
Chapter 19

Metabolomics Analyses from Tissues in Parkinson’s
Disease

Fatema Bhinderwala, Shulei Lei, Jade Woods, Jordan Rose,
Darrell D. Marshall, Eli Riekeberg, Aline De Lima Leite, Martha Morton,
Eric D. Dodds, Rodrigo Franco, and Robert Powers

Abstract

Metabolomics has been successfully applied to study neurological and neurodegenerative disorders includ-
ing Parkinson’s disease for (1) the identification of potential biomarkers of onset and disease progression;
(2) the identification of novel mechanisms of disease progression; and (3) the assessment of treatment
prognosis and outcome. Reproducible and efficient extraction of metabolites is imperative to the success of
any metabolomics investigation. Unlike other omics techniques, the composition of the metabolome can be
negatively impacted by the preparation, processing, and handling of these samples. The proper choice of
data collection, preprocessing, and processing protocols is similarly important to the design of an effective
metabolomics experiment. Likewise, the correct application of univariate and multivariate statistical meth-
ods is essential for providing biologically relevant insights. In this chapter, we have outlined a detailed
metabolomics workflow that addresses all of these issues. A step-by-step protocol from the preparation of
neuronal cells and metabolomic tissue samples to their metabolic analyses using nuclear magnetic reso-
nance, mass spectrometry, and chemometrics is presented.
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1 Introduction

Parkinson’s disease (PD), the second most common neurodegen-
erative disorder worldwide, is characterized by the selective loss of
dopaminergic neurons of the substantia nigra pars compacta
(SNpc) [1]. There is no current treatment to stop neuronal cell
death progression or to cure PD. Thus, to find neuroprotective
strategies, a clear understanding of the mechanism(s) involved in
dopaminergic cell death is needed. Mitochondrial dysfunction and
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the concomitant alterations in redox homeostasis and bioenergetics
(energy failure) are thought to be a central component of PD
[2–4]. One means of analyzing the state of a biological system is
by monitoring the metabolome, i.e., all the metabolites present in a
cell, biofluid, tissue, organ, or organism [5, 6]. In this regard,
metabolomics is the study of the changes in the concentration
and the identity of these metabolites that result from environmental
or genetic stress or from a disease state or drug treatment. A better
understanding of the biological phenotype during disease develop-
ment and progression may be achieved by identifying and quantify-
ing variations in metabolite levels. In essence, metabolomics
provides a top-down view of complex biological systems. Accord-
ingly, metabolomics has evolved to become an important resource
for systems biology and a valuable tool to study disease states
[7]. Metabolomics has been successfully applied to study neurolog-
ical and neurodegenerative disorders [8]. Indeed, previous studies
have demonstrated the applicability of metabolomics in (1) the
identification of potential biomarkers of PD diagnosis, onset, and
progression [9–11]; (2) the identification of novel mechanisms of
disease progression [12–15]; and (3) the assessment of treatment
prognosis and outcome [16]. Using metabolomics, we and others
have established a link between the alterations in central carbon
metabolism induced by PD risk factors, redox homeostasis, and
bioenergetics and their contribution to the survival or death of
dopaminergic cells [2].

Unlike other omics techniques, the composition of the meta-
bolome can easily change from the processing, handling, and stor-
age of samples [17]. Metabolites may chemically transform or
degrade due to residual enzymatic activity, from oxidation, from
low chemical stability, or from other chemical activity. Thus, robust
and reproducible isolation of metabolites is a key step in the meta-
bolomics workflow. Univariate and multivariate statistical analyses
are also an important aspect of a metabolomics study [18]. But the
incorrect application of statistical techniques, the insufficient pre-
processing, the lack of proper model validation, and the overinter-
pretation of models and outcomes are all common concerns that
often lead to erroneous or misleading biological insights from
metabolomics data [18]. Metabolomics has commonly relied on
mass spectrometry (MS) [19] or nuclear magnetic resonance
(NMR) [20] as the primary analytic source for sample analysis.
Again, a successful metabolomics investigation is dependent on
appropriate protocols for data collection, processing, and analysis.
To address these issues, we have provided a detailed, step-by-step
description of a metabolomics workflow specifically applicable to
the analysis of brain cell cultures and tissues used in our research
using PD experimental models (see Fig. 1). We describe methods to
assist in the efficient cell culturing, metabolite extraction, and data
collection and analyses. Alongside, we discuss a combined NMR
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and MS approach to improve metabolome coverage, which allows
for the identification of key neurological metabolites. While the
protocols outlined in this chapter have been developed using PD
experimental models, most of the methodology may be universally
applied to any metabolomics study.

2 Materials

Prepare all aqueous solutions and buffers with either Nanopure
H2O or deuterated water (D2O). Please follow all safety regulations
in regard to handling biological samples and the disposal of both
chemical and biological waste. A valuable rule of thumb in the
handling of all tissues, biofluids (e.g., blood, urine, etc.), and cell
lines is to assume a contamination with a virus, pathogen, or toxin
and to handle the samples accordingly.

2.1 Laboratory

Equipment

1. Bruker AVANCE III HD 700 MHz NMR spectrometer
equipped with a 5 mm quadruple resonance QCI-P cryoprobe
(1H, 13C, 15N, and 31P) with z-axis gradients, an automatic
tune and match system (ATM), and a SampleJet automated
sample changer system with Bruker ICONNMR software
(Bruker BioSpin, Billerica, MA).

2. Synapt G2 HDMS quadrupole time-of-flight (TOF) MS
instrument equipped with an ESI source (Waters, Milford,
MA).

3. Waters ACQUITY M-class Xevo G2-XS QToF MS instrument
equipped with an ESI source (Waters, Milford, MA).

4. BSL-2 biosafety level grade hood (e.g., Biological Safety Cabi-
net, LF BSC class 2 type A, Thermo Fisher Scientific, Waltham,
MA).

Fig. 1 A schematic diagram is shown that outlines the overall metabolic workflow used in the analysis of brain
cell cultures and tissues from experimental PD models. Only the major protocol steps are highlighted in the
flow diagram. The figure was generated using free medical images from Servier Medical Art (https://smart.
servier.com/) under the Creative Commons License Attribution 3.0 Unported (CC BY 3.0)
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5. Nanopure ultra water system (Barnstead Inc., Dubuque, IA).

6. Lab Armor bead bath (Chemglass Life Sciences, Vineland, NJ).

7. Incubator capable of maintaining physiological temperature
and proper carbon dioxide levels (e.g., Heracell VIOS 250i
CO2 Incubator, Thermo Fisher Scientific, Waltham, MA).

8. pH meter and probe.

9. Refrigerated centrifuge capable of speeds up to 21,100 � g
(e.g., Sorvall micro 21R centrifuge, Thermo Fisher Scientific,
Waltham, MA).

10. SpeedVac for solvent removal (e.g., Savant SC210A SpeedVac
concentrator, Thermo Fisher Scientific, Waltham, MA).

11. Freeze dryer to remove water (e.g., FreeZone 4.5, Labconco,
Kansas City, MO).

12. 1000 μL to 1 μL pipettes.

13. FastPrep-96 homogenizer (MP Biomedicals, Santa Ana, CA)
for brain tissue analysis, which uses Lysing Matrix D.

14. Accu-Scope 3030 ph microscope (Commack, NY).

15. Cryogenic storage container (Taylor Wharton, Theodore, Al).

16. �80 �C freezer.

2.2 Disposable

Supplies

1. 1 mL to 1 μL pipette tips.

2. 10 mL aspirating pipettes.

3. 15 mL Falcon tubes.

4. 2 mL Eppendorf tubes.

5. 1 mL screw-cap microcentrifuge tubes.

6. LC-MS certified total recovery vial (Waters, Milford, MA).

2.3 Isotopically

Labeled Solvents and

Reagents (See Notes 1

and 2)

1. Deuterium oxide (D2O, 99.8 atom %D).

2. 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt
(TMSP-d4, 99.8 atom % D).

3. Dimethyl sulfoxide-d6 (DMSO-d6, 99.8 atom %D).

4. 13C6-glucose (99%
13C).

5. 13C2-acetate (99%
13C).

