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ABSTRACT Microbial metabolism and trophic interactions between microbes give
rise to complex multispecies communities in microbe-host systems. Bacteroides
thetaiotaomicron (B. theta) is a human gut symbiont thought to play an important
role in maintaining host health. Untargeted nuclear magnetic resonance metabolo-
mics revealed B. theta secretes specific organic acids and amino acids in defined
minimal medium. Physiological concentrations of acetate and formate found in the
human intestinal tract were shown to cause dose-dependent changes in secretion of
metabolites known to play roles in host nutrition and pathogenesis. While secretion
fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not af-
fect metabolic bioenergetics but instead redirects carbon and energy to CO2 and H2.
Flux balance analysis modeling showed increased flux through CO2-producing reactions
under glucose-limiting growth conditions. The metabolic dynamics observed for B. theta,
a keystone symbiont organism, underscores the need for metabolic modeling to com-
plement genomic predictions of microbial metabolism to infer mechanisms of microbe-
microbe and microbe-host interactions.

IMPORTANCE Bacteroides is a highly abundant taxon in the human gut, and Bacte-
roides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the
host early in development and persists throughout its life span. The phenotypic
plasticity of keystone organisms such as B. theta is important to understand in order
to predict phenotype(s) and metabolic interactions under changing nutrient condi-
tions such as those that occur in complex gut communities. Our study shows B.
theta prioritizes energy conservation and suppresses secretion of “overflow metabo-
lites” such as organic acids and amino acids when concentrations of acetate are
high. Secreted metabolites, especially amino acids, can be a source of nutrients or
signals for the host or other microbes in the community. Our study suggests that
when metabolically stressed by acetate, B. theta stops sharing with its ecological
partners.

KEYWORDS Bacteroides, acetate, Bacteroides thetaiotaomicron, formate, metabolism,
secretion, microbiome, fermentation, anaerobic, bacteria, NMR metabolomics

Microbes, whether in the environment or associated with host organisms, form
complex multispecies communities that cooperate and compete to metabolize

nutrients. The host gut ecosystem is a constantly changing landscape where symbiont
organisms manage to establish long-term colonization despite the fact that the host
regularly ingests and eliminates nutrients and transient microbes. This results in a
constantly fluctuating environment where diverse microbes are secreting metabolic
fermentation products and other secondary metabolic chemicals that may inhibit or
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stimulate neighboring organisms as they compete for nutrients. While there is recog-
nition that microbes play important roles in host nutrition, health, and disease (1), it is
difficult to conceptualize how diverse microbes interact with each other and the host
in such a way as to be able to develop treatments or recommendations that preserve
host-symbiont and beneficial microbe-microbe interactions while disfavoring patho-
gens.

Considering that bacterial virulence factors are often triggered by nutritional limi-
tation (carbon, nitrogen, phosphorous, iron, etc.) (2–4) or physical stress (temperature,
oxidative burst, etc.) (5, 6) and, at the molecular level, cause changes in intracellular
metabolic flux and redox state/energy charge (7), the availability of nutrients and the
physical factors that influence metabolism are at the crux of whether microbes induce
virulence factors. Virulence factors such as cell invasion, chemotaxis, and siderophore
and antibiotic synthesis, among others, can be recast as “nutrient searching” behaviors
that are triggered by changes in the environment that result in decreased intracellular
metabolic fluxes (8). Quorum sensing, in which bacteria secrete a small molecule that
triggers expression of community-level behavior (sporulation, adherence, virulence,
etc.) when it reaches a critical concentration (9), can also be “eavesdropped” by
neighboring organisms in anticipation of intensification of competition for nutrients
(10).

Symbionts have evolved to cooperate with hosts to establish long-term colonization
strategies that do not result in disease and even protect the host from pathogens. It has
been shown that establishing host-symbiont trophic relationships protects hosts from
virulent interlopers by physically and nutritionally limiting the ability of pathogens to
establish infections (11, 12), stimulating gut epithelial growth (13), and also modulating
local immune response to maintain a healthy state (14, 15). It is hypothesized that
perturbations of symbiont bacterial metabolism, such as through diet or antibiotic use,
can disrupt this natural defensive relationship and predispose the host to disease by
allowing pathogens to gain a metabolic foothold (16). By this reasoning, the dynamic
interplay of nutrition and metabolism of colonizing symbiont bacteria (17) is crucial as
they form the foundation of the host microbiome community with which transient and
pathogenic microbes must compete for survival.

Bacteroides species are Gram-negative bacteria that are especially adept at metab-
olizing complex carbohydrates (18) and are often the dominant bacterial phylum in the
digestive systems of many herbivorous and omnivorous animals, including humans
(19). Bacteroides thetaiotaomicron (B. theta) is a nonpathogenic human gut symbiont
that colonizes infants within a day of normal birth (20, 21). While B. theta is classified
as nonpathogenic and has been shown to protect the host from Salmonella infection
(22), it was shown to exacerbate infection by Citrobacter rodentium in a mouse model
of enterohemorrhagic Escherichia coli (EHEC) disease (23), underscoring the compli-
cated contributions of symbiont microbes to human health and disease. B. theta is
closely related to sister species (24) that are implicated in irritable bowel disease (25)
and periodontal disease (26) and has also been shown to carry and transmit antibiotic
resistance genes through profligate conjugation with other bacteria (27, 28).

It was previously shown that B. theta secretes acetate, formate, propionate, and
succinate into culture medium (29–31). Bacteroides species have been shown to
produce low-molecular-weight heat-stable compounds that impair host defense by
inhibiting migration and killing polymorphonuclear leukocyte (PMN) phagocytes (32,
33). Succinate and propionate, as low-molecular-weight heat-stable metabolites, have
been hypothesized to fit the description and were shown to irreversibly inhibit super-
oxide and hydrogen peroxide production by neutrophils by lowering cytoplasmic pH
(34). Propionate-secreting B. theta have also been shown to protect mice from coloni-
zation by Salmonella, presumably due to the same membrane-permeable pH-lowering
property that is inherent to short-chain fatty acids (22). Acetate is also a membrane
permeable (35) “switch” that reduces ATP synthesis in E. coli and regulates expression
of virulence genes in many bacteria (36). Secretion of acetate, formate, propionate, and
succinate by B. theta is therefore proposed to reduce the effectiveness of host response
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to pathogens and to have species-specific effects (enhancing or abrogating) bacterial
colonization and virulence.

