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ABSTRACT: Metabolomics commonly relies on using one-
dimensional (1D) 1H NMR spectroscopy or liquid chromatog-
raphy−mass spectrometry (LC−MS) to derive scientific insights
from large collections of biological samples. NMR and MS
approaches to metabolomics require, among other issues, a data
processing pipeline. Quantitative assessment of the performance of
these software platforms is challenged by a lack of standardized
data sets with “known” outcomes. To resolve this issue, we created
a novel simulated LC−MS data set with known peak locations and
intensities, defined metabolite differences between groups (i.e., fold
change > 2, coefficient of variation ≤ 25%), and different amounts
of added Gaussian noise (0, 5, or 10%) and missing features (0, 10,
or 20%). This data set was developed to improve benchmarking of
existing LC−MS metabolomics software and to validate the updated version of our MVAPACK software, which added gas
chromatography−MS and LC−MS functionality to its existing 1D and two-dimensional NMR data processing capabilities. We also
included two experimental LC−MS data sets acquired from a standard mixture andMycobacterium smegmatiscell lysates since a
simulated data set alone may not capture all the unique characteristics and variability of real spectra needed to assess software
performance properly. Our simulated and experimental LC−MS data sets were processed with the MS-DIAL and XCMSOnline
software packages and our MVAPACK toolkit to showcase the utility of our data sets to benchmark MVAPACK against community
standards. Our results demonstrate the enhanced objectivity and clarity of software assessment that can be achieved when both
simulated and experimental data are employed since distinctly different software performances were observed with the simulated and
experimental LC−MS data sets. We also demonstrate that the performance of MVAPACK is equivalent to or exceeds existing LC−
MS software programs while providing a single platform for processing and analyzing both NMR and MS data sets.

■ INTRODUCTION
Metabolomics is the quantitative analysis of small molecule
metabolites present in biological samples.1 These metabolites
include cofactors, substrates, and end products of enzymatic
reactions, which play pivotal roles in cellular processes and are
found in diverse tissues, cell lysates, and biofluids such as
serum, saliva, and urine.2−4 Collectively, these metabolites
constitute an organism’s metabolome, which can comprise
thousands of distinct compounds.5 Given the sheer diversity
and abundance of metabolites in various biological samples,
the metabolome serves as a robust proxy for understanding a
wide variety of biological processes and disease states.6 For
instance, the abundance of specific metabolite biomarkers has
been correlated with Parkinson’s disease, oral cancers, diabetes,
heart disease, and an assortment of other human ailments.7−10

Thus, quantifying metabolic biomarkers is critical for decipher-
ing disease mechanisms, formulating diagnostic and prognostic
tests, and propelling drug discovery and development.11−15

Achieving these and other laudable goals is critically dependent

on the complete and thorough characterization of the
metabolome for a biological system. However, realizing these
objectives hinges on comprehensively characterizing an
organism’s metabolome. A significant challenge in this
endeavor is identifying and quantifying every detectable
metabolite in a sample. This task demands a synergy of
advanced analytical techniques and specialized software for
data processing and statistical analysis.

Liquid chromatography−mass spectrometry (LC−MS) is
the most widely used analytical platform for metabolomics
studies because of its high sensitivity and rapid through-
put.16−18 Despite the popularity of LC−MS, spectral
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processing, and metabolite annotation follow a complex
procedure of spectral alignment, batch correction, peak
picking, and metabolite feature grouping, selection, and
analysis. Spectral feature selection requires further investigator
decision points such as identifying an acceptable minimal fold
change (FC ≥ 2−3),19−21 coefficient of variance (CV <
30%),19,22 p-values from pairwise comparisons (p < 0.05−
0.01),19,23 importance of each variable (VIP ≥ 1),24−27 and a
missing value threshold (≥80%).28,29 Further processing of the
data matrix requires missing value imputation, normalization,
and scaling. The scientific literature contains multiple
algorithms for each processing step, creating numerous
decision forks and a complex array of possible data processing
pipelines dependent on the data type. Consequently, most
metabolomics software has only been developed for a single
data type, like MS-DIAL30 and XCMSOnline31 for LC−MS,
which hinders the multiplatform approach needed to improve
the coverage of the metabolome.32

The diversity and proliferation of metabolomics-related
software is a result of the complexity of the data and the data
processing steps. Still, it may also result from insufficient
guidance from community-certified protocols. For example,
despite ongoing efforts,33−35 benchmark data and community
accepted performance standards are lacking, which impedes
the further development, assessment, validation, and adoption
of a specific data processing pipeline and its underlying
software. Benchmarking performance is critical for developers
to fine-tune an algorithm’s behavior, optimize its outcomes,
and for end-users to decide if a given software package fits their
analytical needs and expectations and performs reliably.
Despite the straightforward utility and need, the metabolomics
community currently lacks standardized benchmarks that are
universally employed. This is especially problematic for LC−
MS software development given the large assortment of
instrument vendors, experimental protocols, and chromatog-
raphy column parameters, in addition to known issues with
batch variability, high baseline noise, and missing peaks. These
data imperfections originate from biological and technical
sources and are independent of resolution and sensitivity.

Existing metabolomics data sets are often utilized with
previously established results to benchmark novel software
performance. Reanalyzing these data sets with new software
can directly compare them with earlier findings. However, this
approach is inherently flawed since it assumes the original

analysis was correct and complete. Since the data’s ground
truth is unknown, it is impossible to determine the actual
accuracy and precision of a new metabolomics software
package. Furthermore, it is unlikely the benchmark data set is
broadly accessible by the entire scientific community. More
often, separate data sets are used by different groups to
evaluate software, which prevents an accurate comparison of
performance across groups or software packages. Broadly
accessible simulated metabolomics data would directly address
these issues and facilitate software development. Simulated
data has ground truth, with each peak’s waveform, spectral
noise, metabolite identity, and concentration fully defined.5

The complete knowledge of simulated spectra properties
enables a straightforward assessment of algorithmic perform-
ance. Spectral features selected by an algorithm can be directly
compared to the known composition of metabolites, allowing
calculations of false positives (FP), false negatives (FN),
sensitivity, selectivity, and other measures of accuracy and
precision. Ground truth understanding becomes especially
useful when simulated data sets incorporate noise and missing
values to mimic the qualities of real spectra. Reducing spectral
quality enables stress testing of peak picking, imputation,
normalization, and other methods commonly employed in
metabolomics data processing. In this manner, simulated data
provide feedback on an algorithm’s sensitivity to these quality
factors.8 These laudable goals cannot be achieved with
experimental data since missing values and noise are not
easily tunable factors. While there are clear advantages to
simulated data for assessing software performance, there is still
inherent value in using experimental data. It is challenging for
simulated data sets to capture all the unique characteristics and
variability of a real spectrum, especially distributed over a data
set comprised of multiple replicate spectra. Instead, as
illustrated herein, a preferred approach incorporates both
simulated and experimental data in the software evaluation,
capitalizing on the strength of both techniques. Despite the
clear advantages of using simulated and experimental LC−MS
data to assess and validate metabolomics software, the field
lacks a data set developed for benchmarking.

