure identifies unique NOE connections (h1, h2, p) with 

frq(p) = 1 from GANOE and selectively adds into HGNOE those that are supported by a large 

number of potential interresidue contacts in a contact map generated from the GANOE network 

that has been interpreted to this point. A well-matched NOE-linked proton pair (h1, h2, p) is 

identified as a unique connection if the number of possible proton-proton interactions linked 

to the peak is unique [frq(p) = 1]. At this point, symmetry features of multidimensional 

NOESY spectra are also considered in order to resolve ambiguities due to chemical shift 

degeneracy for peaks with frq(p) > 1. Well-matched symmetric NOE-linked proton pairs (h1, 

h2, p1) and (h2, h1, p2) (|δi-δ(hi)| < ∆good
i, |δ1(p1)-δ2(p2)| < ∆sym, and |δ1(p2)-δ2(p1)| < ∆sym) 

are also identified as unique connections if, in the subgraph of GANOE which consists of only 

symmetric NOE-linked proton pairs, frq(p1) = frq(p2) = 1.  
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In Step 3, AutoStructure constructs protein model structures. The program generates 

distance constraints directly from HGNOE by calibrating the peak’s intensities assuming a 

simple two-spin approximation and binning them into upper-bound distance classes as 

described by Wüthrich and co-workers (Mumenthaler, et al., 1997, Wuthrich, 1986, Wuthrich, 

et al., 1983). Dihedral angle constraints are generated from local NOE and scalar coupling 

data using the conformational grid search program HYPER.(Tejero, et al., 1999)  Hydrogen 

bond distance constraints are identified based on the observation of helix and β-sheet NOE 

contact patterns, together with analysis of amide hydrogen exchange data and 3D structures 

when available.(Wuthrich, 1986) Potential cis-peptide bonds [i.e. Hα-Hα(i, i+1) ∈ HGNOE, and 

Hα-HΝ(i, i+1) ∉ HGNOE or Hα-Hδ(i, Pro(i+1)) ∉ HGNOE] and disulfide bonds (i.e. Hβ-

Hβ(Cys(i), Cys(j)) ∈ HGNOE ) are identified and reported to the user for expert validation. 

After validation, these special structural features are manually added into the constraint list. 

AutoStructure generates input constraint lists suitable for either XPLOR/CNS or DYANA for 

protein structure generation calculations. Structures are usually generated using a coarse-

grain parallel calculation strategy on a Linux cluster, although the program can also be run on 

a single processor system, such as a Linux-based laptop computer.   

  

In Step 4, a set of N model structures that best satisfy the resulting constraints is used to 

evaluate and refine the self-consistency of HGNOE. First, distances (of the sum of inverse 

sixth powers of individual degenerate proton-proton distances) between all NOE-linked 

proton pairs of HGNOE are calculated. Proton pairs with internuclear distances that violate the 

corresponding constraints by greater than dviomin in all of these N initial structures are 
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removed from HGNOE distance network. The resulting HGNOE is then used to regenerate 

another set of 3D model structures, which are again used for self-consistency analysis. This 

process of identifying inconsistent constraints within HGNOE by 3D structure generation and 

analysis of consistent violations is repeated until no more such inconsistent proton pair 

interactions remain in HGNOE.  

 

The resulting HGNOE distance network and its corresponding model structures are 

considered to be self-consistent and are subsequently used as templates to refine and expand 

HGNOE. First, AutoStructure analyzes the topology of the initial or intermediate structures, 

and trims GANOE down based on topology constraints implied by helical-packing and β-sheet 

packing geometries based on the “ridges into grooves model”,(Chothia, 1984, Chothia, et al., 

1981, Cohen, et al., 1982, Janin and Chothia, 1980). Next, AutoStructure further expands 

HGNOE by adding NOE-linked proton pairs from GANOE that are well supported by the 

intermediate 3D structures. During this process, HGNOE is further refined by removing any 

NOE assignments to long-range interactions associated with “orphan contacts” that may have 

evolved in the structure evolution process. Step 3 and 4 are repeated several times (typically 9 

times) to iteratively refine the resulting structures. During this process, AutoStructure 

continues to refine the resonance assignment table using the resulting self-consistent HGNOE. 