6. Other potential 13C-carbon-labeled or 15N-nitrogen-labeled
reagents.

2.4 Buffers 1. Wash buffer, phosphate-buffered saline (PBS) at pH 7.4:
137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM
KH2PO4. To prepare 1 L PBS buffer at pH 7.4, add 8.0 g of
NaCl, 0.2 g of KCl, 2.68 g of Na2HPO4

.7H20, and 0.24 g of
KH2PO4 to a final volume of 1 L of Nanopure water.
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2. NMR buffer: 50 mM phosphate buffer at pH 7.2 (uncorrected,
see Note 3) in 600 μL of 99.8% D2O. Add 50 μM
(one-dimensional [1D] NMR experiment) or 500 μM
(two-dimensional [2D] NMR experiment) TMSP-d4 as an
internal chemical shift reference.

3. MS extraction buffer: Mix 20 mL LC-MS grade water with
80 mL LC-MS grade methanol. Store at �40 �C.

4. MS reconstitution solution: LC-MS grade water with 0.1%
LC-MS grade formic acid.

5. LC mobile phase A: LC-MS grade water with 0.1% LC-MS
grade formic acid.

6. LC mobile phase B: LC-MS grade acetonitrile/methanol with
0.1% LC-MS grade formic acid.

2.5 Cell Lines and

Media

1. For cell cultures, we have used human dopaminergic neuro-
blastoma cell lines such as SK-N-SH (HTB-11, ATCC, Mana-
ssas, VA) [15], SH-SY5Y (CRL-2266, ATCC), N27
immortalized rat dopaminergic cells (SCC048, EMD Milli-
pore, Temecula, CA) [21], human immortalized midbrain
neuronal precursors LUHMES (CRL-2927, ATCC), and pri-
mary rat/mouse astrocytes [22] following the specifications of
the commercial providers or published protocols.

2. Cell culture media and supplements are obtained from com-
mercial vendors such as GIBCO/Life Technologies (Grand
Island, NY), Fisher Scientific, Hyclone (GE Healthcare,
Logan, UT), and Atlanta Biologicals (Flowery Branch, GA).

2.6 Software and

Databases

1. Bruker ICONNMR software for automated NMR data acqui-
sition (Bruker BioSpin, Billerica, MA).

2. MVAPACK metabolomics toolkit for processing and analyzing
chemometric data (http://bionmr.unl.edu/mvapack.
php) [23].

3. PCA/PLS-DA utilities for quantifying separation in PCA,
PLS-DA, and OPLS-DA scores plots (http://bionmr.unl.
edu/pca-utils.php) [24].

4. NMRPipe software for processing and visualizing NMR data
(https://www.ibbr.umd.edu/nmrpipe/install.html) [25].

5. NMRViewJ software for processing and visualizing NMR data
(One Moon Scientific, Inc. Westfield, NJ; https://nmrfx.
org/) [26].

6. MassLynx V4.1 (Waters Corp., Milford, MA) for mass spectral
data processing (http://www.waters.com/waters/en_US/
MassLynx-Mass-Spectrometry-Software-/nav.htm?locale¼en_
US&cid¼513164).
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7. Progenesis QI (version 2.0, Nonlinear Dynamics, Newcastle,
UK) for processing and analysis of LC-MS data (http://www.
nonlinear.com/progenesis/qi/).

8. R statistical package (https://www.r-project.org/) [27].

9. Chenomx (Chenomx, Inc., Edmonton, AB, Canada) software
for automated metabolite assignment and quantification from
1D 1H NMR spectra (https://www.chenomx.com/).

10. MZmine software (http://mzmine.github.io/download.html)
for metabolite identification from MS data [28].

11. MetaboAnalyst software for the statistical, functional, and inte-
grative analysis of metabolomics data (http://www.meta
boanalyst.ca/) [29].

12. ChemSpider chemical structure database http://www.
chemspider.com/ [30].

13. Human Metabolome Database (HMDB) of reference NMR
and mass spectral data for known metabolites (http://www.
hmdb.ca/) [31].

14. Biological Magnetic Resonance Data Bank (BMRB) of refer-
ence NMR data for known metabolites (http://www.bmrb.
wisc.edu/metabolomics/) [32].

15. Nonuniform schedule (NUS) generator (http://bionmr.unl.
edu/dgs-gensched.php) for NUS NMR data acquisition [33].

3 Methods

3.1 Experimental PD

Models

The etiology of PD has yet to be clearly established. The major risk
factor identified for PD is aging as its prevalence and incidence
increases exponentially from ages 65 to 90 [21]. A fraction of PD
occurrence (~10%) is related to mutations in genes such as those
encoding α-synuclein (SNCA/PARK1-4), DJ-1 (PARK7), PTEN-
induced putative kinase 1 (PINK1/PARK6), leucine-rich repeat
kinase 2 (LRRK2/PARK8), and parkin (PARK2) [22, 34]. How-
ever, over 85% of PD occurs in a sporadic (idiopathic) form without
a clearly defined genetic basis. Epidemiological studies suggest that
lifestyle, occupational, and environmental exposures can increase
the risk of developing PD [35–37]. Thus, it is thought that PD
arises from the convergence of genetic susceptibility, environmental
exposures, and aging.

Cellular and animal disease models based on both genetic-,
toxin- or stress-induced neurodegeneration have been used to
understand PD pathogenesis [36, 38] (see Fig. 2). However, not
all experimental models recapitulate all PD hallmarks in their
entirety. Genetically engineered PD mouse models have been
developed for the overexpression of mutant genes
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[34, 36]. However, only marginal or null dopaminergic cell death
has been observed in genetic-based animal models. Recent
advances in mammalian genome engineering technology have led
to the generation of rat PD models that seem to better reproduce
PD hallmarks including progressive loss of dopaminergic neurons,
locomotor behavior deficits, and age-dependent formation of
abnormal α-synuclein protein aggregates (Lewy bodies) [39].

On the other hand, the use of mitochondrial/environmental
toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP, or its active metabolite 1-methyl-4-phenylpyridine
MPP+) and the pesticides rotenone and paraquat that induce dopa-
minergic cell death in vitro and in vivo is supported by clinical and
epidemiological studies [36]. Several other toxicants such as
metals, diverse pesticides, polychlorinated biphenyls, diet, as well
as inflammatory processes have been implicated as PD risk factors
[40, 41]. However, it is clear that not a single environmental
exposure is responsible for all PD cases nor are they the single
cause for PD. Accordingly, newmodels studying gene-environment
interactions have also emerged.

For the most part, experimental PD models are designed to
reproduce one or more key aspects of PD pathogenesis including
genetic modifications, mitochondrial dysfunction, oxidative stress,
accumulation of misfolded aggregates and impaired proteostatic
processes, alterations in dopamine metabolism, and inflammation
[36]. Experimental PD models have helped to identify important
mechanisms regulating dopaminergic cell death and survival, and
they should continue to enhance our understanding of PD patho-
genesis. In our metabolomics investigations, we have used

Fig. 2 Common models of PD. (a) A summary of advantages and disadvantages of common models of PD. (b) A
list of some model-specific characteristics observed for different PD models. The figure was generated using
free medical images from Servier Medical Art (https://smart.servier.com/) under the Creative Commons
License Attribution 3.0 Unported (CC BY 3.0)

Metabolomics Protocols 223

https://smart.servier.com/


neuronal-like cell cultures of neuroblastoma cells and immortalized
midbrain dopaminergic cells from rats and humans exposed to
PD-related insults and gene-environment interactions. In addition,
we have also evaluated changes in the metabolome of mice exposed
to pesticides and heavy metals linked to PD or parkinsonism
[15, 42]. The protocol described below is a general protocol for
isolating and characterizing changes in the metabolome applicable
to different types of cell cultures and brain.

3.2 Cell Culture Cell culture procedures must follow published guidelines to avoid
misidentification and contamination [43]. We recommend to start
with one 100 mm2 dish of 90% confluent cells per sample/replica,
but if the metabolite is abundant enough, this can be reduced to a
smaller sample size.

For PD-related insults, cells can be treated with mitochondrial
toxins (MPP+ or rotenone), pesticides (paraquat or dieldrin) or the
overexpression of PD-related genes (WT or mutant forms of
α-synuclein via viral vectors or conventional transfection proce-
dures), as explained in our previous publications [15, 42]. The
exact dose and time course must be determined empirically, but
we recommend to work with a dose that will induce cell death of
~50% within no less than 48 h as neurodegeneration is a slow
process and evaluate changes in the cellular metabolome prior to
any detection of cell death (~24 h of treatment) (see Notes 4–6 for
considerations in regard to cell survivability, sample handling, and
randomization).