In this work, we created LC−MS data sets that combine
both simulated and experimental data for algorithm validation
and to assess the performance of our MVAPACK toolkit
relative to the existing MS-based metabolomics software
packages MS-DIAL and XCMSOnline. We have created nine

Table 1. Summary of Raw Simulated Datasetsa

data set
name

feature
countb

significant
featuresb

non-significant
featuresb

median
FC

mean % CV
(%)

% noise
(%)

number missing
featuresc

% missing featuresc
(%)

SD1 2673 935 1738 8.32 31.42 0 0 0
SD2 2673 935 1738 8.32 31.42 5 0 0
SD3 2673 935 1738 8.32 31.42 10 0 0
SD4 2673 935 1738 8.43 40.09 0 1870 10
SD5 2673 935 1738 8.26 40.06 5 1870 10
SD6 2673 935 1738 8.40 40.09 10 1870 10
SD7 2673 935 1738 8.37 46.81 0 3740 20
SD8 2673 935 1738 8.32 46.81 5 3740 20
SD9 2673 935 1738 8.27 46.81 10 3740 20

aEach set contains the same metabolite features, with baseline noise and metabolite features having been added and removed, respectively. The
quality of each subsequent data set is degraded such that the quality of SD1 is the highest and the quality of SD9 is the lowest. All statistics are
presented for the data sets prior to imputation. Significant compounds are those for which FC ≥ 2.0 and % CV ≤ 25%. bFeature counts per
replicate in the data set, which comprises 10 replicates for each of the 2 groups (20 replicates in total). cFeatures and percent missing features
across the entire data set. Only significant metabolite features are removed from the data set for a total of 18,700 features (935 features × 20 total
replicates).
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simulated LC−MS data sets with varying quality and noise
levels using metabolite feature locations derived from the
VIMMS so f twa re package h t tp s : //g i thub . com/
glasgowcompbio/vimms20 and its associated database. We
also acquired an experimental LC−MS data set using a
standard mixture that captures real spectral quality while
minimizing data complexity and simplifying analysis. Both data
sets have a set of known peaks that enables an assessment of
the performance of the MVAPACK, MS-DIAL, and XCMSOn-
line software. The LC−MS data set also contains a second
experimental LC−MS data set collected onMycobacterium
smegmatiscell lysates. This data set captures the realistic
characteristics of a typical LC−MS metabolomics experiment
and enables an evaluation of relative software performance
without ground truth. We anticipate that our simulated and
experimental LC−MS data sets will assist and facilitate further
software and method development in metabolomics. We also
present an updated MVAPACK version to analyze nuclear
magnetic resonance (NMR) and LC−MS data. We identified
several standard algorithms for LC−MS peak processing from
the scientific literature and developed functions to execute
these routines within the MVAPACK software platform. In this
manner, MVAPACK is the first software toolkit for processing
one-dimensional (1D) 1H NMR, two-dimensional (2D) NMR,
and LC−MS data sets.

■ MATERIALS AND METHODS
Summary of Study Design. A synthetic LC−MS data set

was created to simulate a metabolomics study of two groups
(G1 and G2) with ten replicates per group (Table 1) and 7540
individual peaks with well-defined and high-resolution wave-
forms. Gaussian curves were fitted to each peak to idealize the
data further and enable later manipulation (Figure 1A).
Metabolites that differentiate G1 from G2 had a fold change
(FC) greater than two and a CV less than or equal to 25%
(Figure 1B). Different amounts of added noise (0, 5, or 10%)
(Figure 1C) and missing features (0, 10, or 20%) (Figure 1D)
were applied to the individual spectra to create a final data set
comprising a total of 9 sets of LC−MS spectra. Two additional
experimental LC−MS data sets were collected on a Waters
(Milford, MA) nanoACQUITY UPLC and XEVO G2-XS
QToF system from a standard mixture data set (Table 2) and a
biological data set derived fromM. smegmatiscell lysates. The
simulated and experimental LC−MS data sets were then used
to validate and benchmark the gas chromatography (GC)/
LC−MS data processing pipeline (Table S1) implemented
into our MVAPACK36 metabolomics toolkit (http://bionmr.
unl.edu/mvapack.php) and to compare the performance of
MVAPACK to MS-DIAL 4.7030 and XCMSOnline,31 which
are popular metabolomics software packages. Peaks were
further filtered by intensity (>100,000 counts) for the standard
data set. A detailed description of the experimental protocols
can be found in the Supporting Information and on the
project’s git page (https://git.unl.edu/powers-group/mvapack-
lcms-supplemental).

■ RESULTS
LC−MS Data Processing Pipeline Added to MVA-

PACK. LC−MS processing functionality was successfully
implemented into MVAPACK, which enables end-to-end
analysis of MS-metabolomics data. In keeping with the existing
MVAPACK package, LC−MS functionality is modular and

provides users with multiple options for each processing step.
40 Octave functions (Table S1) were added to MVAPACK to
process LC−MS data sets. The functions comprise the
following general capabilities: (i) data input/output (11
functions), (ii) peak alignment (1 function), (iii) feature
identification (11 functions), (iv) normalization (4 functions),
(v) imputation (4 functions), and (vi) general data processing
(9 functions). Acceptable input formats include mzML,
mzXML, and proteoWizard.txt formats. Peaks are identified
using Gaussian wavelet or Savitzky−Golay filters, and align-
ment is achieved via an RMSD approach or the ObiWarp
method.31,37 Deisotoping is performed to aggregate the
individual peaks into metabolite features. Aggregated matrices
are normalized through maximum intensity, quantile, or p-
norm methods, and chemically interesting metabolite features
are identified through ANOVA, maximum FC, and maximum
variance filtration methods. Individual LC−MS processing
steps combine to form an analysis pipeline that interfaces with
existing MVAPACK modeling functionality. MVAPACK

Figure 1. An overview of the construction of the simulated data set.
(A) An example of idealized isotope waveforms. (B) The application
of statistically significant multipliers to create two groups of
metabolite features, G1 (red) and G2 (green), which vary significantly
between groups but have low variance within each group. (C) The
application of 5% (dark gray) and 10% (black) baseline noise to the
original waveform (light gray). (D) Illustration of the removal of
features across G1 (red) and G2 (green) replicates to approximate
data imperfections common to experimental data sets.