B. theta secretes metabolites as a result of starch, extracellular matrix, or glucose
metabolism (18). B. theta catabolizes glucose via the Embden-Meyerhof-Parnas (EMP)
pathway (glycolysis) to pyruvate, which is a major intracellular metabolite used as the
substrate in gluconeogenesis, the tricarboxylic acid cycle (TCA cycle), and for biosyn-
thesis of acetyl coenzyme A (acetyl-CoA), enzyme cofactors, and amino acids. Acetate,
the major secreted product, can be synthesized with ATP using two metabolic path-
ways: (i) by hydrolysis of the CoA thioether bond by acetyl-CoA synthase (Acs) in the
acetyl-CoA pathway, or (ii) by phosphotransacetylase (Pta) and acetate kinase (Ack)
enzymes in the Ack/Pta pathway (see Table S1 in the supplemental material). The high
concentration of secreted acetate suggests acetate is the primary energy-conserving
overflow (37) by-product of B. theta. The second most abundant secreted product is
succinate, which is produced by hydrolysis of succinyl-CoA by succinyl-CoA synthetase
with generation of ATP in the TCA cycle. In the forward TCA cycle direction, succinate
is funneled to succinate dehydrogenase, which oxidizes succinate to fumarate with the
generation of reduced ubiquinone for generating a transmembrane proton gradient for
ATP synthesis. These data suggest rapidly growing B. theta cells are limited in the
turnover rate of reduced/oxidized quinone and secrete succinate as an intermediate
product to maintain rates of glycolysis and glucose consumption (38). In the reverse
TCA direction, succinate synthesis requires ATP and HCO3

� (pyruvate carboxylase),
NADH (malate dehydrogenase), and reduced quinone (succinate dehydrogenase), and
though enzyme steps are reversible, succinate synthesis by reverse TCA can only occur
when there is a surplus of ATP generated as a result of forward TCA pathway flux.

The next most abundant secreted products are formate and propionate. Formate is
synthesized by pyruvate formate-lyase, which uses pyruvate and coenzyme A as the
substrates to produce formate and acetyl-CoA. Formate is therefore an energy neutral
overflow metabolite that nevertheless increases the enzymatic routes to acetyl-CoA.
Propionate is synthesized from succinyl-CoA to propionyl-CoA by methylmalonyl-CoA
mutase, methylmalonyl-CoA epimerase, and propionyl-CoA carboxylase enzymes, with
subsequent thioesterase activity by the same Acs or Ack/Pta pathways used to synthe-
size acetate. Ultimately, propionate synthesis yields 2 ATP, but the pathway requires
multiple enzyme steps and cofactors, suggesting this overflow pathway could be
kinetically limited (39). A small amount of lactate is secreted. Lactate is synthesized by
lactate dehydrogenase from pyruvate, NADH, and a proton and is therefore energy
consuming for the cell.

These original data were obtained using liquid chromatography technology, but
since then, our ability to collect high-resolution untargeted one-dimensional proton
nuclear magnetic resonance (1D 1H NMR) data and the statistical methods to decon-
volute complicated spectra has evolved considerably, making untargeted NMR metabo-
lomics of B. theta cultures feasible (40–42). Our study aimed to use untargeted
metabolomics, systems biology, and biological modeling techniques to revisit the
metabolism of this important human symbiont to account for nutrient inputs and
outputs and to gain insight into how B. theta responds to physiological concentrations
of metabolic fermentation products that are encountered in the gut ecosystem.

RESULTS
Untargeted metabolomics reveals B. theta secretes a subset of amino acids in

addition to organic acid fermentation products. B. theta was grown in minimal
defined medium on glucose as sole carbon and energy sources, and spent culture
medium was analyzed using 1D 1H NMR to detect the secreted metabolome and to
identify any new secreted metabolites (see Fig. S1 in the supplemental material). We
confirmed previous observations that the major secreted metabolic products were
acetate, succinate, formate, and propionate, with small amounts of lactate. In addition,
we were able to detect histidine, cysteine, cystine (Cys-Cys disulfide), glutathione,
asparagine, and alanine (Fig. 1).
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These endpoint metabolic products were then used to build a secretion flux map
(Fig. 2). Notably, relatively few metabolites of similar size, chemical composition,
reactivity, or metabolic importance to the cell were detected. Accordingly, these results
suggest the secreted metabolites were products of specific cellular processes rather
than through nonspecific leaky transporters.

The secretion of amino acids is significantly lower than the major organic acid
fermentation products (excluding lactate) but also suggests these metabolites are
overflows for purine metabolism (histidine), the TCA cycle (alanine, asparagine, and
glutathione), and the serine cycle (cysteine/cystine and glutathione) (Fig. 2). Notably,
the amino acid secretions were generally lower than those of lactate, suggesting amino
acid secretion is less favorable, likely reflecting the fact that amino acid synthesis is
energetically costly and requires multiple enzymatic steps in contrast to a single
enzyme for lactate synthesis. The network map illustrates that in minimal defined
medium, secreted products can be easily derived from pyruvate, acetyl-CoA, and
succinate after minor biochemical transformation. This suggests the secreted metabo-
lites are “overflow” from the EMP pathway.
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FIG 1 Metabolites secreted by B. theta. Concentrations of secreted metabolites detected after batch
growth in defined minimal glucose medium (mean of 5 biological and 5 technical replicates, n � 25).
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FIG 2 Secretion fluxes of organic acids and amino acids in defined minimal medium. Numbers represent
percent mole carbon fluxes (not shown, CO2 inferred, 4.6%). Gray outlined circles represent undetected
intracellular metabolic nodes. Black outlined circles indicate secreted metabolites. Shading is propor-
tional to concentration in culture medium.
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B. theta growth is inhibited by acetate and formate. Acetate and formate are
major metabolic products of many organisms (43), and it is thought that both acetate
and formate may inhibit cell growth by feedback inhibition and/or by transporting
protons across the cell membrane and collapsing the transmembrane ion gradient
necessary for ATP synthesis (44, 45). This suggests that the acetate and formate
produced by competing organisms in the gut may also have a strong inhibitory effect
on B. theta metabolism. We tested these hypotheses by growing B. theta with increas-
ing acetate, formate, or a combination of both in a culture medium at physiological
concentrations (46).