3.3 Unlabeled

Metabolomics Sample

Number/Replicas

Use the maximal number of replicates per group that is possible (see
Note 7). A typical number of replicate cultures per group is ten.
Adjust the number of replicates given practical considerations, such
as the number of groups, but the number of replicates per group
should not be below six.

3.4 Isotopically

Labeled Metabolomics

Samples

Identify the 13C-, 15N-, or other isotopically labeled tracers. The
tracer should be in accordance with the metabolic pathway of
interest and expected to be affected by the experimental treatment.
13C6-glucose is a common choice for a tracer since it highlights
central carbon metabolism (glycolysis and TCA cycle), but a variety
of other tracers may be used. Supplement the culture media with
the appropriate 13C-carbon-labeled source (see Note 8).

3.5 Extracting

Water-Soluble

Metabolites from PD

Cell Cultures

All samples should be kept on ice or at 4 �C during sample prepara-
tion or handling. Samples should be stored at �80 �C, but, ideally,
samples should be immediately analyzed. In addition to keeping
samples cold, there are four other issues that are critical to the
successful preparation of metabolomics samples: (1) speed, (2) con-
sistency, (3) random processing of samples, and (4) the efficient
removal of all biomolecules and cell debris [6]. The processing of all
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metabolomics samples should proceed as quickly as possible while
minimizing any loss in quality. Metabolites can chemically degrade
or transform within milliseconds due to enzymatic activity, oxida-
tion, chemical instability, or any number of other chemical pro-
cesses [44]. Accordingly, rapidly inactivating and removing all
biomolecules and cell debris (usually through methanol/ethanol
precipitation) that may transform or bind a metabolite is a necessary
step of the protocol (see Note 9).

1. Collect 1 mL of the media for metabolomics analysis. In addi-
tion to the cell extract, the media should also be analyzed for
metabolomics changes as many metabolites get exchanged or
effluxed outside of the cell. In this regard, the media is treated
simply as another cell extract.

2. Wash the cells twice with 5 mL of PBS to remove debris.
Discard the wash.

3. Lyse and quench cells with 1 mL of prechilled methanol at
�20 �C. Incubate cells at �80 �C for 15 min.

4. Using a cell scraper, detach and collect cell debris and methanol
in a 2 mLmicrocentrifuge tube. Confirm cell detachment using
a microscope and repeat lyse and quenching if necessary.

5. Centrifuge the 2 mL microcentrifuge tube for 5 min at
15,000 � g and 4 �C to pellet the cell debris.

6. Collect the supernatant and transfer to a new 2 mL
microcentrifuge tube.

7. Repeat the metabolome extraction by adding 0.5 mL of an
80%/20% mixture of methanol/water kept at �20 �C to the
cell pellet.

8. Centrifuge the cell pellet with the extraction solvent for 5 min
at 15,000 � g at 4 �C to pellet the cell debris.

9. Collect the supernatant, and transfer it to the 2 mL microcen-
trifuge tube containing the original methanol extract. Com-
bine the two extraction supernatants into a single tube.

10. Repeat the metabolome extraction a third time by adding
0.5 mL of ice cold water to the cell pellet.

11. Centrifuge the cell pellet with the extraction solvent for 5 min
at 15,000 � g at 4 �C to pellet the cell debris.

12. Collect the supernatant, and transfer it to the 2 mL microcen-
trifuge tube containing the two previous extraction superna-
tants. Combine the three extraction supernatants into a
single tube.

13. Split the sample into two 2 mL Eppendorf tube. Aliquot
100 μL for MS analysis, and the remainder of the sample is
used for NMR analysis.
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14. Use a SpeedVac or a rotary evaporator to remove the methanol.

15. Flash-freeze the samples in liquid nitrogen.

16. Remove the water and bring to dryness using a lyophilizer.

17. Repeat steps 1–16 for each replicate and for each group (see
Note 6).

18. Store samples in a �80 �C freezer or proceed to preparing the
NMR and/or MS samples (see Subheadings 3.7 and 3.8).

3.6 Extracting

Water-Soluble

Metabolites from

Mouse Brain Tissue

1. Similar to cell culture treatments, a number of experimental
paradigms have been used to model PD in vivo [27, 36]. We
have used the subchronic exposure to pesticides and metals
[15], but the protocol described can be applied to all murine
animal models.

2. We have successfully used 200mg/kg of 13C6-glucose at a total
volume of 100 μL administered to fasted mice (overnight) via
intra-orbital injection to label metabolites extracted from
mouse brain tissue (Fig. 3).

Fig. 3 In vivo evaluation 13C6-glucose metabolism. Fasted mice (overnight) were
administered 13C-glucose (200 mg/kg body weight, 100 μL) via retro-orbital
injection, and brain regions were dissected at the time indicated for NMR
analysis
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3. Harvest and dissect the mice brain tissue (15–20 min after the
injection of 13C-labeled tracer if used, see Fig. 3).

4. Transfer the tissue to a 2 mL microcentrifuge tube containing
Lysing Matrix D, and weigh the amount of tissue harvested
from the mice, and immediately freeze the tissue with liquid
nitrogen.

5. Extract the tissue with a 1:1 mixture of methanol and water
prechilled to �20 �C. The volume of the extraction solvent
depends upon the weight of the tissue.

6. Homogenize the sample in a FastPrep with Lysing Matrix D at
1300 rpm for 20 s and for two cycles.

7. Incubate the tissue at �80 �C for 10 min to extract the
metabolome.

8. Centrifuge at 1000 � g for 10 min at 4 �C to remove tissue
debris.

9. Collect the supernatant and transfer to a new 2 mL
microcentrifuge tube.

10. Repeat the metabolome extraction by adding 0.7 mL of 1:1
mixture of methanol and water prechilled to �20 �C to the
tissue pellet.

11. Repeat steps 6–8 and combine the supernatant with the previ-
ous extract.

12. Normalize the metabolomics sample to the tissue weight by
diluting all of the samples to a final volume of 1.5 mL. Add as
much of a 1:1 mixture of methanol and water prechilled to
�20 �C as needed to achieve a final volume of 1.5 mL.

13. Split the sample into two 2 mL Eppendorf tubes. Aliquot
100 μL for MS analysis, and the remainder of the sample is
used for NMR analysis.

14. Use a SpeedVac or a rotary evaporator to remove the methanol.

15. Flash-freeze the samples in liquid nitrogen.

16. Remove the water and bring to dryness using a lyophilizer.

17. Repeat steps 3–16 for each replicate and for each group (see
Note 6).

18. Store samples in a �80 �C freezer or proceed to preparing the
NMR and/or MS samples (see Subheadings 3.7 and 3.8).

3.7 Preparation of

NMR Samples

1. For one-dimensional (1D) NMR experiments, lyophilized cell-
free lysates or tissue extracts are suspended in 600 μL of 100%
50 mM D2O phosphate buffer (uncorrected pH 7.2) with
50 μM 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium
salt (TMSP-d4).
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2. For two-dimensional (2D) NMR experiments, lyophilized cell-
free lysates or tissue extracts are suspended in 600 μL of 100%
50 mM D2O phosphate buffer (uncorrected pH 7.2) with
500 μM TMSP-d4.

3. Centrifuge the sample at 14,000 � g for 10 min to remove any
particulates.

4. The sample is transferred to a 400 5 mM SampleJet NMR tube
with a pipette (see Note 10).

5. Repeat steps 1–4 for each replicate and for each group (see
Note 6).

6. Each sample is added to a 96-well plate SampleJet configura-
tion equilibrated to 4 �C to prevent metabolite degradation (see
Fig. 4).

3.8 Preparation of

Mass Spectrometry

Samples

1. Dissolve lyophilized cell-free lysates or tissue extracts in 20 μL
of reconstitution solution and vortex for 30 s.

2. Centrifuge the solution at 14,000 � g for 10 min to remove
any particulate matter.

3. Transfer the supernatant to LC vials and keep them in wet ice.

Fig. 4 High-throughput sample preparation. Images illustrating the loading of replicate metabolomics samples
into the (a) 96-well plate SampleJet configuration and (b) the LC-MS autosampler
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4. Repeat steps 1–3 for each replicate and for each group (see
Note 6).