Table 2. Summary of Standard Mixture Dataset

compound
stock

(μg/mL)
group 1
(ng/μL)

group 2
(ng/μL)

group 3
(ng/μL)

acetaminophen 10 1 0.5 0.25
caffeine 1.5 0.15 0.075 0.0375
sulfaguanidine 5 0.5 0.25 0.125
sulfadimethoxine 1 0.1 0.05 0.025
val-tyr-val 2.5 0.25 0.125 0.0625
verapamil 0.2 0.02 0.01 0.005
terfenadine 0.2 0.02 0.01 0.005
leucine-enkephalin 2.5 0.25 0.125 0.0625
reserpine 0.6 0.06 0.03 0.015
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provides processing capabilities for LC−MS, 1D 1H NMR, 2D
1H−13C/15N/31P NMR, and multiplatform data sets. The
process of generating an LC−MS feature matrix and an
example MVAPACK script are detailed in Figure 2A,B,
respectively. MVAPACK was used to produce PCA models
from the simulated (Figure 3A), standard mixture (Figure 4A),
andM. smegmatismetabolomics (Figure 5A) LC−MS data sets.
The MVAPACK PCA score plots are shown in Figures 4A and
5A compared to plots generated by MS-DIAL (Figures 4B and
5B) and XCMSOnline (Figures 4C and 5C).
Validation of LC−MS Data Processing with Simulated

Data Set. The LC−MS functionality added to MVAPACK
was benchmarked against XCMSOnline and MS-DIAL using
the simulated LC−MS data set with various levels of added
noise and missing metabolite features. The missing features
corresponded to 0, 10, or 20%. Similarly, the added noise
amounted to 0, 5, or 10%. The simulated spectra provided a
ground truth corresponding to the 935 known statistically
distinct metabolite peak features and an idealized PCA model
for comparison. Each software platform performed only the
initial feature matrix generation due to potential differences in
matrix processing algorithms. The PCA algorithm imple-
mented into MVAPACK was previously shown to agree with

the SIMCA-P+ equivalent.36 The raw feature matrix was
independently generated for the nine conditions using the
three software platforms and each ground truth matrix. To
ensure a fair comparison of software performance, feature
normalization, filtration, and PCA model calculations were
executed by the same MVAPACK script regardless of the
software (see Supporting Information).

Software performance was evaluated by comparing the
metabolite features identified by MS-DIAL, MVAPACK, or
XCMSOnline to the ground truth. Selected metabolites can be
either true positives (TP) when the features exist in the ideal
matrix or FP when they are absent. Additionally, a FN is an
ideal metabolite feature with no counterpart in the matrix
selected by the software platform. The TP, FP, and FN results
were then used to calculate sensitivity (Supporting Information
eq 3), positive predictive value (PPV) (Supporting Informa-
tion eq 4), and F1 score (Supporting Information eq 5) values.
Overall, higher TP rates, sensitivity and PPV percentages, and
F1 scores are desirable, while lower FP and FN rates are
desirable. The total number of metabolite features identified,
the number of TP, FP, and FN peaks, and the calculated
sensitivity, PPV, and F1 score values are listed in Table 3 for
each simulated data set and software platform. Initially, we

Figure 2. An overview of the MVAPACK LC−MS processing workflow (A) generic workflow for LC−MS spectra data processing and the
corresponding (B) MVAPACK Octave commands. Each processing step is handled with only a few lines of octave code and the example script can
handle a large volume of experimental replicates (see Supporting Information).

Figure 3. Comparison of software performances based on PCA models created from the simulated LC−MS metabolomics data set. (A) An
example of a PCA scores plot generated by the new LC−MS-based functions implemented into the MVAPACK toolkit. The R2 and Q2 scores are
0.754 and 0.725, respectively. (B) A compilation of the cumulative R2 scores for the first two components of the PCA models produced by
MVAPACK, MS-DIAL, and XCMSOnline as a function of increased noise and the percentage of missing features. The first bar in each plot
corresponds to the cumulative R2 scores for the ideal feature matrix representing the ideal result for each data set. Please note that the cumulative
R2 score decreases for the ideal matrix according to the increase in the number of missing features. (C) The cumulative R2 scores for the first two
components of the PCA models produced by MVAPACK, MS-DIAL, and XCMSOnline are plotted versus sensitivity.
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used the default peak-picking parameters when processing the
synthetic data with XCMSOnline and MS-DIAL (Tables S2−
S5). However, we observed reduced peak picking performance
for both software compared to MVAPACK. We performed a
simple grid search for the optimal peak processing parameters
of XCMSOnline and MS-DIAL on the 0% missing and noise
data set to improve their performance on the synthetic data set.
The parameter set with the highest sensitivity was then applied
to the other eight versions of the simulated data set (Tables S6
and S7). For XCMSOnline, the ppm peak width and signal-to-
noise threshold were optimized to 30 and 12, respectively. For
MS-DIAL, the minimum peak height and mass width were
optimized to 100,000 counts and 0.05 Da, respectively. We
compared the performance of both XCMSOnline and MS-
DIAL using their respective optimized parameters for the
simulated data set.

Overall, MVAPACK compared well, and in some cases
outperformed, both MS-DIAL and XCMSOnline in the
analysis of the simulated data sets. None of the software
platforms correctly identified all the 935 known and statisti-
cally distinct metabolite features in the simulated data set. The
best outcome was 735 out of 935 features produced by
XCMSOnline when the missing features and added noise were
0%. The worst outcome was 151 out of 935 peaks produced by
optimized MS-DIAL parameters at 20% missing peaks and
10% added noise. The average number of TP metabolites
detected was 404 ± 164, in which XCMSOnline and
MVAPACK were consistently above the average at 498 ±
127 and 509 ± 15, respectively. MS-DIAL was consistently
below the average at 206 ± 69. Of course, the outcomes for the
FN features were simply the inverse of the TPs. The average
number of FNs was 531 ± 164, with both XCMSOnline and

MVAPACK consistently below this average at 437 ± 127 and
426 ± 15, respectively. Again, MS-DIAL was consistently
above the average at 729 ± 69.

The average number of FP features detected was 231 ± 128,
in which XCMSOnline and MVAPACK were consistently
below the average at 139 ± 121 and 173 ± 9, respectively. MS-
DIAL was significantly above the average at 380 ± 120. Thus,
XCMSOnline and MVAPACK performed similarly, having
overall stronger performances than MS-DIAL in FP, TP, and
FN counts. Despite a lack of optimization, MVAPACK
generally performed above the average, slightly better than
XCMSOnline. MVAPACK’s performance remained consistent
despite any noise increase or missing metabolite features. This
is evident by the relatively small standard deviations observed
for all the values summarized in Table 3. Under all these
conditions, the performance of MS-DIAL and XCMSOnline
deteriorated proportional to the decay in the quality of the
simulated data.