When B. theta is grown in minimal defined medium with increasing concentrations
of acetate or formate, population doubling time increased by approximately 25%
(Fig. 3a and b; Table 1). Conversely, the final optical density of the culture was not
affected by supplementation with acetate and/or formate (Fig. 3c), and because optical
density (OD) and biomass are correlated, it suggests that biomass yield is also not
affected (47). These data suggest ATP synthesis and metabolic efficiency have not been
altered. Instead, a direct or indirect kinetic biochemical feedback inhibition is the
primary factor in acetate- and formate-dependent inhibition of B. theta growth. The
stationary-phase cultures were observed to exhibit a modest statistically significant
decrease in pH from 7.14 � 0.064 to 7.03 � 0.051 (P � 0.03) with the addition of acetate
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FIG 3 Effect of metabolic feedback inhibition on growth. (a) Population doubling time of cultures on defined minimal medium
supplemented with acetate (n � 8 biological replicates, P � 0.01 versus 0 mM, r2 � 0.94). (b) Population doubling time of cultures on
defined minimal medium supplemented with formate (n � 5 biological replicates, P � 0.01 versus 0 mM). (c) Final optical densities of
cultures with and without supplementation of 10 mM acetate (Ac) and 10 mM formate (Fo) (n � 5 biological replicates, P � 0.05 versus
0 mM). (d) Concentrations of secreted metabolites with increasing acetate supplementation (means from 5 biological and 5 technical
replicates, n � 25). P values are shown in Table S1 in the supplemental material. Curves were fit according to parabolic functions (a) or
least-squares regression (b and d). Error bars may be obscured by symbols.

TABLE 1 Effect of formate and acetate on B. theta growth rate in defined medium

Treatmenta Doubling time (h) SD

P value

vs 0 mM vs 10 mM Ac�10 mM Fo

0 mM 1.322 0.047 1
0.5 mM Ac 1.516 0.052 0.000 0.000
1 mM Ac 1.452 0.034 0.000 0.000
5 mM Ac 1.929 0.037 0.000 0.000
10 mM Ac 1.562 0.028 0.000 0.000
0.5 mM Fo 1.474 0.042 0.000 0.000
1 mM Fo 1.718 0.078 0.000 0.704b

5 mM Fo 1.561 0.034 0.000 0.000
10 mM Fo 1.521 0.034 0.000 0.000
10 mM Ac�10 mM Fo 1.734 0.05 0.000 1
aAc, acetate; Fo, formate. Data were obtained from six biological replicates (n � 6).
bNot statistically significant (P � 0.05).
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despite the medium being buffered at pH 7.2 with 1 M potassium phosphate (Table 2).
The total amount of secreted organic acids and supplemental acetate cannot account
for the observed pH change. Thus, the drop in pH may be attributed to an increase in
CO2 concentration, which is converted to carbonic acid (H2CO3) with a pKa of 3.6 in
water. An increase in the CO2 partial pressure produced by cells in sealed anaerobic
culture tubes is known to decrease the pH of culture medium (48).

Feedback inhibition by acetate causes suppression of metabolite secretion. The
concentration for each of the metabolites in the culture medium changed indepen-
dently as a function of the amount of supplemental acetate (Fig. 3d). The effect of
supplemental acetate on metabolite secretion (xsec) was unmasked (Fig. 4a) by sub-
tracting the amount of each metabolite in the 0 mM control treatment (xinit) from the
amount of the metabolite observed (xobs) after acetate supplementation.

The observed concentration for each metabolite should be the same as in the initial
0 mM treatment condition if the supplemental acetate had no effect on metabolite
secretion. The xsec should also be equal to zero if the metabolite is neither a substrate
nor product of acetate metabolism (null hypothesis). Instead, the concentration for
each secreted metabolite changed as a result of the additional acetate in the culture
medium. For instance, acetate only increased by 4.21 (� 0.55) mM in the culture
medium after the 10 mM acetate treatment (Fig. 4a). This is significantly less than
expected if no feedback inhibition occurred and the acetate concentrations were
simply additive. The acetate concentration detected in the culture medium should have
been the sum of the total amount of acetate derived from glucose (6.6 � 0.5 mM)
(Fig. 3d) plus the 10 mM acetate supplemented for a final concentration of 16.60 mM.
Similar decreases in secretion were observed for formate (0.18 � 0.02), propionate
(0.47 � 0.02), and amino acids, while succinate (0.83 � 0.13 mM) secretion increased.
These results suggest supplemented acetate was taken up by cells and altered meta-

TABLE 2 pH of stationary-phase cultures in buffered medium

Treatmenta pH SD P value vs 0 mM

0 mM control 7.14 0.064 1
0.5 mM Ac 7.07 0.079 0.196b

1 mM Ac 7.03 0.077 0.059b

5 mM Ac 7.06 0.034 0.064b

10 mM Ac 7.03 0.051 0.030
10 mM Ac�10 mM Fo 7.06 0.046 0.083b

aAc, acetate; Fo, formate. Data were obtained from six biological replicates (n � 6).
bNot statistically significant (P � 0.05).
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bolic fluxes such that secretion of acetate, formate, propionate, and amino acids are
suppressed, while a portion of the acetate is secreted as succinate.