  

Description of input data for AutoStructure 

AutoStructure uses the following input data: i) protein amino acid sequence and a list of 

resonance assignments (set R); ii) a list of the multidimensional (i.e. 2D, 3D, or 4D) NOESY 
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cross peak frequencies (which may be aliased) and intensities (set NOE); iii) a list of scalar 

coupling constant data (optional); iv) a list of slow amide 1H exchange data (optional); and v) 

other manually analyzed constraints when available, such as residual-dipolar-coupling (RDC) 

(Tjandra and Bax, 1997), disulfide-bond, and dihedral-angle (Cornilescu, et al., 1999) 

constraint data. NOESY peak lists are generated using third-party automatic spectrum peak-

picking programs, usually followed by some manual editing. Dimeric proteins can also be 

analyzed when interchain NOESY cross peak data are available from X-filtered NOESY 

experiments (Clore, et al., 1994), as demonstrated for coil-coil helix dimers.(Greenfield, et 

al., 2001, Greenfield, et al., 2003)    

 

Quality control issues of input data for Autostructure 

1. Requirements for resonance assignment table 

AutoStructure uses a chemical shift index method(Wishart and Sykes, 1994) for secondary 

structure analysis and therefore requires accurate chemical shift referencing for Cα, Cβ and 

Hα resonances. This chemical shift index method relies on the use of the recommended 

IUPAC chemical shift referencing method with DSS as the reference compound. High quality 

AutoStructure calculations require the input resonance assignment table to be more than 85% 

complete. For each aromatic residue, at least one aromatic side chain proton should be 

assigned in order for AutoStructure to define its ring packing. 

 

2. Requirements for NOE peak lists  

Peak lists do not have to be perfect. AutoStructure can handle the presence of artifactual 
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peaks and incompleteness; however, inaccurate or imprecise peak picking can considerably 

limit the performance of the program. Intense solvent lines, ridges and/or sinc wiggles should 

be manually inspected and remove from the peak lists. Many NOE peaks may overlap with 

solvent lines and become hard to peak pick. However, collecting 3D 13C-NOESY in D20 can 

minimize such problem. AutoStructure can handle aliased/folded peaks. . High quality 

AutoStructure calculations require the input peak list (set NOE) to contain at least 90% real 

cross peaks.     

   

3. Requirements for matching the NOE peak lists and resonance assignments  

AutoStructure calculates an M-score which estimates the percent of predicted conformation-

independent two- and three-bond connected NOE-linked proton pairs that are missing from 

the NOE peak lists. Four factors can contribute to high M scores: i) misalignment between 

chemical shifts from NOE peak lists and the resonance assignment table; ii) significant 

differences in the digital resolutions between chemical shifts from NOE peak lists and the 

resonance assignment table; iii) poor quality of NOE peak lists; iv) incorrect resonance 

assignments. A high M score (i.e. > 25%) suggests that at least one of the input data sets (R 

and/or NOE) are of inadequate quality and need to be improved. Those predicted two- and 

three-bond connected NOE-linked proton pairs missing from the NOE peak lists are reported 

to aid the user in improving the corresponding chemical shift assignments, and/or identifing 

the expected NOESY cross peaks in the corresponding NOESY spectrum.  

 

 AutoStructure requires that all NOESY spectra be accurately referenced relative to the 
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values of chemical shifts reported in the resonance assignment table. For each frequency 

dimension, the software computes the overall average chemical shift match difference from 

these predicted NOE-linked proton pairs. Consistent spectral referencing is achieved using 

these differences as global reference correction factors for the target spectrum, providing a 

tighter match between NOE peak lists and resonance assignment table, and allowing the use 

of smaller matching tolerances for further NOESY interpretation. 

 

Using AutoStructure 

AutoStructure is implemented in a combination of C/C++ programs, Perl programs, and shell 

scripts. It can be run in batch model or using the graphical user interfact (GUI). The 

AutoStructure distribution on Linux platform is freely available to academic users at 

http://www-nmr.cabm.rutgers.edu. AutoStructure analyzes NOEs and generates constraints 

for structure calculations. At least one of the structure calculation programs XPLOR/CNS, 

DYANA is required to be installed before running AutoStructure for iterative NOESY data 

analysis.  

  

AutoStructure can automatically generate constraints for XPLOR/CNS, DYANA 

structure calculations. Manual constraints, including RDCs can also be used in structure 

calculations and the resulting structures used for iterative analysis of AutoStructure; however, 

individual manual constraints are not directly used in the AutoStructure analysis. Initial 

structure model or homology models can be used as input for AutoStructure analysis, which 

can indentify NOE interactions that are consistent with the input model.     

 

http://www-nmr.cabm.rutgers.edu/
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AutoStructure can also be used at varies stage of resonance assignments for validation. 