The difference in MS-DIAL, MVAPACK, and XCMSOnline
performance was further evident by comparing the sensitivity
and PPV values in Table 3. The average sensitivity and PPV
values were 43% ± 18% and 62% ± 20%, respectively. Again,
MVAPACK performed better than average in both categories,
with an average sensitivity of 54% ± 2% and an average PPV of
74% ± 2%. Conversely, MS-DIAL yielded both a low PPV of
35% ± 2% and a low sensitivity of 22% ± 7%, and
XCMSOnline produced a better-than-average sensitivity of
53% but a significantly higher PPV of 78% ± 4%. Given the
large variance between the sensitivity and PPV values for the
three software platforms and the difficulty in discerning which
parameter is more important, F1 scores (Supporting
Information eq 5) were also calculated. The average F1

Figure 4. Comparison of software performances based on PCA models created from the standard mixture LC−MS data set. PCA scores plot
generated by (A) MVAPACK (R2 = 0.882, Q2 = 0.847), (B) MS-DIAL (R2 = 0.924, Q2 = 0.895), and (C) XCMSOnline (R2 = 0.633, Q2 = 0.514).
(D) Venn diagram summarizing the number of features each software platform picked. The identified features were counted as matching between
two or more software programs if the m/z and retention times were within 0.1 Da and 10 s, respectively. (E) Bar plot comparing the percentage of
TPs, FPs, and FN features to the number of peaks picked by MVAPACK, MS-DIAL, and XCMSOnline.
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score was 51% ± 19%. MVAPACK had the highest F1 score of
63% ± 2% compared to 27% ± 5% for MS-DIAL and 63% ±
10% for XCMSOnline. This comparison suggests MVAPACK
had the best overall performance in the analysis of the
simulated data set, although it is rivaled by the performance of
XCMSOnline.

Software performance was also assessed by comparing the
quality of each PCA model relative to an idealized PCA model
calculated from the true matrix of 935 known statistically
distinct metabolite features (Figure 3). One method to assess
the overall quality of a PCA model is by comparing cumulative
R2 values, where a higher R2 value indicates a better fit (Table
3). The R2 values for the first two principal components are
plotted in Figure 3B for each data set condition (i.e., different
noise levels and percent missing peaks) and the three
metabolomics software platforms. Each graph also contains,
as the first bar, the idealized results for the true matrix. Under
all conditions, MVAPACK performed the best, followed by
MS-DIAL and then XCMSOnline. The decrease in perform-
ance of MS-DIAL relative to MVAPACK was generally equal
to or greater than that of MVAPACK relative to the true
matrix. Similarly, the decrease in the performance of
XCMSOnline relative to MS-DIAL was often greater than
that of MS-DIAL relative to MVAPACK. As expected, the
performance of the three metabolomics platforms decreased as
the number of missing features and noise levels increased. The

performance for the true matrix also decreased as the data set’s
quality deteriorated. Interestingly, in all cases, the software
performance was more sensitive to an increase in the
percentage of missing features relative to an increase in
noise. The software performance was relatively consistent
despite increasing noise at a given percentage of missing peaks
(Figure 3B). Similarly, additional false peaks added to the data
matrix are added noise that may minimize group differences by
diminishing the impact of real peak differences.

A further analysis of the relationship between the cumulative
R2 values and the other performance metrics listed in Table 3
identified significant correlations (Table S8). An average
correlation of 0.67 ± 0.17 was observed between sensitivity
and the cumulative R2 values for the three metabolomics
software packages (Figure 3C). Sensitivity (Supporting
Information eq S3) accounts for TPs and FNs. A similar
positive correlation was observed between the cumulative R2

values and the total number of features identified (0.66 ±
0.15), TPs (0.75 ± 0.22), and F1 scores (0.69 ± 0.14). A
negative correlation was observed between missing features
(−0.99 ± 0.01) and FNs (−0.75 ± 0.22). Conversely, there
was no clear correlation with added noise, PPV, or FPs. Note
that PPV (Supporting Information eq 4) accounts for FPs.

The Mahalanobis distance was measured between the two
groups in each PCA scores plot and compared to the results
obtained from the idealized PCA model (Table 3). A maximal

Figure 5. Comparison of software performances based on PCA models created from theM. smegmatisLC−MS data set. PCA scores plot generated
by (A) MVAPACK (R2 = 0.507, Q2 = 0.436), (B) MS-DIAL (R2 = 0.742, Q2 = 0.705), and (C) XCMSOnline (R2 = 0.590, Q2 = 0.540). (D) Venn
diagram summarizing the number of features each software platform picked. The identified features were counted as matching between two or
more software programs if the m/z and retention times were within 0.1 Da and 10 s, respectively.
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group separation with minimal within-group variation would
result in a large Mahalanobis distance where the idealized PCA
model yielded the largest possible Mahalanobis distance for the
simulated data sets. We previously demonstrated the utility of
the Mahalanobis distance for benchmarking PCA quality and
validity.38 Furthermore, we have identified that the inclusion
and amount of noise in the data matrix are important
contributors to the quality of a multivariate statistical
model.38−41 MVAPACK produced the largest group separation
in the PCA score plots with an average Mahalanobis distance
of 3525 ± 1863 and a maximum distance of 5904, indicating
the best overall group separation. The average group
separation in the MVAPACK PCA model was nearly three
times as great as both MS-DIAL and XCMSOnline.
XCMSOnline performed slightly better than MS-DIAL with
an average and maximum Mahalanobis distance of 1208 ± 754
and 2567, respectively, compared to 818 ± 681 and 1950.
These differences are not significant. Not surprisingly, the
Mahalanobis distance decreased as more noise was added, TP
features were removed, and more FN peaks were detected.
Like other statistical parameters, the number of missing
metabolite features had the greatest detrimental effect on
group separation in the PCA scores plots. The increase in
missing features was typically correlated with a decrease in TPs
and an increase in FNs. Again, MVAPACK performed better
than MS-DIAL and XCMSOnline, maintaining a larger group
separation despite the deterioration in the data set’s quality.