Next, the fold variance (xvar) between the observed and the null model was
calculated assuming the secretions of acetate and the other metabolites are correlated
(Fig. 4b). The observed concentration of each metabolite indicated a negative variance
from the null model. As acetate supplementation increased, the magnitude of the
variance also increased, indicating “missing” metabolites. The increasing negative
correlation as a function of supplemental acetate suggests these missing metabolites
are a result of an unknown inhibitory mechanism or process.

The slope of the linear regression Δxvar is the relative molar acetate suppression
coefficient (Table 3). Accordingly, alanine and the amino acids have the highest molar
acetate suppression coefficient despite acetate secretion having a higher magnitude of
inhibition. Relative molar flux suppression was mapped onto a metabolic network as
shown in Fig. 4c. The flux analysis shows that acetate supplementation has the highest
inhibitory effect on alanine secretion, an intermediate effect on amino acid secretion,
and the smallest inhibitory effect on the major fermentation products: acetate, succi-
nate, formate, and propionate.

Feedback inhibition is the primary driver of acetate inhibition effects. In
addition to a direct competitive feedback inhibition (e.g., carbonic anhydrase) (49),
supplemental acetate and formate may also induce a noncompetitive inhibition
through posttranslational modification (formylation) (50). A direct or indirect effect on
gene expression may occur as growing cells adapt to the stress. To determine the
relative contribution of feedback inhibition and gene expression changes to secretion
fluxes, the following hypotheses were modeled with the assumption that secreted
metabolites mirror intracellular metabolic fluxes: (a) secretion is additive with no
destruction and no regulation (see Fig. S2a); (b) secretion fluxes are constant with
balanced secretion and absorption (Fig. S2b); (c) there is feedback inhibition with no
regulation (Fig. S2c); (d) there is synergistic negative feedback inhibition with compen-
satory gene regulation (Fig. S2d); and (e) there is positive upregulation in response to
increasing acetate (Fig. S2e). The modeling results (Fig. 4b versus Fig. S2d) indicate that
the experimental data most closely match a feedback inhibition model with no gene
regulation. The only exception is for acetate and succinate, which were discussed
previously. B. theta appears to respond to low concentrations of exogenous acetate
(�0.5 mM) by adjusting gene expression to decrease metabolic flux, but at acetate
levels up to 10 mM, no further changes in gene expression or other metabolic rerouting
occur.

Formate causes synergistic feedback inhibition of acetate, propionate, succi-
nate, histidine, cysteine, and glutathione. Formate is a major fermentation by-
product encountered in anaerobic environments. Like acetate, formate is produced
from the Embden-Meyerhof-Parnas fermentation pathway; however, formate can be
used as either an energy sink or an energy source depending on the levels of CO2 and
H2 or the redox state of ferredoxin. Thus, high formate concentrations may be syner-
gistic, additive, or have independent effects on secretion fluxes compared to those for

TABLE 3 Acetate suppression coefficients of secreted metabolites

Metabolite Fold suppression coefficient (�xvar) Pearson correlation (R2)

Acetate �0.00535 0.93736
Formate �0.05783 0.99941
Succinate �0.01478 0.94946
Propionate �0.07022 0.99859
Cysteine �0.28908 0.99990
Cystine �0.33741 0.99955
Glutathione �0.57522 0.99995
Lactate �0.57985 0.99998
Histidine �0.68781 0.99997
Asparagine �0.78083 0.99999
Alanine �1.00662 1.00000
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acetate alone. To differentiate between these possibilities, cultures were supplemented
with 10 mM both acetate and formate. NMR metabolomics was then used to charac-
terize the secreted metabolome. Growth experiments demonstrated that formate had
a synergistic effect on population doubling time (Table 1). Supplemented acetate and
formate appeared to be taken up from the culture medium, but the additional acetate
and/or formate did not affect biomass yield or pH. No new secreted metabolites were
observed in the culture medium, but a subset of organic acids (Fig. 5a) and amino acids
(Fig. 5b) did exhibit concentration changes relative to those in treatments with only 10
mM acetate. Notably, lactate, alanine, and asparagine secretion levels were unchanged.
These data suggest those biosynthetic reactions are unaffected by acetate or formate,
while other reactions are either directly affected by enzyme inhibition or indirectly
affected by changes in metabolic flux.

Visualization of dynamic metabolite secretion and effects of feedback inhibi-
tion. Animations of the dynamics of metabolic secretion (Movie S1), acetate inhibition
(Movie S2), and the modulation of acetate inhibition by formate supplementation
(Movie S3) are presented in the supplemental material. The animated models assume
linear secretion fluxes and illustrate the accumulation of secreted products in the
culture medium as a function of time and acetate and/or formate supplementation.

High-glucose models do not predict feedback inhibition by acetate or formate.
Empirical modeling suggested that the bioenergetics of glucose metabolism does not
change when acetate and/or formate accumulates in the culture medium. Therefore,
the observed changes in secreted metabolites must be due to increased CO2 and/or H2

secretion fluxes. To determine if in silico B. theta metabolic models can reproduce the
observed growth phenotypes, we conducted a series of in silico experiments to obtain
flux values for all reactions in the metabolic model and exchange fluxes for all substrate
compounds and product metabolites.

A limited effect on the key reaction fluxes (defined in millimoles per gram cell dry
weight per hour) was observed under high-glucose (0.02% [wt/vol]) conditions. In the
high-glucose flux balance analysis (FBA) models, there were no changes in predicted
biomass, which remained constant at 0.39 in all four experiments (Fig. 6a), or in
exchange fluxes with either acetate and/or formate supplementation (Fig. 6b). There
was only one discrepancy in a predicted reaction flux. The model shifts from using
asparagine synthetase (aspartate � glutamine � ATP � H2O ↔ asparagine � gluta-
mate � AMP � PPi) to using aspartate ammonium ligase (aspartate � NH3 � ATP ¡
asparagine � AMP � PPi) when either acetate and/or formate is included in the culture
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FIG 5 Effect of formate supplementation on acetate feedback inhibition. (a) Change in organic acid secretion with and without supplementation
of 10 mM acetate or a combination of 10 mM acetate (Ac) and 10 mM formate (Fo). (b) Change in secreted amino acids with and without
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P values for data in panels a and b are shown in Table S4. Error bars may be too small to see.
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medium (see Data Set S1). However, the glutamate, glutamine, asparagine, and aspar-
tate exchange fluxes were not altered in the model despite the changes in reaction flux.
We confirmed that either pathway can be deleted in the model and results in the same
exchange fluxes regardless of whether acetate or formate is supplemented. Thus, the
simulations show either metabolic pathway for asparagine synthesis can occur inter-
changeably in B. theta under the culture conditions we modeled.