For example, given backbone resonance assignments and 3D 15N-NOESY peak lists, 

AutoStructure can assign all backbone related intra and sequential NOEs and identify all 

secondary structure elements. These backbone related intra and sequential NOE 

connectivities are commonly used for cross-validation of backbone sequential connectivity 

derived from triple resonance methods. Given near complete backbone and side-chain 

resonance assignments and 3D HCCH-COSY peak lists, AutoStructure can assign all peaks in 

the 3D HCCH-COSY peaks for validation of the two-bond and three-bond connectivity of the 

side-chain resonances.  

 

Testing AutoStructure 

AutoStructure was developed and tested using several different experimental input data sets. 

For all test proteins, low rmsd’s were obtained across the final structures, which by 

conventional criteria are indicative of high-quality structure determinations. The 

AutoStructure program has been used in over a dozen protein structure 

determinations(Aramini, et al., 2004, Aramini, et al., 2003, Greenfield, et al., 2001, 

Greenfield, et al., 2003, Huang, et al., 2003, Makokha, et al., 2004, Ramelot, et al., 2003, 

Sahota, et al., 2004). Figure 4 shows AutoStructure results for the human basic fibroblast 

growth factor (154 amino acid residues), together with a comparison with the structure 

obtained by manual analysis of the same NMR data (Moy, et al., 1996) and by X-ray 

crystallography.  Figure 4 also presents a de novo structure determination for a homodimeric 
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33-residue-per-chain coiled-coil protein using AutoStructure (Greenfield, et al., 2001).  

 

Minimal Constraint Approaches to Rapid Automated Fold Determination 

Medium-accuracy fold information can often provide key clues about protein evolution and 

biochemical function(s). Extending ideas originally proposed by Kay and coworkers for 

determining low-resolution structures of larger proteins (Gardner, et al., 1997),  a largely 

automatic strategy has been developed for rapid determination of medium-accuracy protein 

backbone structures using deuterated, 13C-, 15N-enriched protein samples with selective 

protonation of side-chain methyl groups (13CH3) (Zheng, et al., 2003).   Data collection 

includes acquiring NMR spectra for automatically determining assignments of backbone and 

side-chain 15N, HN resonances, and side-chain 13CH3 methyl resonances. Conformational 

constraints are automatically derived using these chemical shifts, amide 1H/2H exchange, 

NOESY spectra, and residual dipolar coupling data. The total time required for collecting and 

analyzing such NMR data and generating medium-resolution but accurate protein folds can 

potentially be as short as a few days (Zheng, et al., 2003). 

 

Structure Quality Assessment Tools 

One of the most important challenges in modern protein NMR is to develop a fast and 

sensitive structure quality assessment measure which can evaluate the “goodness-of-fit” of a 

3D structure compared with its NOESY peak lists and indicate the correctness of its fold. 

This is especially critical for automated NOESY interpretation and structure determination 

approaches. One approach uses an NMR R-factor similar to that used in X-ray 
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crystallography, which often require computationally intensive, complete relaxation matrix 

calculations(Gonzalez, et al., 1991, Gronwald, et al., 2000, Zhu, et al., 1998). We have 

developed a set of quality scores Recall, Precision, F-measure (NMR RPF scores) from 

information retrieval to assess the global “goodness-of-fit”. These statistical RPF scores are 

quite rapid to compute, since NOE assignments and complete relaxation matrix calculations 

are not required, and are valuable in assessing protein NMR structure accuracy.  

 

The quality of an NMR structure is also defined by a number of structural parameters 

including fold and packing quality, deviations of bond lengths and bond angles from standard 

values, backbone and side-chain dihedral angle distributions, hydrogen-bond geometery, and 

close contacts between atoms. Currently there does not exist a single comprehensive structure 

validation program which takes all these structural parameters into account to evaluate the 

overall quality of the structure. However, a number of different individual structure quality 

software packages exist which report scores quantifying some key structural parameters, such 

as ProCheck_nmr (Laskowski, et al., 1996), WHAT IF(Vriend, 1990), PDBStat 

(Bhattacharya, et al.), Verify 3D (Eisenberg, et al., 1997), PDB Validation Software 

(Westbrook, et al., 2003), MAGE (Word, et al., 2000). In the NESG Consortium, we have 

developed an overall structure quality report which takes into account output from all of the 

programs mentioned above, and others, and evaluates their output based on a Z-Score which 

normalizes the results of all the software against a set of high-resolution X-ray crystal 

structures. This tool handles all data format conversions required to run the software 

mentioned above and presents the output as a series of easy to read reports and graphs for 
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one-step structure quality evaluation.  