The idealized PCA models represent the best possible
outcomes from the analysis of the simulated data set. In this
regard, the quality of the MS-DIAL, MVAPACK, and
XCMSOnline PCA models can be further assessed by
comparing the scores to this idealized PCA model. The
similarities in the PCA scores were determined by calculating
the RV coefficients42 and the squared Pearson correlation.
Accordingly, the RV coefficient ranges from 0 to 1, where a
score of 1 indicates the two sets of scores are identical. When
using default parameters, MVAPACK had the highest average
RV coefficient of 0.92 ± 0.03 and MS-DIAL and XCMSOnline
had slightly lower and similar results with average RV
coefficients of 0.86 ± 0.03 and 0.83 ± 0.04, respectively
(Table S5). This trend was inverted with optimized
parameters, where MS-DIAL and XCMSOnline had much
higher RV coefficients of 0.9972 ± 0.015 and 0.9991 ± 0.0002,
respectively. Surprisingly, unlike the other statistical parame-

ters, the RV coefficient did not vary as a function of added
noise or missing metabolite features.
Validation of LC−MS Data Processing with the

Standard Mixture Data Set. All three metabolomics
software platforms were used to independently analyze an
LC−MS data set derived from a nine-compound standard
mixture (Table 2). The identical protocol was followed as
described above for the simulated LC−MS data set. There
were nine mzML files comprising three groups, each
containing three replicates. The three groups differed by a
simple dilution factor. The LC−MS data set was interrogated
manually to confirm 97 real spectral features, including eight of
the nine standards (Table 4). Reserpine was not identified
manually or by any software. Due to poor initial performance
with default values, a minimum intensity filter of 1 × 106

counts was added to the peak picking protocols for the three
programs. The total number of metabolite features identified,
the number of TP, FP, and FN peaks, and the calculated
sensitivity, PPV, and F1 score values are listed in Table 4.
Analysis was initially done using default parameters for each
package, but the resulting metrics demonstrated a need for
further refinement (Table S9). Further XCMSOnline and MS-
DIAL parameter optimization was performed through a grid
search of various parameters on the three replicates in the QC
group. Picked peaks were compared to the manually curated
list of 97 features. The parameter set with the highest
sensitivity was then applied to the other two groups in the
standard data set (Tables S10 and S11). All tables and figures
in the main text use these optimized parameters for
XCMSOnline and MS-DIAL.

Surprisingly, MVAPACK, MS-DIAL, and XCMSOnline
performed worse in the analysis of the standard mixture data
set compared to the simulated data sets. The decrease in
performance may be attributed to fundamental differences
between simulated and real experimental data sets. The
presence of batch drift, spectral artifacts, chemical noise, larger
variance and dynamic range in peak intensities, and nonuni-
form noise all contribute to a more challenging analysis of an
experimental data set that is difficult to reproduce with a
simulated spectrum. Overall, MVAPACK, MS-DIAL, and
XCMSOnline identified 287, 94, and 89 peaks, respectively
(Table 4, Figure 4D). Of these 470 peaks, only 21 were shared
by all three software, while 68 peaks were identified by two
different programs.

Table 4. Summary of Performance Metrics for the Standard Mixture Dataset Using Optimized Parameters

software
real

featuresa
features

identifiedb TPsc FPsd FNse
sensitivityf

(%)
PPVg
(%)

F1
scoreh
(%)

Mahalanobis
distance

(G1−G2)i

Mahalanobis
distance

(G1−G3)j

Mahalanobis
distance

(G2−G3)k
RV

coefficientl R2m

MS-DIAL 97 94 41 53 56 42 44 43 553 874 712 0.9340 0.97
MVAPACK 97 287 62 225 35 64 22 32 277 660 519 0.7527 0.94
XCMSOnline 97 89 30 59 67 31 34 32 1662 5080 211 0.9900 0.85
average 157 44 112 53 46 33 36 831 2205 481 0.892 0.92
standard
deviation

112 16 98 16 17 11 6 733 2492 253 0.124 0.06

aNumber of real peaks manually identified in the LC−MS spectra. bNumber of peaks identified by each software. cNumber of peaks correctly
identified by each software. dNumber of additional peaks identified by the software not assigned as real peaks in the LC−MS spectra. eNumber of
peaks not identified by the software that were present in the spectra. fSensitivity as defined by Supporting Information eq 3. gPPV of the software as
defined by Supporting Information eq 4. hF1 score of the software as defined by Supporting Information eq 5. iMahalanobis distance between the
first two groups of PCA scores. jMahalanobis distance between the first and third groups of PCA scores. kMahalanobis distance between the second
and third groups of PCA scores. lRV coefficient42 calculated between the PCA scores from manually determined matrix and the automated
processes. mCumulative R2 values calculated for each PCA model.
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None of the software platforms correctly identified all 97 of
the manually verified spectral features associated with the nine-
compound standard mixture (Table 4, Figure 4E). The best
outcome was 62 out of 97 features produced by MVAPACK.
MS-DIAL was second with the correct identification of 41
features. XCMSOnline was the worst performer, with only 30
identified features out of 97. This is somewhat consistent with
the performance observed with the simulated LC−MS data set
in which MVAPACK showed the strongest performance,
although MS-DIAL now slightly edges out XCMSOnline. The
average number of TP metabolites detected was 44 ± 16. Of
course, the outcomes for the FN features were simply the
inverse of the TPs. The average number of FNs was 53 ± 16,
with XCMSOnline above this average at 67.

Regarding FPs, the trend was again the reverse of the results
obtained with the simulated data sets. MS-DIAL identified the
fewest FPs, with the best outcome of 53 FP features. The worst
outcome was 225 FPs produced by MVAPACK, with
XCMSOnline second with 59 FPs. The average number of
FPs detected was 112 ± 98. Thus, both MS-DIAL and
XCMSOnline sacrificed identifying TPs to reduce the number
of FPs. Conversely, MVAPACK prioritized the identification of
TP peaks at the expense of a higher FP rate.

The difference in the performance of MS-DIAL, MVA-
PACK, and XCMSOnline in the analysis of the standard
mixture data set was further evident by comparing the
sensitivity and PPV values in Table 4. The average sensitivity
and PPV values were 46% ± 17% and 33% ± 12%,
respectively. The standard mixture analysis obtained PPV
values of 34, 44, and 22% for XCMSOnline, MS-DIAL, and
MVAPACK. This disparity in scoring also extends to recalls,
where XCMSOnline, MS-DIAL, and MVAPACK have
sensitivities of 31, 42, and 64%, respectively. Notably, the
average recalls, 43% ± 18% and 46% ± 17%, obtained for the
simulated and standard mixture data sets were statistically
equivalent. Conversely, the PPV of 33% ± 11% for the
standard mixture data set was notably worse and statistically
different than the 62% ± 20% obtained with the simulated data
set. F1 scores were again calculated further to clarify
performance differences between the three software platforms.
The average F1 score was 36% ± 6%, again statistically worse
than the 51% ± 19% obtained with the simulated data set. MS-
DIAL had the highest F1 score of 43% compared to 32% for
MVAPACK and XCMSOnline. This comparison somewhat
flips the order of MS-DIAL and MVAPACK compared to the
outcome with the simulated data sets.