Modeling suggests acetate and formate affect metabolism when glucose con-
centrations are low. The presence of acetate under low-glucose conditions (0.002%
[wt/vol]) results in an abundance of metabolic changes. When acetate was added,
whether in the presence or absence of formate, biomass decreased to 0.14 (Fig. 6a).
Exchange flux values for several metabolites were also affected (Fig. 6c and Data Set
S1). Some pathways, such as malate dehydrogenase, serine ammonia-lyase, and
formate-tetrahydrofuran (THF) ligase show a net flux of zero. Other reaction fluxes, such
as those corresponding to enzymes lactate dehydrogenase, succinyl-CoA synthetase,
and aspartate aminotransferase, incurred a change in directionality. The reaction for
aspartate oxidase had a zero-net flux under glucose-only or glucose and formate
conditions; however, the reaction had a flux of 0.0009 when acetate was present. Other
reactions retained their directionality, but the net flux exhibited a change in magnitude.
In the forward direction, examples of reactions that increased exchange flux in the
presence of added acetate included pyruvate kinase and aspartate aminotransferase,
while pyruvate carboxylase, pyruvate synthase, pyruvate dehydrogenase, and acetate
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FIG 6 Simulation of the effect of feedback inhibition on metabolism. (a) Predicted biomass in high-glucose (HG) and
low-glucose (LG) medium as acetate (Ac) and formate (Fo) concentrations were varied from 0 mM to 10 mM. (b) Predicted
effect of acetate and/or formate on exchange fluxes in HG medium. (c) Predicted effect of acetate on exchange fluxes in
LG medium. (d) Predicted effect of formate on exchange fluxes in LG medium. Green, increased exchange flux; red,
decreased exchange flux; gray, no net change in exchange flux due to metabolic rerouting; white, no change predicted.
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kinase had decreased flux. In the reverse reaction direction, pyruvate phosphate
dikinase had increased exchange flux and phosphotransacetylase had decreased flux.
No additional effect was observed when formate was combined with acetate.

The interchangeability of asparagine synthetase and aspartate ammonia ligase
pathways for asparagine synthesis was also observed under low-glucose conditions,
similar to what was seen under high glucose conditions (Fig. 6d). In addition, when
formate was added under low glucose conditions, the net flux of the pyruvate formate-
lyase reaction (formate � acetyl-CoA ↔ CoA � pyruvate) decreased from �3.74 to
�0.122, where a negative flux value indicates the reaction was being executed from
right to left. Under this condition, biomass decreased to a value of 0.27 (Fig. 6a).

The low-glucose model also predicts increased uptake of acetate and decreased
uptake of CO2 and cysteine when acetate is supplemented into the culture medium,
which is consistent with metabolomics data and the observed pH decrease. None of the
simulations resulted in changes in the secretion of organic acids or amino acids to the
culture medium. Modeling instead showed decreased production of a small amount of
molecular oxygen, lack of nitrite secretion, and increased secretion of xanthine under
low-glucose conditions with addition of acetate.

DISCUSSION
Feedback inhibition reveals metabolic plasticity and resiliency of B. theta. B.

theta is a ubiquitous and abundant member of the human gut microbiome. Accord-
ingly, B. theta is an attractive organism for investigating the interaction between genes,
environment, and system-level behaviors. B. theta is a strict anaerobe grown in sealed
culture tubes. Thus, by the law of conservation of mass, all mass inputs (culture medium
ingredients) and outputs (biomass and secreted metabolites) are accounted for in the
cell culture. Secreted metabolites, especially organic acids and amino acids, are impor-
tant mediators in microbial food webs and may play simultaneous roles as nutrients,
stimulators, and inhibitors. In this manner, secreted metabolites may affect overall
system behavior.

Metabolomics and cell growth data suggest fermentation products, acetate and
formate, cause large metabolic changes even when biomass yield is unaffected. B. theta
has two bidirectional acetate enzyme systems, Ack/Pta and acetyl-CoA pathways, and
the metabolomics and modeling data are consistent with B. theta using both of these
pathways to secrete acetate as an “overflow” of acetyl-CoA biosynthesis. Overflow
metabolism has been studied extensively in E. coli (37), where it is thought that excess
carbon from glucose is secreted as acetate due to metabolic bottleneck at pyruvate and
acetyl-CoA as a result of redox imbalance (38). In E. coli and Salmonella, secreted acetate
is recouped by the Ack and Pta enzymes during late stationary phase (51), where the
glyoxylate shunt is used to incorporate acetyl-CoA into biomass (52). While the en-
zymes involved in acetate secretion and uptake are conserved between E. coli and B.
theta, B. theta lacks the glyoxylate shunt and is an anaerobe that cannot carry out
oxidative respiration. The addition of acetate to the culture medium caused the
inhibition of acetate, formate, and propionate secretion by B. theta, but increased
succinate secretion as the next available “overflow valve.” This result may be explained
by feedback inhibition of acetyl-CoA hydrolysis and increased succinyl-CoA hydrolysis
later in the TCA cycle. Consequently, there was a decrease in the secretion of other
metabolic products (cysteine and other amino acids) downstream of succinate biosyn-
thesis. B. theta biomass yield was unaffected by supplemented acetate, as expected by
the lack of a glyoxylate shunt. The biomass yield did not increase despite a decrease in
the secretion of amino acids, indicating intracellular amino acid biosynthesis was
sufficient for maximum growth.