5. Prepare quality control (QC) samples by pooling a 1 μL aliquot
from each biological sample and transferring to a new LC vial
labeled as QC.

6. Place all vials into the autosampler equilibrated to 4 �C to
prevent metabolite degradation (see Fig. 4).

3.9 NMR Data

Collection

All NMR experiments are conducted at 298 K using a Bruker
AVANCE III HD 700 MHz spectrometer equipped with a 5 mm
quadruple resonance QCI-P cryoprobe (1H, 13C, 15N, and 31P)
with z-axis gradients. An automatic tune and match system (ATM)
and a SampleJet automated sample changer system with Bruker
ICONNMR software were used to automate the NMR data collec-
tion (see Fig. 5).

3.9.1 1D 1H NMR 1. Load the NMR metabolomics samples into the SampleJet
automated sample changer system (see Fig. 4). Check that the
SampleJet is in the correct mode (i.e., 5 mm tubes).

2. Log into an account on the spectrometer workstation and start
the Topspin software.

3. The first NMR sample is lowered into the magnet using the
Bruker command, sx 101, where 101 corresponds to sample
one in rack one.

4. The spectrometer is locked onto the D2O solvent frequency
using the Bruker command, lock D2O.

5. The NMR sample is shimmed for optimal signal and suppres-
sion of the water signal by typing the Bruker command topshim.
This will initiate an automated gradient shimming procedure,
which may take a few minutes to complete (see Note 11).

6. The sample is automatically tuned and matched using the ATM
system by typing the Bruker command atma.

7. The 90-degree pulse length (μs) is determined by measuring a
null spectrum with an approximate 360-degree pulse using the
Bruker zg pulse sequence (see Note 12).

8. A 1D 1H NMR spectrum is obtained for each sample using a
standard excitation sculpting water suppression pulse program
(Bruker zgesgp pulse sequence) that provides optimal suppres-
sion of the residual water signal while maintaining a flat base-
line (see Note 13).

9. Typical experimental parameters for a 1D 1H NMR spectrum
obtained on a Bruker 700MHz spectrometer with a cryoprobe
correspond to 128 scans, 16 dummy scans, 32,768 data points,
a spectral width of 11,160.7 Hz, and a relaxation delay of 1.5
(see Note 14).
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10. Automated data collection of the entire set of metabolomics
samples is accomplished using Bruker ICONNMR 5 (see
Fig. 5).

11. The sample filename, solvent, pulse program, and temperature
parameters are all defined in Bruker ICONNMR 5 (see Notes
15–17).

12. Collect the 1D 1H NMR spectrum for each replicate and each
group (see Note 6).

13. The data is processed initially with Topspin to verify spectral
quality but exported for further analysis (see Fig. 6a).

Fig. 5 High-throughput NMR data collection. ICONNMR screenshots illustrating the stepwise workflow for
setting up a high-throughput 1D 1H NMR metabolomics screen
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3.9.2 2D 1H-13C-HSQC

NMR (See Note 18)

1. Follow steps 1–7 from Subheading 3.9.1.

2. Using ICONNMR 5, the sample filename, solvent, pulse pro-
gram, and temperature parameters are adjusted (see Notes
15–17).

3. The ICONNMR setup is similar to a 1D 1H NMR data collec-
tion as shown in Fig. 5.

4. A standard 2D 1H-13C-HSQC experiment (Bruker hsqcetgp-
sisp2 pulse program) is used to determine the 1H-13C chemical
shift correlations for all 13C-labeled metabolites in the meta-
bolomics sample (see Note 19).

5. Typical experimental parameters for a 2D 1H-13C-HSQC
NMR spectrum obtained on a Bruker 700 MHz spectrometer
with a cryoprobe correspond to 128 scans, 32 dummy scans,
and a 1.0 s relaxation delay. The spectrum is collected with 2 K
data points and a spectrum width of 4734 Hz in the direct
dimension and 64 data points and a spectrum width of
18,864 Hz in the indirect dimension (see Note 14).

6. Implementation of fast NMR methods that includes nonuni-
form sampling significantly decreases data acquisition time
and/or increases spectral resolution but may introduce artifacts
(see Note 20).

7. Collect the 2D 1H-13C-HSQC NMR spectrum for each repli-
cate and each group (see Note 6).

8. The data is processed initially with Topspin to verify spectral
quality but exported for further analysis (see Fig. 6b).

Fig. 6 NMR metabolomics spectral data. Examples of a typical (a) 1D 1H NMR spectrum and a (b) 2D 1H-13C
HSQC spectrum acquired from PD metabolomics samples
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3.10 Mass

Spectrometry Data

Collection

3.10.1 Direct-Injection

(DI) Mass Spectrometry

1. Positive-ion direct infusion electrospray ionization mass spec-
trometry (DI-ESI-MS) data are collected on a Synapt G2
HDMS quadrupole time-of-flight (TOF) MS instrument
equipped with an ESI source.

2. The mass spectrometry experiments are carried out at a flow
rate of 10 μL/min for 1 min.

3. The mass spectra are acquired in positive ion and negative
mode over a mass range of m/z 50–1200.

4. Mass spectra are acquired for 0.5 min using the following
optimized source conditions: 2.5 kV for ESI capillary voltage,
60 V for sampling cone voltage, 4.0 V for extraction voltage,
80 �C for source temperature, 250 �C for desolvation temper-
ature, 500 L/h for desolvation gas, and 15 μL/min flow rate of
injection.

5. Collect the DI-ESI-MS mass spectral data for each replicate
and each group (see Note 6 and Fig. 7).

Fig. 7 MS metabolomics data. Examples of (a) typical DI-ESI-MS spectrum, (b) typical analysis sequence, (c)
LC base peak chromatograms, and (d) MS spectrum acquired from metabolomics samples
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3.10.2 Liquid

Chromatography-Mass

Spectrometry

1. Liquid chromatography-mass spectrometry (LC-MS) data are
collected on a Waters ACQUITY M-class Xevo G2-XS QToF
MS instrument equipped with an ESI source.

2. The LC-MS mass spectrum are acquired with the following
system parameters:

l LC system: Waters ACQUITY M-class.

l Column: ACQUITY HSS T3 column 1.0 mm � 100 mm.

l Mobile phase A: 0.1% formic acid in water.

l Mobile phase B: 0.1% formic acid in acetonitrile.

l Flow rate: 70 μL/min.

l Run time: 10 min.

l Injection volume: 2 μL.
l MS system: Xevo G2-XS QToF.

l Ionization mode: ESI + and –.

l Capillary voltage: 2.8 kV.

l Cone voltage: 30 V.

l Source temp: 120 �C.
l Desolvation temp: 500 �C.
l Cone gas flow: 18 L/h.

l Lock mass:

– Positive mode: leucine-enkephalin, m/z 556.2771.

– Negative mode: leucine-enkephalin, m/z 554.2615.

l Acquisition mode: MSE.

l Acquisition range: 50–1200 m/z.

l Collision energy (LE): 6 eV.

l Collision energy (HE): 20–40 eV.

3. The temperature for the LC column and autosampler is set to
40 �C and 4 �C, respectively.

4. Create a sample analysis sequence and inject the QC samples
five times for column conditioning. After second QC injection,
monitor peak area (<25% RSD), retention time (�0.05 min),
and mass accuracy (�3 ppm) until the end of the fifth injection.
If the QC samples pass the minimal system performance para-
meters, then acquire data. If not, do not collect data until the
issue has been resolved and the QC samples pass the minimal
system performance parameters.

5. Collect the LC-MS mass spectral data for each replicate and
each group (see Note 6 and Fig. 7).
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3.11 NMR Data

Processing (See Note

21)

All NMR data is processed and analyzed with our MVAPACK
software [23], our PCA/PLS-DA utilities [24], NMRPipe [25],
and NMRViewJ [26]. See example processing scripts at http://
bionmr.unl.edu/wiki/Scripts.

3.11.1 1D 1H NMR (See

Fig. 8a)

1. A 1.0 Hz exponential apodization function is applied to
the FID.

2. Fourier transform the FID.

3. The resulting NMR spectrum is automatically simultaneously
phase corrected and normalized with the phase-scatter correc-
tion algorithm [45].