Software performance was also assessed by comparing the
quality of each PCA model relative to an idealized PCA model
calculated from the true matrix of 97 known spectral features.
A simple visual inspection of the PCA scores plots shows a
clear separation between the three groups (Figure 4A−C). The
overall appearance of the MVAPACK and MS-DIAL PCA
scores plots are similar, consistent with the overall similarity in
global feature identification. Conversely, XCMSOnline is
noticeably different, primarily due to the limited displacement
along PC2 between the three groups. Also, the magnitude of
the PC1 variance (20) is somewhat higher when compared to
MVAPACK (15) and MS-DIAL (10). Again, this is consistent
with the difference in the performance of MS-DIAL in its
feature identification. To further quantify group separations,
the Mahalanobis distance was measured between the three
groups in each PCA scores plot and compared to the results
obtained from the idealized PCA model. The XCMSOnline

PCA model produced the largest Mahalanobis distances,
ranging from 211 to 5080. MVAPACK was second, with
distances ranging from 277 to 660, close to the averages for the
three software platforms. Again, the MS-DIAL and MVAPACK
ranking was flipped relative to the simulated data sets.
XCMSOnline exhibited the smallest distances, an order of
magnitude smaller than MS-DIAL and consistent with the
limited number of identified features. PCA score plots were
also assessed by calculating the RV coefficients relative to the
idealized PCA model. XCMSOnline had the highest RV
coefficient of 0.9900 and MS-DIAL was a close second with an
RV coefficient of 0.9340. MVAPACK had the lowest RV
coefficient of 0.7527.
Validation of LC−MS Data Processing with Biological

Data Set. To further assess software performance, we used a
realistic biological data set derived fromM. smegmatiscell lysates
with or without treatment with D-cycloserine (DCS), a second-
line drug for tuberculosis. The data set consists of two groups,
controls versus treatment, each comprising ten biological
replicates for 20 LC−MS spectra. We previously reported the
major metabolic changes a DCS treatment induced into theM.
smegmatismetabolome using NMR.43,44 However, this in-
formation cannot be directly correlated to an LC−MS data
set. Unlike the two synthetic data sets, this biological data set
has an unknown ground truth since the data set was too
complex for manual analysis to achieve a reliable ground truth.
Accordingly, it was not possible to determine the number of
TP, FP, and FN peaks or to calculate sensitivity, PPV, F1 score,
and RV coefficients. Instead, we can only provide a limited
assessment of the quality of PCA models and the similarities of
the data matrices for each software platform (Figure 5). All
analyses of theM. smegmatis data set utilized the XCMSOnline
and MS-DIAL parameters optimized for the standard data set
described in the previous section.

The three PCA scores plots appear similar, exhibiting good
group separation and comparable within-group variance
(Figure 5A−C). A closer examination does highlight a few
differences. While the PC2 separation is nearly identical for all
packages (−20, 20), PC1 separation is similar for MS-DIAL
and XCMSOnline (−40, 40) but less for MVAPACK (−30,
30). The differences in the R2 and Q2 quality factors were more
relevant. The R2 values were 66.5, 85.8, and 69.0%, and the Q2

values were 54.6, 78.2, and 55.6% for MVAPACK, MS-DIAL,
and XCMSOnline, respectively. Again, MVAPACK and
XCMSOnline performed similarly and worse than MS-DIAL.
The selected features show a further divergence between the
MVAPACK, MS-DIAL, and XCMSOnline data matrix. A total
of 120, 115, and 235 features (Figure 5D) were identified by
MVAPACK, MS-DIAL, and XCMSOnline, respectively. A set
of 20 features were identified by all three software platforms,
and another 78 features were commonly selected by two
programs. XCMSOnline selected the most peaks, of which
60.4% had no match with a data matrix from the other two
programs. A similar outcome was seen with the simulated LC−
MS data set. MS-DIAL and MVAPACK had lower and
comparable relative exclusion feature counts with 22.6 and
71.7% of their peaks, respectively, not identified by another
software package.

■ DISCUSSION
A novel LC−MS metabolomics data set comprising simulated
and experimental data was presented as a valuable and
important asset for systematically benchmarking new function-
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ality implemented into our MVAPACK toolkit.36 The LC−MS
data set also serves as a performance comparison tool, which
allowed us to evaluate the capabilities and reliability of
MVAPACK relative to other software packages routinely used
by the metabolomics community. While new LC−MS
packages are frequently evaluated with experimental data, a
true validation of performance and an assessment of accuracy
and reproducibility is difficult or impossible to achieve without
ground truth. Furthermore, a negative or biased performance
outcome may result from a manually curated LC−MS data set.
The inherent complexity of the data may easily lead to the
inclusion of any number of FP and FN features identified as
true. In this context, a new algorithm or software could
produce a correct result and a better analysis of the data set
but, nevertheless, be heavily penalized concerning existing
software due to these annotation errors that are incorrectly
perceived as being correct. Simply put, the algorithm may
accurately identify these features as FNs or FPs, but the
evaluation metrics would score these as incorrect classifica-
tions, downgrading the overall performance of the software.
Instead, a simulated data set provides full control over the
construction, structure, and content of the data set to establish
a ground truth. The user has full control over the number of
biological replicates per group, the number of groups, the
spectral signal-to-noise, the present or absent peaks, and
relative peak intensities and peak shapes. Furthermore, any
statistical significance between peaks, spectra, or groups can be
easily specified in the design of a simulated data set. An
experimental data set derived from a standard mixture may also
provide a similar ground truth, but, importantly, under real
spectral conditions. A lower level of spectral complexity than a
simulated data set is achieved due to a limited number of
metabolites in the standard mixtures and a corresponding
decrease in spectral features. Further, not all the tunable
parameters in simulated spectra can be similarly adjusted in an
experimental spectrum of a known mixture. Thus, a simulated
and experimental data set can provide useful, complementary
information when assessing software performance.

Knowing which peaks and metabolite features exist within
the simulated or experimental spectra allows for accurately
calculating TP, FP, and FN rates. Peak heights can also be
easily defined and varied across replicates to establish
statistically distinct features that are known to differentiate
between the defined groups. A large, nonstatistically valid
variance in peak heights can be assigned to other spectral
features to establish a known complex background and
complicate the search for differential features. The group-
independent variance in random features can be seen as
surrogates for chemical noise, impurities, or simply metabolites
that do not respond to the external stressor or genetic
mutation. Further, the precise control over noise levels and
missing spectral features provides a mechanism to stress-test
any algorithm as a function of spectral quality. This is easily
accomplished with a high level of control in a simulated data
set by simply changing peak intensity values. Still, an
experimental data set of a standard mixture requires careful
and precise adjustments of metabolite concentrations.
Accordingly, our simulated LC−MS metabolomics data set
consists of 2673 metabolite features, of which 935 are
statistically distinct between the two defined groups,
comprising 10 replicates each. The 935 statistically significant
features have an FC greater than 2 and a CV less than or equal
to 25%.19−22 Our data set consists of 9 sets of spectra (Table