 

An Integrated Platform for Automated NMR Structure Analysis 

Protein NMR spectroscopists depend on a number of software packages to facilitate the 

analysis of data.  For this reason, the computational challenge of solving a protein structure 

by NMR presents a formidable technical challenge to scientists.  While a number of software 

packages have been developed for the analysis of NMR data, a comprehensive solution for 

the complete automated analysis of NMR data from FIDs to three-dimensional structures is 

not yet available.  Users choose between a number of different software programs each 

specialized in a certain step of the structural determination process.  As a result, a dramatic 

learning curve exists for a scientist to become proficient enough with all the necessary 

software in order to do his or her job.  Furthermore, invaluable time is often wasted on trivial 

tasks such as preparing the output of one program to be usable for the next.  Also, inter and in 

some cases even intra laboratory data exchange becomes extremely difficult when people are 

using a number of different formats required by the various pieces of software available.  To 

add to this complexity, with data passing between so many sources organization quickly 

becomes a problem.  Precious data is often lost due to disorganization.  This disorganization 

can lead to irreproducible results and curb the development of future technologies. 

 

The CCPN effort (Fogh, et al., 2002) (http://www.bio.cam.ac.uk/nmr/ccp/) is 

attempting to address these problems in data organization and pipelining by developing a 

detailed data model to capture the complete NMR structure determination process.  The data 

 

http://www.bio.cam.ac.uk/nmr/ccp/


Methods in Enzymology - submitted 7.28.04, revised 7.30.04, revised 8.02.04  -32- 

model is not only a standard solution for NMR databases to be implemented under but also an 

application programming interface (API) to unify the development of future NMR software.  

The ANSIGv3.3 (Helgstrand, et al., 2000) spectral visualization software is an example of 

software developed over the CCPN data model. 

 

The SPINS (Baran, et al., 2002) software provides an alternative solution to the 

integration problem.  The SPINS data model is designed to easily accommodate any software 

available to the community.  Rather than designing a data model for the world to adopt, the 

SPINS data model is intended for internal use by SPINS as a means to easily integrate any 

software. The SPINS data model was designed to be compatible with the BMRB NMRStar 

format, thus ensuring compatibility with other public domain efforts. 

 

The current implementation of SPINS integrates several pieces of third party pieces of 

software (Fig. 5), presenting them as a single application to the user.  The SPINS software 

makes use of the following programs, (i) the SPINS (Baran, et al., 2002) database for storage 

and organization of raw FIDs, peak lists, chemical shift lists, constraint lists, 3D structures, 

and other intermediate results; (ii) AutoProc (Monleon, et al., 2002), a spectral referencing 

and processing script generating program; (iii) NMRPipe (Delaglio, et al., 1995) for 

executing multidimensional Fourier transformations using scripts generated by AutoProc; (v) 

NMRDraw (Delaglio, et al., 1995) spectral visualization software for evaluating spectral 

quality;  (vi) SPARKY (Goddard and Kneller, 2000) spectral visualization software, launched 

out of SPINS, for peak picking and interactive peak list editing; (vii) AutoPeak software 
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(Monleon, et al., 2002, Moseley, et al., 2001) for interspectral registration, automated peak 

list editing, and peak data validation; (viii) AutoAssign (Moseley, et al., 2001, Zimmerman, et 

al., 1997) automated backbone assignment software; (ix) Assignment Validation Suite 

software (AVS) (Moseley, et al., 2004), providing statistical and graphical tools for validating 

the quality of the assignments; and (x) AutoStructure, along with DYANA (Guntert, et al., 

1997), XPLOR-nih (Schwieters, et al., 2003) or CNS (Brunger, et al., 1998) to iteratively 

assign NOESY peak lists and generate 3D structures.  

 

The SPINS software provides an integrated process and user interface for using the 

software packages described above without having to worry about the numerous I/O 

complexities associated with data analysis using multiple software packages.  Furthermore, 

the process is warehoused by the underlying SPINS database, making it completely 

reproducible.  The completed process can be automatically exported in a standard format 

(NMRStar 3.1) for submission to the BMRB (Seavey, et al., 1991).  

 

Conclusions 

Recent developments provide automated analysis of NMR assignments and 3D structures. 