4. The NMR spectrum is referenced to the peak of TMSP-d4
(0.0 ppm).

5. Noise and solvent regions are manually removed.

3.11.2 2D 1H-13C-HSQC

NMR (See Fig. 8b)

1. A sine-bell apodization function is applied to the t2 dimension.

2. The t2 dimension is zero filled three times.

3. The t2 dimension is Fourier transformed and manually phase
corrected and the imaginary data deleted.

4. The matrix is transposed.

5. A sine-bell apodization function is applied to the t1 dimension.

6. The t1 dimension is zero filled three times.

Fig. 8 MVAPACK processing scripts. (a) Schematic illustration of the major processing steps. Examples of
MVAPACK processing script for (b) 1D 1H NMR dataset, (c) 2D 1H-13C HSQC dataset, and (d) combined NMR
and MS datasets. The numbered steps in the flow diagram correspond to the numbered lines in the processing
scripts
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7. The t1 dimension is Fourier transformed and manually phase
corrected.

8. The NMR spectrum is referenced in both dimensions to the
peak of TMSP-d4 (0.0 ppm).

3.12 Mass

Spectrometry Data

Processing: DI-ESI-MS

(See Fig. 8c)

1. Mass spectral data processing is first performed using Mas-
sLynx V4.1.

2. A background subtraction is performed on all spectra using
appropriate reference spectra, such as a free drug or toxin used
to treat a cell culture. The background subtraction of each
spectrum is performed in a class-dependent manner (i.e., only
the MS reference spectrum of the drug/toxin used to treat the
cell culture is used for background subtraction). Accordingly,
mass spectral signals from the drug/toxin treatments are guar-
anteed to not influence subsequent analyses. An example of a
typical MS spectrum from a metabolomics sample is shown in
Fig. 7.

3. The background-subtracted mass spectra are then loaded into
MVAPACK as a text file for binning and normalization.

3.13 Mass

Spectrometry Data

Processing: LC-MS

(See Fig. 9)

All LC-MS data is processed and analyzed with Progenesis
QI (version 2.0.). Please see the Progenesis QI user guide (http://
storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/
Progenesis_QI_User_Guide_2_2.pdf) for detailed instructions.

3.13.1 Data Upload 1. Go to File and create a new experiment. Select a location to
store the experiment file. Click Next.

2. Select the machine type (i.e., high-resolution mass spectrome-
ter) and the polarity used to collect the mass spectrum (i.e.,
positive or negative). Click Next.

3. Select the expected adducts [e.g., M+Na+ (+), M+H+CH3OH+

(+, �), M+H+CH3N
+(+, �), M+H3O

+ (+)] and click Create
experiment.

4. Go to Select your run data, choose the MS Format, and click
Import. Click Next.

5. Apply Lock mass calibration. Click Next.

6. Select Import.

3.13.2 Perform

Automatic Processing

1. Click on Start automatic processing.

2. Select an alignment reference by choosing Use the most suitable
run from candidates that I select. Click Next.

3. Select all QC runs. Click Next.

4. Select Yes, automatically align my runs. Click Next. Click Next
again.

5. After processing is complete, click Section Complete to move
forward to the Review Alignment stage.
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3.13.3 Review Alignment 1. Interrogate the number of vectors and alignment scores.

2. Examine the distribution of green (good alignment), yellow
(acceptable alignment), and red (needs review) alignments
present in the ion intensity map.

3. As necessary, manually edit the alignments. Make sure that each
ion is properly aligned across all replicates and to the reference
mass spectrum. This is accomplished by interactively adjusting
the alignment vector positions.

4. After processing is complete, click Section Complete.

3.13.4 Create

Experiment Design

1. Choose the type of experiment and click Create (see Note 22).

2. Click Add condition and rename it according to the groups in
the study (e.g., control, treated, etc.).

3. Drag and drop each replicate mass spectrum into each of the
defined groups from 2.

Fig. 9 LC-MS processing protocol. The small molecule discovery workflow using the Progenesis QI software is
diagrammed. (top left) Summary of the major steps in the LC-MS processing protocol, which also describes
each figure block in order starting from middle-left to bottom-right. Images are screenshots from the
Progenesis QI software
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4. After processing is complete, click Section Complete to move
forward to the Peak Picking stage.

3.13.5 Peak Picking 1. Click Change parameters.

2. Go to the Peak picking limits grid and define a minimum peak
width to reject noise spikes. A typical minimum peak width is
0.05 min.

3. Click Start peak picking.

4. After the process is completed, go to Review normalization,
and choose the normalization method. Normalize to all meta-
bolites is the default. A preferred choice is to normalize to an
internal standard (e.g., reserpine).

5. After processing is complete, click Section Complete to move
forward to the Deconvolution Review stage.

3.13.6 Review

Deconvolution (See Note

23)

1. Go to the Deconvolution Review grid.

2. On the left panel, choose organize the compound features by
adducts.

3. Click over an ion metabolite to review its adducts (see Note
24).

4. To remove an adduct assigned to a metabolite, right-click on
the peak in the adduct panel and click Remove from compound.

5. After the processing is complete, click Section Complete to
move forward to the Compound Statistics stage.

3.14 NMR Data

Preprocessing for

Multivariate Modeling

In order to obtain an accurate and reliable multivariate statistical
model, it is essential that the dataset is properly preprocessed to
remove normal systematic variations resulting from biological
variability, instrument instability, and inconsistency in sample
handling and preparation. Key preprocessing steps include
(1) alignment, (2) normalization, (3) binning, and (4) scaling,
which are illustrated in Fig. 8. Examples of results from a variety
of statistical models are shown in Fig. 10. All NMR datasets are
processed with our MVAPACK software [23] and our PCA/PLS-
DA utilities [24]. See exampleMVAPACK scripts at http://bionmr.
unl.edu/wiki/Scripts.

3.14.1 1D 1H NMR 1. Spectra may first be normalized based on either the total cell
count or the total protein concentration using the BCA
(bicinchoninic acid) protein estimation assay using parallel
dishes treated similarly on the same day.

2. Spectra are normalized with the PSC algorithm [47].

3. Spectra are aligned and/or binned. For principal component
analysis (PCA), use the following parameters:
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l The spectral data are globally aligned to the peak of TMSP-
d4 at 0.0 ppm.

l The spectral data are regionally aligned using the icoshift
algorithm [48].

l The spectral data are binned using the adaptive intelligent
binning algorithm [49].

For orthogonal projection to latent structures (OPLS), use
the following parameters:

Fig. 10 Univariate and multivariate statistical models. Example of PCA scores plot and the associated
metabolomics tree diagram for (a, d) 1D 1H NMR dataset, (b, e) DI-ESI-MS dataset, and (c, f) combined 1D
1H NMR DI-ESI-MS dataset. (g) NMR and (h) MS back-scaled loadings from an OPLS model generated from
combined 1D 1H NMR DI-ESI-MS dataset. Reproduced with permission from [46]. (i, j) PCA scores plot and
OPLS back-scaled loadings generated from 2D 1H-13C HSQC NMR dataset. Reproduced with permission from
[1]. (k) Example heat-map with hierarchal clustering summarizing specific metabolite changes per replicate
and the relative clustering of each individual replicate. Reproduced with permission from [1]. (l) Example
metabolic pathway summarizing the major metabolite changes between the two groups. Reproduced with
permission from [1]
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l The spectral data are globally aligned to the peak of TMSP-
d4 at 0.0 ppm.

l The spectral data are regionally aligned using the icoshift
algorithm [48].

l The spectral data is not binned. Instead, the full-resolution
spectral data is used to build the model.

4. Solvent peaks and noise regions are manually removed.

5. The dataset is scaled using Pareto scaling.

6. A PCA or OPLS model is generated from the data matrix.

3.14.2 2D 1H-13C-HSQC

NMR

1. Spectra may first be normalized based on either the total cell
count or the total protein concentration as explained above.

2. The spectral data is normalized using standard normal variate
normalization.

3. The spectral data is binned using a generalized adaptive intelli-
gent binning algorithm [49].

4. The data are Pareto scaled.

5. A PCA or OPLS model is generated from the data matrix.

3.15 Mass

Spectrometry Data

Preprocessing for

Multivariate Modeling

LC-MS datasets need to be preprocessed in a similar manner to
NMR spectra. The LC-MS datasets are processed with Progenesis
QI (version 2.0.).