1), where the quality of each subsequent set of spectra is
decreased by the addition of an increasing amount of noise (0,
5, 10%) and missing spectral features (0, 10, 20%). Creating a
simulated data set with nine distinct quality levels enables
granular analysis of algorithm sensitivity to input replicate
quality. Likewise, the small size of the files (approximately 50
megabytes per mzML file) enabled rapid analysis of the files by
each algorithm used. In addition to the simulated data set, our
LC−MS data set for assessing software performance includes
an experimental LC−MS data set consisting of a standard
mixture of 9 metabolites (Table 2) that yielded 97 annotated
features from the manual analysis. The data set contained three
groups of ten replicates where the three groups were
differentiated by serial dilutions, 1:1, 1:2, and 1:4. A second
LC−MS experimental data set is also included that consisted
of a polar extract of lysedM. smegmatiscells, a nonpathogenic
surrogate for tuberculosis. The data set contained two groups
of ten replicates where one set of cell cultures was treated with
a sublethal dose of DCS, a second-line treatment of TB.45 Our
simulated and experimental LC−MS metabolomics data sets
are freely accessible to benchmark the performance of new or
existing software or algorithms (https://git.unl.edu/powers-
group).

The initial implementation of our MVAPACK software
provided a complete processing pipeline from raw 1D or 2D
NMR metabolomics data to validated statistical models.36

Accordingly, MVAPACK provided a diversity of existing
functions for the inputting, preprocessing (alignment, normal-
ization, scaling, denoising, etc.), statistical modeling (PCA,
OPLS, LDA, etc.), visualization (scores plots, backscaled-
loadings plots, S-plots, volcano plots, etc.), and validation (CV-
ANOVA, cross-permutation, tree diagrams, etc.) of a data
matrix. Thus, incorporating the complete analysis and
processing of GC/LC−MS metabolomics data into MVA-
PACK only required adding new functions to convert standard
GC/LC−MS metabolomics data files (e.g., mzML, mzML,
proteoWizard.txt) into a data matrix compatible with existing
MVAPACK functions. This was achieved by adding 40 new
functions written in GNU Octave to the current distribution of
MVAPACK (Table S1). Accordingly, MVAPACK now
provides a complete data processing pipeline for LC−MS
metabolomics data consisting of input/output, peak alignment,
feature identification, normalization, imputation, and general
data processing. It is important to note that the functions
added to MVAPACK were all previously described in the
scientific literature and correspond to established and widely
used algorithms. No new algorithms were developed for this
implementation of the LC−MS processing pipeline. To our
knowledge, MVAPACK is now the only metabolomics toolkit
capable of providing a complete data processing pipeline for
GC/LC−MS, 1D, and 2D NMR metabolomics data sets.
MVAPACK can also mix multiple data sets from distinct
analytical sources to create a unified statistical model by using
multiblock versions of PCA, PLS, and OPLS methods.46,47

Figures 3A, 4A, and 5A provide representative PCA score plots
calculated by MVAPACK utilizing the simulated, standard
mixture, andM. smegmatisLC−MS metabolomics data sets as
diagramed in Figure 2.

MVAPACK users can rely on the package as an all-in-one
toolbox for building high-level statistical models from raw
spectra. The diversity of supported input data types is a major
asset for MVAPACK as researchers have significantly lower
technical overheads when conducting metabolomics data
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analyses. Analysis of MVAPACK, XCMSOnline, and MS-
DIAL parameters (Tables S2−S4) show that MVAPACK’s
default settings are consistent with those in other packages
(Table S12), indicating it is similarly suited to general-purpose
use. LC−MS analysis with MVAPACK can be performed in
less than an hour, regardless of input data size. Accessibility to
the underlying functions allows users to work up mzML files in
parallel as peak picking relies only on data in a single file.
Dozens of input files can be handled in parallel across batch
jobs on UNIX-based clusters, which are commonplace in
academic research environments. Data sets containing tens of
thousands of peaks, metabolites feature matrix refinement, and
selection are performed in minutes. This is in stark contrast to
desktop and Web server implementations of LC−MS
metabolomics processing, which analyze data in serial, leading
to analyses taking hours or upward of a day or more to
complete. MVAPACK can also be run on a single processor
but still provides versatility for researchers.

An exhaustive benchmarking of MVAPACK was undertaken
to ensure our software’s accurate and reliable performance by
comparing its output with that of other popular software in the
field. MS-DIAL and XCMSOnline were selected as standards,
given their prominence in the metabolomics community and
free accessibility. The performance of the three metabolomics
software platforms was compared using our LC−MS simulated
data set and two experimental data sets. These three LC−MS
data sets provided performance benchmarking across various
data quality levels. The simulated data set is small, relatively
clean, and provides a known ground truth for assessing peak
picking performance and metabolite feature identification. The
simulated data set has increased levels of real noise and missing
peaks but still represents a relatively simple composition to
analyze compared to true experimental spectra. The LC−MS
spectra collected with real biological samples contain chemical
noise, spectral noise, spectral artifacts, and batch-order drift
commonly encountered with experimental metabolomics data
sets. Accordingly, the experimental data sets provide a more
severe stress test for the software packages, but at the expense
of limited or no-known ground truths. Overall software
performance was quantified and compared by measuring
sensitivity, PPV, and F1 scores calculated from the TPs, FPs,
and FNs. PCA models were also collected from the data matrix
produced by the three software platforms and compared to a
PCA model created from an ideal matrix. The ideal data matrix
could only be defined from the simulated and standard mixture
data sets.

Our benchmarking (Tables 3, 4, and Figure 3B)
demonstrates that MVAPACK has a similar or better
performance relative to XCMSOnline and MS-DIAL.
MVAPACK’s performance was less sensitive to increased
noise or metabolite feature removal than the other two
packages. Not surprisingly given their similar peak identi-
fication algorithms, MVAPACK’s overall performance was
closest to XCMSOnline, where the relative performance
ranking was somewhat reversed between the simulated and
standard mixture data sets. Conversely, MS-DIAL exhibited
notably worse performance on the synthetic data set but
improved significantly on the standard and biological data sets.
Again, this grouping in performance can be partially explained
by the fact that the peak picking used by MVAPACK was
based on the Gaussian derivative waveform used by
XCMSOnline. XCMSOnline identified significantly more
features and fewer FPs than MVAPACK and MS-DIAL with

the simulated LC−MS data set. However, this performance
decreased considerably as the spectral quality was reduced, a
trend reversed for the standard mixture data set. All three
software programs performed significantly worse with the
standard mixture data set than the simulated data set in all
facets except PCA model quality. The simulated data set
demonstrated that a decrease in the overall quality of the LC−
MS data set based on an increase in noise and missing peaks
lead to a pronounced decrease in software performance. Thus,
the decrease in software performance with the standard
mixture data set represents a continuation of this trend. The
level of noise and artifacts was higher in the experimental data
sets relative to the simulated data set. The software
performance factors obtained with the lowest quality simulated
data set (10% noise, 20% missing peaks) were on par with the
results obtained with the standard mixture data set. Differences
in performance are difficult to explain through parameter
comparison alone as all three packages share few analogous
parameters, and those shared values are generally comparable
and were optimized when different (Tables S2−S4, S6−S8,
S10−12). Our results show the software packages may be
marginally suited to different LC−MS analysis tasks as each
package exposes a mostly unique set of parameters that cannot
be readily accessed in comparable packages. It should also be
noted that results for any software platform may be improved
via parameter tuning, and our results suggest that parameter
tuning can largely remove differences, though some will still
exist.