The addition of formate to the culture medium caused an inhibition in the secretion
of acetate and a subset of amino acids, while metabolites derived from oxaloacetate
and aspartate (lactate, asparagine, and alanine) were not affected. Formate and acetate
are both synthesized from pyruvate but have different effects on downstream “over-
flow” metabolites. One possible explanation for this difference is the fact that formate
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is a substrate for C1 metabolism (ultimately for glycine, serine, cysteine, and methyl
transfer reactions). Thus, the addition of formate increases the synthesis of amino acids,
lactate, and pyruvate (through serine ammonia-lyase), which may compensate for the
inhibition of acetate, succinate, and propionate.

Unexpectedly, not all metabolites were secreted and no new metabolites were
detected in culture medium as a result of acetate and/or formate inhibition. Several
central metabolites are simply too large to be nonspecifically secreted (phosphosugars
and CoA-oxoacids), but many nonsecreted TCA and amino acid biosynthetic interme-
diates are chemically similar to secreted metabolites. This suggests that metabolite
secretion is highly discriminated by transporters. B. theta also seems unable to relax
transporter specificity or to produce new transporters through changes in gene ex-
pression. In effect, B. theta did not relieve acetate or formate inhibition by secreting
other biosynthetic intermediates.

Another surprise was the observation that biomass yield was unaffected by the
physiological concentrations of acetate and/or formate. Accordingly, net bioenergetics
(ATP moles synthesized per mole substrate consumed) were also likely unaffected, even
though the rate of growth was significantly lower and there were large changes in
secretion profiles. The FBA model was able to accurately predict that acetate and
formate supplementation does not affect biomass (Fig. 3c versus Fig. 6a) under
high-glucose conditions. This leads to the question of where the unaccounted carbon
could have gone. A likely explanation is that the missing carbon mass was released as
CO2. Increased CO2 synthesis would manifest as a decrease in pH but would not
necessarily affect CO2-yielding decarboxylation reactions. At the partial pressures tested
here, decarboxylation reactions are virtually irreversible unidirectional reactions. Malate
dehydrogenase reversibly catalyzes the decarboxylation of oxaloacetate to produce
pyruvate and CO2. Malate dehydrogenase also reversibly oxidizes malate to produce
pyruvate, CO2, and NADPH. Our results can be explained if the forward malate dehy-
drogenase reaction is favored, with increased pyruvate being secreted as acetate and
formate. The low-glucose FBA models support this hypothesis and show that addition
of acetate results in nearly a 50% decrease in CO2 uptake from the culture medium (see
Data Set S1 in the supplemental material).

The FBA models for B. theta were unable to model secretion of organic acids and
amino acids (Fig. 2 versus Data Set S1), and though lowering the glucose concentration
in the growth medium caused some metabolic network changes, they did not com-
pletely predict the effect of acetate and formate on exchange fluxes (compare Fig. 4c
versus Fig. 6c and Fig. 5c versus Fig. 6d). One possibility is that the carbon predicted to
be secreted as xanthine (which was not detected experimentally) is instead used to
synthesize organic acids and amino acids. Under both the high-glucose and low-
glucose conditions, there were also unexpected results with respect to nitrite and
ammonia fluxes, suggesting unexplored C/N metabolic or regulatory relationships in B.
theta. Another possibility is that transporters (either specifically or nonspecifically)
secrete accumulated metabolite pools as part of “overflow metabolism.” These discrep-
ancies likely reflect technological limitations of in silico modeling, such as an inability to
predict allosteric or competitive inhibition, gene expression changes that might result
in specific or nonspecific activity of transmembrane transporters, or perhaps the activity
of poorly characterized enzymes or nonspecific aminotransferases and decarboxylases
(or other enzymes) that may affect exchange fluxes in unknown ways. By using
untargeted NMR metabolomics, we were able to detect and quantify metabolites in
culture medium with minimal sample processing in a relatively “agnostic” approach.
NMR data sets can be used to produce secretion flux maps that describe metabolic
behaviors without requiring genomic, biochemical, or transcriptomic information or, in
the reverse direction, may be used to infer the existence of unknown biochemical
pathways. We suggest that untargeted NMR metabolomics may be a useful tool to
inexpensively curate genome-scale metabolic models and could be essential for de-
veloping accurate dynamic FBA models.
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Are B. theta secretion signals of relevance to a host-microbiome system? It has

been hypothesized that amino acids can function as a “shared good” in microbe-host
ecosystems in which secreted “overflow” amino acids can be taken up by the host or
neighboring community members (commensalism). In this regard, a cell can dispose of
its excess amino acids while also benefitting near neighbors (mutualism). It is also
possible that these secreted amino acids are used in mutually beneficial metabolite
exchange (syntrophy) (53–55), for example, when metabolite secretion causes meta-
bolic feedback inhibition that can be relieved by a consumer partner. Detection of
amino acid products in B. theta culture supernatants supports the postulation that B.
theta is primed to participate in such cross-feeding interactions in the gut (56). Humans
are known to require branched-chain amino acids (leucine, isoleucine, and valine) and
conditionally essential amino acids (arginine, proline, cysteine, and glycine) as well as
lysine, threonine, methionine, tryptophan, phenylalanine, and histidine (57). The essen-
tial amino acid histidine and the conditionally essential amino acids cysteine and
glycine (as glutathione) were observed to be secreted by B. theta.

Besides nutrition, amino acids also have a wide range of roles in gut epithelial
metabolism and gut immune/neurological function. In fact, several amino acids are
secreted at high concentrations by B. theta. In gut epithelial cells, glutamate,
aspartate, and glutamine are substrates for ATP synthesis, glutamine, glycine, and
aspartate are used for nucleic acid synthesis, and threonine, cysteine, and proline
are used for mucin synthesis. Thus, a symbiotic relationship may exist between B.
theta and gut epithelium, where B. theta may provide essential amino acids critical
for gut epithelial metabolism.