3.15.1 DI-ESI-MS 1. All mass spectra are linearly re-interpolated onto a common axis
that spanned from m/z 50 to 1200 in 0.003 m/z steps, result-
ing in 383,334 variables prior to processing.

2. The mass range m/z 1100–1200 is removed prior to binning
because of the low probability of observing a metabolite in this
region.

3. The mass spectra are uniformly binned using a bin width of
0.5 m/z, resulting in a data matrix of 2095 variables.

4. The MS data matrix is normalized using probabilistic quotient
(PQ) normalization.

5. The MS data matrix is then scaled to unit variance prior to
modeling.

6. A PCA or OPLS model is generated from the data matrix.

3.15.2 LC-MS (See

Note 25 and Fig. 9)

1. The LC-MS datasets are processed with Progenesis QI (version
2.0.). Please see the Progenesis QI user guide (http://storage.
nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Pro
genesis_QI_User_Guide_2_2.pdf) for detailed instructions.

2. Right-click on the Compounds table and select Quick Tags.
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3. Set the ANOVA cutoff value to 0.05.

4. Click Create tag.

5. All metabolites with an ANOVA p-value �0.05 will be marked
with a red tag.

6. Repeat the process to create a tag for fold change (see Note
29). Right-click on the Compounds table and selectQuick Tags.

7. Set the fold change cutoff value to 2.

8. All metabolites with a fold change greater than 2 will be
marked with a green tag.

9. Create a filter to show only tagged metabolites. ClickCreate on
Filter grid to open the filter dialog box.

10. Select the tags and then drag to the box Show compounds that
have all these tags. Click OK.

11. Only the metabolites that match the criteria are showed and
will be used for metabolite identification.

12. Go to the Compound statistics grid. The statistical analysis is
available as a PCA scores plot. A statistically relevant dataset is
indicated by replicate samples clustering together in the scores
plot. Furthermore, the set of control and treated replicates
form distinct clusters from each other.

13. Go to File and select export all measurements. A comma-
separated value (csv) file will be created with a list of several
values per metabolite: (1) metabolite identification, (2) m/z
value, (3) charge, (4) retention time, (5) relative abundance,
and (6) ANOVA value and other parameters.

3.16 Statistical

Analysis (See Fig. 10)

Datasets are analyzed with our MVAPACK software [23], our
PCA/PLS-DA utilities [24], and R [50]. See example MVAPACK
and R scripts at http://bionmr.unl.edu/wiki/Scripts.

A major challenge in the analysis of metabolomics datasets, and
a common source of error, is the incorrect application of statistics.
This results from a number of prevailing misconceptions within the
metabolomics community. For example, a multivariate model,
especially supervised methods such as PLS or OPLS, needs to be
properly validated. Validation can be accomplished with
CV-ANOVA [51] and/or response permutation testing [52]. Con-
versely, the resultingR2 andQ2 values only provide a measure of the
model fit to the original data and an internal measure of consistency
between the original and cross-validation predicted data,
respectively. R2 and Q2 values do not provide for model validation
without a proper standard of comparison.

PCA, PLS, and OPLS are routinely used to model metabolo-
mics data. Nevertheless, there are misconceptions regarding the
proper application and interpretation of the resulting models, espe-
cially in regard to comparing PCA, PLS, and OPLS models. For
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example, PCA finds the largest source of variance in the dataset
irrespective of the intent of the study. So, an observed separation
between treated and untreated groups in a PCA scores plot may
have nothing to do with the treatment if some other larger variant is
present in the dataset. Supervised methods, like PLS and OPLS,
address this issue by aggressively forcing group separation based on
the defined group membership. Hence, PLS and OPLS models
almost always yield separated groups, as by design! As a result,
PLS and OPLS models are easily over-fitted, especially for metabo-
lomics datasets since the number of variables (e.g., metabolites) is
typically larger than the number of replicates. Again, model valida-
tion is essential for PLS and OPLS.

Another serious misconception is the false belief that
PLS/OPLS is a better method than PCA and may find group
differences when PCA fails to expose group separation. Instead,
PCA, PLS, and OPLS are simply different models that extract
different information and achieve different goals. Thus, if PCA
fails to identify group separation, it is unlikely that PLS/OPLS
will yield a valid model [52]. Remember, PCA finds the largest
source of variance. If PCA doesn’t find any major variance, then
there cannot be any smaller group-specific variance.

PLS and OPLS appear to provide similar models. In fact, a
comparison of PLS and OPLS scores plots generated from the
same dataset may suggest the only difference is a relative rotation
of the group-defined ellipses. Nevertheless, this apparently subtle
change highlights a critical difference. Simply, OPLS places group-
independent variance (e.g., confounding factors such as differences
in diet, age, race, etc.) orthogonal to group-dependent variance.
Conversely, PLS entangles both group-independent and group-
dependent variance. In this regard, a metabolite identified as a
major contributor to an OPLS model is strictly the result of the
defined group difference. For PLS, metabolite changes may be a
result of the group difference, a confounding factor or a combina-
tion of both. Accordingly, a PLS-identified metabolite may be of
little interest to the intent of the study. In this regard, we strongly
recommend always using OPLS instead of PLS.

3.16.1 Univariate

Analysis

1. Relative metabolite abundances are inferred from NMR
and/or mass spectral peak heights and/or peak volumes.

2. Relative metabolite abundances are then normalized on a per
spectrum basis. One common approach is to convert the abso-
lute peak intensities (arbitrary units) to a Z-score:

Z ¼ I i � �I

σ
ð1Þ

where �I is the average peak intensity for the spectrum, Ii is the
intensity of peak i, and σ is the standard deviation of peak
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intensities. Peak intensities may also be normalized to the total
number of cells, to the total protein concentration (see Sub-
heading 3.14.1), to the average spectral noise, or to an internal
standard (see Note 26). Relative metabolite abundances may
also be converted to fold changes:

F ¼ I i
I o

ð2Þ

where Ii is the normalized peak intensity of metabolite i from a
treated spectrum and Io is the normalized peak intensity of
metabolite i from the control or untreated spectrum.

3. A standard Student’s t-test is commonly used to determine
statistical significance only for a pairwise comparison of metab-
olite changes based on either fold changes or normalized peak
intensities (see Note 27). A statistically significant difference is
typically identified by a p-value <0.05.

4. A Student’s t-test is insufficient for the multiple comparisons
that are common to a metabolomics study [52, 53]. In order to
identify the set of metabolites that exhibit a statistically signifi-
cant change, a multiple hypothesis test correction method such
as a Benjamini-Hochberg [54] or a Bonferroni [55] correction
must be applied (see Note 28).

5. A heat-map with hierarchical clustering (see Fig. 10k) is com-
monly generated from the fold changes or normalized peak
intensities using R (see example R script at bionmr.unl.edu/
wiki/scripts). The heat-map may contain relative metabolite
abundances for each individual replicate in the study or simply
the replicate averages for each group (see Note 29).

3.16.2 Multivariate

Analysis

1. Generate a PCA and or OPLS model from the data matrix.

2. Fractions of explained variation (R2
X and R2

Y) are computed
during PCA or OPLS model training.

3. The PCA or OPLS model is internally cross-validated using
sevenfold Monte Carlo cross-validation [56] to compute Q2

values (see Note 30).

4. For an OPLS model, the Q2 value is compared against a distri-
bution of null model Q2 values in 1000 rounds of response
permutation testing [52]. Group membership is randomly
reassigned to generate the set of null models. A p-value is
calculated from a comparison of the true Q2 value to the set
of null model Q2 values (see Note 31).

5. The model is further validated using CV-ANOVA significance
testing, which is used to calculate another model p-value [51]
(see Note 31).
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6. Scores plots (see Fig. 10a, b, c, i), back-scaled loadings plots (see
Fig. 10g, h, j), S-plots, and/or SUS-plots are often generated
from OPLS models.

7. PCA/PLS-DA utilities [24] are used to define group member-
ship by drawing an ellipse per group onto the scores plots (see
Fig. 10a, b, c, i). Each ellipse corresponds to 95% confidence
interval for a normal distribution. The PCA/PLS-DA utilities
also generate a metabolomics tree diagram that identifies the
statistical significance (p-value and/or bootstrap value) and the
relative similarity of each group in the scores plot (see Fig. 10d,
e, f). The p-value or bootstrap number from the pairwise
comparison is labeled at each node in the tree.