In general, the PCA models created by all three software
platforms for either of the three data sets were quite visually
comparable despite clear differences in the data matrices used
to create the multivariate statistical models (Figures 4A−C and
5A−C). The resulting PCA scores plots showed excellent
group separation and reliable models. The cumulative R2

values in Figure 3B provided the best comparative evaluation
of software performance based on the PCA model. MVAPACK
performed notably better than MS-DIAL and XCMSOnline
and was comparable to the ideal model. PCA models generated
by XCMSOnline had the lowest cumulative R2 across all
spectral quality settings. Notably, the cumulative R2 values
were shown to correlate with most of the performance metrics
listed in Table 3, indicating this composite metric robustly
described the overall quality of the data matrix created by
MVAPACK, MS-DIAL, and XCMSOnline (Table S8). The
cumulative R2 values nicely capture the overall decay in
software performance as a function of missing features and
added noise, which leads to the observed increase in FPs and
FNs peaks and a decrease in TP peaks. An interesting
observation was the significantly higher sensitivity by all three
software platforms to missing features relative to increased
added noise to the data matrix. The cumulative R2 values
exhibited no correlation with the amount of added Gaussian
noise, while the correlation with missing features closely
approached the unit in magnitude (−0.98 ± 0.01). Never-
theless, missing true features or additional false features can be
considered as alternative sources of noise added to the data
matrix. It may be viewed as an extreme version of added
Gaussian noise (i.e., mask true peaks).

Quantifying differences between the PCA models by other
means, such as measuring Mahalanobis distances between
groups, was not particularly informative given similar large
group separations. The only notable exception was observed
with the XCMSOnline analysis of the standard mixture data
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set. The relative group separation and PC1 values were
significantly higher for XCMSOnline than both MVAPACK
and MS-DIAL (Figure 4A−C). Surprisingly, the RV
coefficients calculated by comparing the principal components
between an ideal PCA model and each calculated model were
completely uninformative. It was not platform, noise, or
missing feature dependent and seemed to provide random
results. Thus, despite the data matrices calculated by each
software platform being unique and containing different sets of
selected and missed features relative to a perfect data matrix,
the RV coefficients were quite similar. An average RV
coefficient for the simulated and standard mixture databases
were calculated as 0.99 ± 0.00 and 0.89 ± 0.12, respectively. A
modest but small difference was observed between the two
data sets. Overall, our results suggest a PCA model provides
minimal utility in evaluating software performance. This is
likely a result of the large, inherent data reduction that is the
intended outcome of PCA. The data reduction likely masks
intrinsic differences in the original data matrices.

The observation that the PCA model essentially hides
underlying differences in the raw data matrices was quite
apparent in the performance comparison using theM.
smegmatisLC−MS metabolomics data set. Visually (Figure
5), the three PCA scores plots were quite similar and yielded
the expected outcome of a large group separation between the
drug-treated and untreatedM. smegmatiscell cultures. The
addition of DCS, a known antibiotic used as a second line
treatment of TB, would be expected to induce a significant
metabolic response. Although we observed reasonable overall
similarity between the data matrices produced by the three
software platforms used to generate the PCA models, the
resulting PCA models showed much tighter agreement (Figure
5D). As observed with the simulated LC−MS data set,
XCMSOnline and MVAPACK both identified more spectral
features than MS-DIAL, with XCMSOnline finding the most
overall. Out of the 470 total features identified, a set of 20 were
identified by the three metabolomics software platforms, but
78.2, 22.6, and 60.4% of the remaining features were uniquely
defined by MS-DIAL, MVAPACK, and XCMSOnline,
respectively. In total, 254 spectral features were identified by
a single software program. While these software programs and
the underlying algorithms are in wide use, these outcomes raise
some serious questions about the robustness and reliability of
the feature selection protocols. We observed a similar
inconsistency in identified lipids when comparing different
LC methods for an LC−MS lipidomics study despite all other
experimental parameters being identical.48 Furthermore, a
recent article by Li et al. (2023) describing their new Asari
LC−MS metabolomics data processing software observed
similar discrepancies when comparing its performance to
XCMS, MZmine, and MS-DIAL using two experimental LC−
MS data sets.49 Our and other results strongly suggest that
further development and understanding of overall performance
and reproducibility of metabolomics software is an exciting
new direction for research in the community that will stand to
benefit the field at large. Our simulated LC−MS data set may
provide a valuable asset for these future endeavors.

Herein, we described the creation of a unique metabolomics
software package capable of analyzing both NMR and LC−MS
data sets. We additionally created a simulated data set for high
fidelity benchmarking and performed validation across three
distinct data sets as well as a comparison of the results created
by MVAPACK versus both MS-DIAL and XCMSOnline. We

anticipate that this work will serve as a blueprint for other
researchers in the field to perform robust validation of
metabolomics packages and algorithms with ours or other
similar simulated data sets to advance the field and identify
areas of need. While we introduced quality variations, further
refinements could be made to optimize the simulated data set
by incorporating other commonly encountered LC−MS
spectral issues. Future efforts may include adding differences
in spectral resolution, peak intensities, and drift times, and the
presence of different adducts, oligomers, batch variation,
chemical noise, and other spectral artifacts. MVAPACK is
freely available for download by interested users at https://
bionmr.unl.edu/mvapack.php. Similarly, the corresponding
documentation, simulated data set, and all associated scripts
can be downloaded from https://git.unl.edu/powers-group/
mvapack-lcms-supplemental to both replicate these results and
further develop simulated data sets.
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S5 lists the performance metrics for the simulated data
set using default processing parameters; Tables S6,S7
lists the XCMSOnline and MS-DIal paramaeter
optimization for the synthetic data set; Table S8 lists
the cumulative R2 values correlated with performance
metrics presented in Table 3; Table S9 lists the
performance metrics for the standard mixture dataset
using default parameters; Tables S10,S11 lists the
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analysis parameters used by MVAPACK, MS-DIAL, and
XCMSOnline; Table S13 lists the compound statistics
used to generate the simulated LC−MS data set (PDF)
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