Glutathione is a tripeptide of cysteine, glutamate, and glycine, which also has an
important role in epithelial cell viability. It can provide a source of amino acids, it can
protect against toxic xenobiotics, and it is important for cell signaling. Glutathione also
serves as a redox buffer and can protect cells from reactive oxygen species (ROS) or
oxidative stress (58). Thus, it is notable that B. theta was observed to secrete 121 � 16
�M glutathione into the culture medium. Since lactic acid bacteria produce H2O2 in the
gut to compete with anaerobes such as B. theta for glycan nutrients (59, 60), the
secretion of glutathione by B. theta may protect B. theta from these competing
microbes. Secreted glutathione may also protect B. theta from oxidative stress gener-
ated by host epithelia at the microbe-host interface (61–63). The amino acid compo-
nents of glutathione, glutamine, and glycine may act as neurotransmitters between gut
epithelia and the nerve cells that innervate the intestinal tract.

Cysteine (242 � 22 �M) and cystine (209 � 47 �M) were also secreted by B. theta.
Cysteine and cystine, like glutathione, can abiotically react with ROS or xenobiotic
compounds to protect cells from oxidative damage. Histidine was also secreted at high
levels (101 � 12 �M), which was nearly equivalent to that of lactate (120 � 25 �M).
Histidine is an essential amino acid and is a precursor to the immunological effector
histamine. Secretion of amino acids and glutathione by B. theta could potentially play
an important role in host nutrition, oxidative stress, neurological function, and immu-
nology.

Our metabolomics, theoretical modeling, and cell viability results support the
hypothesis that microbes in complex communities modulate B. theta’s metabolic
efficiency, which leads to changes in secreted metabolites that, in turn, are sensed as
chemical messages by the microbial community and host (54). Metabolic feedback
inhibition by fermentation products such as acetate and formate would be expected to
function through generalized cellular processes rather than through specific quorum
sensing. However, because acetate and formate are highly conserved major metabolic
end products synthesized by anaerobic microbes in the millimolar and high micromolar
concentration ranges, the local concentration achieved in gut microenvironments
could be sufficiently high to profoundly affect metabolism of neighboring microbes
and thus metabolism of the gut community as a whole.
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MATERIALS AND METHODS
Strains and culture conditions. Bacteroides thetaiotaomicron vpi-5482 (ATCC 29148, Buan lab strain

collection number NB203) was grown in minimal defined medium as described but with minor modi-
fications (64–66). Cultures were grown under strict anaerobic conditions at 37°C in 18-mm by 150-mm
Balch tubes in either tryptone and yeast extract (TYG) growth medium (vitamin K omitted) or a defined
medium (vitamin K omitted). Media were supplemented with glucose to 0.05% (wt/vol) (2.78 mM) under
a 5% H2, 20% CO2, N2 atmosphere with the following additions as appropriate: sodium acetate (10 mM),
sodium formate (10 mM), or a combination of both 10 mM sodium acetate and 10 mM sodium formate.
Growth was measured using optical density at 600 nm using a Spectronic D spectrophotometer (Thermo
Fisher Scientific) fitted with a Balch tube (18 mm) sample chamber. Biomass and optical density were
found correlate linearly with 0.54 � 0.056 g dry weight OD�1 liter�1 in defined medium.

NMR sample preparation. Five replicates of B. theta cultures were grown to late exponential stage
in 10 ml defined medium with 0.05% glucose and one of the following concentrations of acetate: 0.5 mM,
1 mM, 5 mM, 10 mM, or a 10 mM formate and 10 mM acetate control. Cells were separated from medium
with 0.2-�m filters by vacuum. Samples of filtered medium were flash frozen in liquid nitrogen and then
lyophilized overnight.

NMR data collection and analysis. One-dimensional (1D) 1H NMR data collection and analysis
were completed as described previously (40–42, 67–69). Briefly, samples from each class were
prepared for NMR analysis by dissolving the lyophilized culture medium into 600 �l of 50 mM
phosphate buffer (pH 7.2, uncorrected) in 99.8% D2O with 50 �M 3-(tetramethylsilane)propionic
acid-2,2,3,3-d4 (TMSP). NMR spectra were recorded at 298 K on a Bruker Avance III-HD 700 MHz
spectrometer equipped with a 5-mm inverse quadruple-resonance (1H, 13C, 15N, and 31P) cryoprobe
with cooled 1H and 13C channels and a z-axis gradient. A SampleJet automated sample changer with
Bruker ICON-NMR software was used to automate the NMR data collection. 1D 1H spectra were
collected using excitation sculpting to remove the solvent signal and avoid any need for baseline
corrections (70). A total of 16,000 data points with a spectral width of 5482.5 Hz, 8 dummy scans, and
128 scans were used to obtain each spectrum.

The 1D 1H NMR spectra were processed and analyzed using our MVAPACK metabolomics toolkit
(http://bionmr.unl.edu/mvapack.php) (71). The 1D 1H NMR spectra were Fourier transformed and phased
prior to normalization using phase scatter correction (72). Residual solvent peaks and noise regions were
removed, and the spectra were referenced to TMSP at 0.0 ppm. The spectra were then binned using an
intelligent adaptive binning algorithm (73) or aligned with the icoshift algorithm (74). The data were
scaled using the Pareto method prior to principal-component analysis (PCA) or orthogonal projections
to latent structures (OPLS) analysis (69).

Binned data were used for the PCA model, whereas the full spectral data were utilized for the OPLS
models. OPLS model results were validated using analysis of variance of the cross-validated residuals
(CV-ANOVA) significance testing (75). Fractions of explained variation (R2

X and R2
Y) were computed

during the OPLS model training. The OPLS models were also internally cross-validated using 7-fold Monte
Carlo cross-validation to compute Q2 values (76, 77).