These approaches are generally applicable to proteins ranging from about 50 to 150 amino 

acids.   While progress over the last few years is encouraging, even for small proteins more 

work is required before automated structural analysis is routine.  In particular, general 

methods for automated analysis of sidechain resonance assignments are not yet well 

developed, though current efforts in this area are quite promising.  Moreover, little work has 
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focused on the specific problems associated with nucleic acid structures.  The critical area of 

quality assessment has evolved significantly over the last few years and involves evaluation 

of both intermediate and final peak lists, resonance assignments, and structural information 

derived from the NMR data.  However, while various resonance assignment and 3D structure 

“R factors” are beginning to be used, no community-wide consensus has been reached on 

how to evaluate the accuracy and precision of a protein NMR structure.  Despite these 

significant challenges, when good quality data are available, automated analysis of protein 

NMR assignment and structures is both fast and reliable.  Moreover, automation methods are 

beginning to have a broad impact on the structural NMR community.  
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Figure Legends 

 

Fig. 1.  Flowchart of the overall process of protein structure analysis from NMR data. 

 

Fig. 2.  Flowchart outlining the use of the RDpack. Steps required solely for the de novo 

implementation of RD NMR experiments are shown in red boxes, while steps required for 

rapid adjustment of parameter sets are displayed in green boxes. First, shaped pulses are 

generated by use of a shell scripts, and the power levels for pulsed field gradients are adjusted 

to the available hardware configuration (using the macro RD_gscale). Second, the 3D HCCH 

parameter set is updated by providing proton and carbon high power pulse widths, power 

levels and carrier positions. Execution of the macro 'RD_setup' transfers these parameters to 

the entire suite of RD experiments. Third, the 3D HACAcoNH parameter set is updated by 

providing nitrogen high power pulse width, power level and carrier position. These 

parameters are the transferred to nitrogen resolved RD experiments by use of RD_setup. 

Finally, the macro RD_1d starts the acquisition of the first FID of all 11 parameter sets, while 

also allowing rapid assessment of the relative sensitivity of the various experiments. 

 

Fig. 3.  The control-flow of AutoStructure. AutoStructure uses a bottom-up iterative 

approach. It has four major steps. Step 1 construct an ambiguous distsance network GANOE, in 

which all vertices represent protons and proton pairs are connected when their chemical shift 

values are matched with a NOE peak’s chemical shift values within a loose match tolerance. 

A heuristic HGNOE is initialized from GANOE at step 2. After HGNOE is initialized, an initial 

fold is generated at step 3. Step 4 iteratively refine HGNOE from the structures generated from 
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step 3.  

 

Fig. 4.  Results of automatic analysis of protein structures from NMR data. (a)  

Comparison of backbone structures of human basic fibroblast growth factor (FGF) 

determined by manual analysis of NMR data (PDB code 1bld), by automated analysis of the 

same NMR data using AutoStructure / XPLOR , or by X-ray crystallography (PDB code 

1bas). The superposition of 10 NMR structures of human basic fibroblast growth factor 

(FGF) computed by AutoStructure with XPLOR is also shown. Backbone conformations are 

shown only for residues 29 to 155, since the N-terminal polypeptide segment is not well 

defined in either the automated or manual analysis.  For this portion of the structure, the 

backbone r.m.s.d.’s within the families of structures determined by AutoStructure are ~0.7 Å 

and the backbone r.m.s.d. between the AutoStructure and the X-ray crystal structure or 

manually-determined NMR structures is ~0.8 Å. (b) Solution NMR structure of TM1bZip N-

terminal segment of human α-tropomyosin determined by AutoStructure with 

DYANA(Greenfield, et al., 2001).  The top panels show superpositions of backbone (left) and 

all heavy (right) atoms, respectively. Secondary structures are colored in red. The bottom 

panel shows ribbon diagrams of one representative structure.  

 

Fig. 5.   The Integrated SPINS Platform for Automated Analysis of NMR Data.  This figure 

depicts the flow of data through the SPINS software from raw FIDs to backbone assignments.  

(i) The raw FID data are housed in the SPINS database.  (ii) AutoProc queries the SPINS 

database for auto-referencing and processing of experimental data using NMRPipe.  (iii) 
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Sparky software used for manual peak picking and peak list editing.  (iv) AutoPeak software 

used to validate peak lists as well as prepare AutoAssign input. (v) AutoAssign software is 

used for automated backbone resonance assignments.  The SPINS platform also integrates 

AutoStructure software for NOESY data analysis, together with DYANA / CNS / XPLOR 

software for 3D structure generation and AutoQF software providing estimates of structure 

quality NMR RPF scores. 
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