3.17 Data Analysis:

Metabolite Assignment

from 1D 1H NMR Data

All NMR data is analyzed with NMRPipe [25], NMRViewJ [26],
and Chenomx. See example scripts at http://bionmr.unl.edu/
wiki/Scripts.

1. The identification of metabolites in a 1D 1H NMR spectrum is
performed with software programs such as Chenomx. Che-
nomx matches the experimental 1D 1H NMR spectrum to a
database of 1D 1H NMR spectra of known metabolites. Che-
nomx attempts to explain or describe the experimental NMR
spectrum by combining or summing as many of the individual
reference metabolite NMR spectra as needed. In addition to
metabolite identification, Chenomx also provides an estimate
of the metabolite concentration (see Note 32).

2. Upload the 1D 1H NMR spectrum for processing. The NMR
spectra can be batch processed or processed one at a time.

3. The 1D 1H NMR spectrum is phased.

4. The 1D 1H NMR spectrum is calibrated and referenced to
TMSP-d4, using the known concentration of TMSP-d4.

5. The properly phased and calibrated 1D 1H NMR spectrum is
then sent to the Chenomx profiler where the spectrum is
compared against the metabolite library.

6. Chenomx will overlay a 1D 1H NMR reference spectrum for
each metabolite identified in the experimental 1D 1H NMR
spectrum. The spectral overlay needs to be manually adjusted
to optimize the alignment of the experimental 1D 1H NMR
spectrum with the reference spectrum. Figure 6 shows an
example of a labeled 1D 1H NMR spectrum.

3.18 Data Analysis:

Metabolite Assignment

from 2D 1H-13C-HSQC

NMR Data

All NMR data is analyzed with NMRPipe [25], NMRViewJ [26],
and Chenomx. See example scripts at http://bionmr.unl.edu/
wiki/Scripts.
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3.18.1 NMRPipe

Processing to Obtain .ft2

and .nv Files

1. The data files from ICONNMR can be used directly by
NMRPipe to process the 2D 1H-13C-HSQC spectra.

2. On a Linux workstation, open a terminal and go to the direc-
tory that contains the NMR data. Type bruker to start the
NMRPipe software.

3. Read in the experimental parameters file by clicking Read
Parameters and verify that all of the parameters have been
correctly updated. Confirm that the mode of data collection
has been set to echo-antiecho if the NMR spectrum was col-
lected with the hsqcetgpsisp2 pulse program.

4. Click Update Script to save an NMRPipe processing script fid.
com file in the working directory.

5. Type. /fid.com to start the NMRPipe processing script.

6. When the NMRPipe processing has finished, type nmrDraw to
view the processed NMR spectrum. Please see the NMRPipe
and nmrDraw tutorial (https://spin.niddk.nih.gov/
NMRPipe/doc1/) for detailed instructions.

7. Phase the NMR spectrum in NMRPipe, and note the p0 and
p1 values for both the 1H and 13C dimensions.

8. Edit the NMRPipe processing script hsqcproc.com, and replace
the parameters associated with the NMRPipe phase correction
command, ps, with the p0 and p1 values obtained from step 7.

9. Type. /hsqcproc.com to start the NMRPipe processing script.

10. Repeat steps 3–9 for each 2D 1H-13C-HSQC NMR spectrum
in the dataset. This produces a set of .ft2 files. One .ft2 file is
created for each 2D 1H-13C-HSQC NMR spectrum collected
for each replicate from each group.

11. Copy all of the .ft2 files into a new folder and use the NMRPipe
script addnmr.com to generate NMRviewJ files from the .ft2
files. A .nv file will be generated for each individual spectrum (.
ft2 file) with an numerically incremented root name of
“Final_”. In addition, the script will combine all of the NMR
spectra together into a single file called results.nv. The script
will also generate the text file, rate.txt, that lists all of the
individual .nv files (Final_).

3.18.2 Peak Picking and

Peak Integration of 2D
1H-13C-HSQC Spectra in

NMRviewJ

1. Type nmrviewj to start NMRviewJ. Please refer to NMRViewJ
documentation (http://docs.nmrfx.org/) for more details.

2. From the Dataset toolbar in the main window, use the Open
and Draw Datasets function to select the result.nv file.

3. Right-click and select attributes to open the attributes window.

4. In the attributes window, select the PeakPick tab.

5. In the blank Lists field in the attribute window, type a filename
(i.e., lists) for the new peak pick list. Click the Pick button. The
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software will automatically peak pick the displayed spectrum
and populate lists with the peak ID number, chemical shifts,
and intensity.

6. Choose Show Peak Table from the Peak toolbar on the main
window. A peak table window will open that lists the peak ID,
peak intensity, and peak chemical shifts.

7. Manually edit the peak list and remove solvent peaks, noise
peaks, or other spectral artifacts. Peaks are deleted from the
peak table by using the delete function in the PeakPick tab in
the attributes window along with the spectrum display window.
In the spectrum display window, use the mouse to position the
two cursors around any peak or spectral region to form a box.
Then, click the Delete button under the PeakPick tab in the
attributes window to remove the peak(s).

8. After the peak table has been completely edited, on the peak
tablewindow choose the Edit tab and selectCompress &Degap.
Answer yes to the pop-up question. This will finalize changes to
the peak list and prevent any further edits.

9. On the peak table window choose the Edit tab and then select
Save Table. A file browser window will open in order to choose
a name and location to save the new peak list file. The saved
peak pick file can be viewed and edited by Excel.

10. In order to obtain peak intensities across the entire set of NMR
spectra in the dataset, click on the Analysis tab on the main
window and select Rate Analysis. A setup window for the Rate
Analysis will open.

11. In the Rate Analysis setup window:

l Set the Prefix for matrix numbers field to Final_.

l Set the Peaklist field to lists (defined in Subheading 3.18.2,
step 5).

l Make sure Auto fit is checked.

l Use all other default settings.

l Click Load time file.

l In the file browser window, select rate.txt (created in Sub-
heading 3.18.1, step 11).

l ClickMeasure All. The software automatically populates the
table in the Rate Analysis setup window with all of the peak
intensities across the entire NMR dataset.

l Click Save Table. In the file browser window, save the peak
intensities table to a new filename (i.e., intensities).

12. The peak list (i.e., list) and the peak intensities (i.e., intensities)
files are merged in Microsoft Excel using the common peak ID
column. The ppm1 (1H ppm) and ppm2 (13C ppm) columns
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are added to the peak intensities columns to generate a com-
plete matrix of NMR peaks and intensities across the entire
dataset.

13. The merged Excel file is saved to a new filename.

3.18.3 Metabolite

Assignments from 2D
1H-13C-HSQC Peak Lists

1. The complete list of peaks obtained from the NMRviewJ ana-
lyses is searched using NMR metabolomics databases such as
HMDB [31], BMRB [32], or other databases (see Note 33).

2. On the HMDB home page, choose the Search tab and select
2D NMR Search.

3. From the Spectra Library pull-downmenu, choose 13CHSQC.

4. Cut and paste the 2D 1H-13C-HSQC peak lists into the Peak
List field. One set of 1H and 13C chemical shifts, respectively,
per line. Chemical shift values should only be separated by
white space.

5. Set the 1H chemical shift error tolerance to 0.05 ppm (X-axis
Peak Tolerance � field) and the 13C chemical shift error toler-
ance to 0.10 ppm (Y-axis Peak Tolerance � field).

6. Click the Search button. Depending on the size of the peak list,
the software will return a ranked-order list of possible metabo-
lites based on the number of chemical shift matches to refer-
ence spectrum.

7. Manually curate the list of potential metabolite assignments
based on the number of chemical shift assignments, the quality
of the spectral overlap (i.e., chemical shift match), number of
other metabolites in the same metabolic pathway, and the
biological system (i.e., is it a reasonable or possible metabolite
for the organism),

8. Obtain additional NMR (e.g., HMBC, HSQC-TOCSY)
and/or MS spectral data to confirm or refute the assignment.

9. An assigned 2D 1H-13C-HSQC spectrum is shown in Fig. 6b.

3.19 Data Analysis:

Metabolite

Assignments from LC-

MS Data

The identification process is accomplished using the Progenesis QI
(version 2.0.) software (see Note 34 and Fig. 9). Please see the
Progenesis QI user guide for detailed instructions (http://storage.
nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Pro
genesis_QI_User_Guide_2_2.pdf).