The validated OPLS models enabled the generation of back-scaled loading plots to identify the
spectral features (NMR peaks) that primarily contributed to the observed group separation. The relative
peak intensities in these “pseudospectra” highlight the magnitude of the metabolite’s contribution to the
group separation in the OPLS scores plot. Similarly, the relative sign of the peak indicates if the
metabolite’s concentration increases or decreases due to the effects of the growth medium. All
nonoverlapping 1H NMR peaks identified by the back-scaled loading plots as a major contributor to
group separation in the OPLS scores plot were assigned to a metabolite using the Chenomx NMR suite
7.0 (Chenomx Inc., Edmonton, AB, Canada). 1H NMR peaks with significant overlap and multiple
metabolite assignments were excluded from further analysis.

Empirical modeling of metabolomics data. Secretion flux maps were generated using the follow-
ing equation:

F�x� � 100 �
xmolCx� n�1
i xnmolCxn

(1)

where the secretion flux (F) of any metabolite (x [mM]) is expressed as a % C mol fraction (molCx) of the
total carbon secreted.

Feedback inhibition was estimated using the following equation:

xsec � xobs � xinit (2)

where metabolite secretion (xsec) is determined by subtracting the amount of each metabolite in the
0 mM control treatment (xinit) from the amount of the metabolite observed (xobs) following the addition
of acetate.

The fold variance in metabolite secretion was estimated by

xvar � �xobs � Asup

xinit
� � 1 (3)

Where xobs in the observed concentration of each metabolite, Asup indicated the concentration of
acetate supplemented, and xvar is the magnitude of each “missing” metabolite.

In silico modeling and software. In silico experimentation is conducted using the Department of
Energy’s Systems Biology Knowledgebase (KBase) (78). A public narrative with all experiments recreated
can be found in KBase (https://narrative.kbase.us/narrative/ws.53087.obj.1). Applications used are part of
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the fba_tools module version 1.7.6 (78). Model creation begins with the genome Bacteroides thetaiotao-
micron VPI-5482 uploaded through KBase’s public NCBI RefSeq genome database. Using the “build
metabolic model” application, the draft metabolic models were created from an annotated genome. The
fba_tools default parameters were used. The in silico experimentation process with KBase consists of four
steps: (i) creating a draft metabolic model from the B. theta genome, (ii) defining the medium compo-
sition, (iii) gap filling the draft model to add in missing reactions, and (iv) running a flux balance analysis
(FBA). FBA provides a measurement of growth resulting from flux through the biomass reaction (grams
of dry weight of biomass) (https://kbase.us/metabolic-modeling-faq/).

It is critical to note that the draft B. theta model we employed may have missing reactions (gaps) due
to incorrect or incomplete functional genome annotations. We used the “gapfill metabolic model”
application on the draft model to identify a minimal set of biochemical reactions that, when added to
the draft model, allow it to achieve biomass on the specified media (https://kbase.us/metabolic
-modeling-faq/) (79). Gap filling uses linear programming to find the optimized metabolic model that
uses the fewest added reactions to satisfy the biomass reaction and to balance the flux balance equation.
We gap filled once for each of the eight media in our experimentation, creating eight metabolic models.
Then, starting with a base medium file containing 25 substrate compounds (full medium compositions
can be found in supplemental material), we added glucose, formate, and acetate at their desired
maximum uptake concentrations.

The “run flux balance analysis” (FBA) application was used to run the simulation. The FBA algorithm
is a constraint-based approach that estimates growth-optimal fluxes through all the reactions specified
by the metabolic network constructed in the previous step (https://kbase.us/metabolic-modeling-faq/).
This resulted in a rate of biomass production as a measure of growth. For each FBA, we used the
gap-filled model on the medium of interest and used each medium as input to the FBA algorithm to
maximize biomass (bio1). From the output of the FBA application, the objective value was used as a
measurement of growth and to capture the reaction and exchange fluxes, which were used to find flux
values of interest. All data and results are presented in our public KBase narrative (https://narrative.kbase
.us/narrative/ws.53087.obj.1).

The FBA models were created with either high or low levels of glucose, which were combined with either
the absence or presence of acetate and/or formate. This resulted in eight experiments: high glucose, high
glucose with acetate, high glucose with formate, high glucose with acetate and formate, low glucose, low
glucose with acetate, low glucose with formate, and low glucose with acetate and formate. The amount of
each compound used in the model is specified in the medium file, which defines maximum uptake as
measured in millimoles per gram cell dry weight per hour. Low glucose was defined as 0.1 maximum uptake,
high glucose was defined as 2.78 maximum uptake, and the presence of formate or acetate was set to 10
maximum uptake. The absence of formate or acetate was set to 0 maximum uptake.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
MOVIE S1, GIF file, 0.1 MB.
MOVIE S2, GIF file, 0.1 MB.
MOVIE S3, GIF file, 0.1 MB.
FIG S1, PDF file, 1.8 MB.
FIG S2, EPS file, 1.0 MB.
TABLE S1, DOCX file, 0.1 MB.
TABLE S2, DOCX file, 0.1 MB.
TABLE S3, DOCX file, 0.1 MB.
TABLE S4, DOCX file, 0.1 MB.
DATA SET S1, XLSX file, 0.1 MB.
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	RESULTS
	Untargeted metabolomics reveals B. theta secretes a subset of amino acids in addition to organic acid fermentation products. 
	B. theta growth is inhibited by acetate and formate. 
	Feedback inhibition by acetate causes suppression of metabolite secretion. 
	Feedback inhibition is the primary driver of acetate inhibition effects. 
	Formate causes synergistic feedback inhibition of acetate, propionate, succinate, histidine, cysteine, and glutathione. 
	Visualization of dynamic metabolite secretion and effects of feedback inhibition. 
	High-glucose models do not predict feedback inhibition by acetate or formate. 
	Modeling suggests acetate and formate affect metabolism when glucose concentrations are low. 

	DISCUSSION
	Feedback inhibition reveals metabolic plasticity and resiliency of B. theta. 
	Are B. theta secretion signals of relevance to a host-microbiome system? 
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