3.19.1 Identification of

Compounds (See Note

36)

1. Make sure the filter created in Subheading 3.15.2, step 9 is
applied, and then proceed to Identity Compounds grid.

2. At the left panel, define the method to be used. In this case,
select Progenesis MetaScope.

3. Choose the search parameter, in this case choose HMDB (see
Note 35).

246 Fatema Bhinderwala et al.

http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf
http://storage.nonlinear.com/webfiles/progenesis/qi/v2.2/user-guide/Progenesis_QI_User_Guide_2_2.pdf


4. Click Search for identifications.

5. After a few minutes, a dialog box will open identifying the
number of metabolites identified. Click ok to close.

6. All ions with possible identifications will be presented as a solid
gray icon on the left side.

3.19.2 Incorporation of

Theoretical Fragmentation

(See Note 36)

1. On the left panel, select ChemSpider [30] as the identification
method (see Note 37).

2. In the Choose search parameter field, choose default and then
click edit.

3. Set the following parameters:

l Select name as theoretical fragmentation.

l Set precursor tolerance to 5 ppm.

l Tick Perform theoretical fragmentation box.

l Set the Fragment tolerance to 5 ppm.

4. Click Save.

5. Click Search for identifications.

6. After a few minutes, a dialog box will open displaying the
number of metabolites identified. Click ok to close.

3.19.3 Accepting

Compounds Assignment

1. Proceed to Review Compounds grid.

2. Go to the option Choose the correct identification and set a
threshold of 45. The choice of a threshold is empirical and
may need refinement based on the specific properties of the
dataset. The higher the threshold setting, the more confident
are the assignments, but the more restrictive analysis may result
in a lower number of assignments.

3. Click Accept identifications. All identifications with a score of
45 or above will be accepted automatically.

3.19.4 Review and

Accept the Identifications

Manually (See Note 38)

1. Select a metabolite from the list.

2. Go to the Possible identifications grid.

3. In the bottom panel, select the desired identification threshold
for the metabolite.

4 Notes

1. Isotopically labeled reagents commonly used for NMR are not
radioactive and do not require special handling or safety pre-
cautions. However, gloves and eye protection are standard
safety protocol for preparing all types of metabolomics samples.
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2. Deuterated solvents, such as D2O or DMSO, are very hygro-
scopic and require storage in a dry box and need to remain
sealed until used.

3. The pH of a 100% D2O sample using a standard pH probe may
not report the correct pH. A standardly applied correction is
pD ¼ pH + 0.4. Conversely, a recent study by K. A. Rubinson
[57] suggests the variance is not as significant, especially for a
phosphate buffer, and a correction may not be required.

4. Complete cell survivability in each group is essential to a suc-
cessful metabolomics study. This may be particularly challeng-
ing in a study that involves treating cells with a drug, toxin, or
some other condition (including nutrient depletion or supple-
mentation) that is expected to alter cell viability. Thus, the goal
is to identify a dosage and time for the experimental paradigm
that will stress the cells, prior to the induction of cell death. In
this regard, the observed metabolomic changes will be a result
of the cell’s immediate response to the mechanism of action of
the experimental condition, or the adaptation of the cell to the
stress, and not a general cell death response. We typically
identify the dosage by collecting a series of growth curves
over a range of drug/toxin concentrations and compare them
to a growth curve from untreated cell culture.

5. The resulting composition of the metabolome is easily per-
turbed by any difference in the protocol. Thus, it is essential
that every sample is handled in exactly the same manner as
reasonably as possible. Bias can be induced if cells are cultured
in different incubators or shakers; if cells are handled by differ-
ent personnel; if cells are treated with a different wash, buffer,
or media (even if it is the exact same recipe as prepared by the
same individual); if the time to process the cells differ, etc. In
essence, any source of variance (regardless of how slight) may
lead to a significant biologically irrelevant change in the meta-
bolome. As a result, an important aspect of the protocol is to
randomize the processing of each sample to minimize any bias
induced by sample order. The order of sample processing
should change at each step of the protocol. It is especially
critical to randomly interleave replicate samples from each
group.

6. Randomization of samples throughout the protocol is essential
to avoid the introduction of bias. For example, if all of the
control samples are processed together first and all of the
treated samples are processed second, a difference between
the controls and treated samples may be due to the processing
order instead of the expected response to treatment. Consider
another example consisting of a set of 20 samples numbered
1–20. If the samples are always processed in the order of the
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sample number, then a time bias will be induced across the
entire dataset. Sample 20 will always be processed after a maxi-
mal wait-time, and sample 1 will always be processed the
quickest. Accordingly, biologically relevant differences in the
metabolomes will accumulate between the samples due to the
difference in processing time. Instead, if the order is constantly
changed at each step, the processing time and any impact on
the metabolome will be randomized, which in turn will mini-
mize or eliminate any bias.

7. The number of replicates per group will have a significant
impact on the quality of the study and the statistical validity
of the outcomes. In general, it is best to maximize the number
of replicates per group, within reason, with a typical target of
ten replicates per group. A variety of experimental considera-
tions may impact the number of replicates that are practical for
a given study. For example, a large number of groups may
require a reduction in the number of replicates per group.
Another consideration is the impact of the number of replicates
on the quality of the metabolomics samples. Sacrificing quality
for a greater number of replicates will not likely lead to a
successful outcome. Conversely, a limited number of replicates
<4 per group will likely provide meaningless results.

8. Other studies have used a combination of isotopically labeled
and non-labeled carbon sources. The conditions of optimal
labeling should be standardized for every cell line/type used
while also considering the composition/recipe of the culture
media and the required carbon sources (glucose, pyruvate, or
glutamine) for cell growth. A time course between 1 and 48 h
should be performed to assess the rate of carbon consumption.
Examples of media used for 13C-carbon-labeled metabolomics
are Dulbecco’s Modified Eagle Medium (DMEM) (11966-
025, 10938-025, 11960-044, and A14430-01) and RPMI
(11879020) from GIBCO/Life Technologies.

9. Removal of proteins and other biomolecules by methanol or
ethanol precipitation is preferred over mechanical filtration
methods or the application of Carr-Purcell-Meiboom-Gill
(CPMG) NMR T2 filtering techniques. Filtering techniques
may remove metabolites that bind to biomolecules leading to
biologically irrelevant group differences [52].

10. Smaller diameter NMR tubes of 3 mm (160 μL) or 1.7 mm
(35 μL) may be needed if the available metabolomics sample is
limited. Filling of these smaller diameter NMR tubes may
require a liquid handling robot, such as a Gilson 215 Liquid
Handler. In addition, the NMR acquisition parameters will
likely need to be adjusted to account for the lower sensitivity
due to the lower number of nuclei in the samples.
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11. Topshim requires that the sample contain either a D2O orH2O
solvent. It is advisable to create a shim file with a parameter set
that produces an optimal set of shims for your sample type.
Read in a shim file using the Bruker command rsh and select the
appropriate Topshim shim file. If you are doing this for the first
time, complete the command topshim; if you are not satisfied
with the shim performance, use command topshim tuneb tunea
to obtain an improved set of shims. Write the shim set para-
meters with the Bruker command wsh, and save it to a new
filename for future reference.

12. The 90-degree pulse length is commonly measured by incre-
menting the P1 pulse in the zg pulse program by 1 μs or smaller
increments and by plotting the relative peak heights or inten-
sities. A maximum peak height should be observed at the pulse
length corresponding to the 90-degree pulse. Conversely, a
minimum or null spectrum should be observed at the pulse
length corresponding to the 360-degree pulse length. In prac-
tice, a more accurate measure of the 90-degree pulse is
obtained by measuring the 360-degree pulse length and divid-
ing by four to obtain the 90-degree pulse length. A typical
90-degree pulse length for a metabolomics sample ranges from
approximately 8–13 μs or longer. Among other factors, the
relative salt concentration of the metabolomics sample affects
the 90-degree pulse, in which a higher salt concentration
results in a longer 90-degree pulse. Other factors also contrib-
uted to the observed 90-degree pulse, so it is always necessary
to experimentally determine the 90-degree pulse for each sam-
ple or set of samples.

13. Excitation sculpting parameters (zgesgp)—32768 data points
(TD), SW¼ 12.02 ppm, O1P (transmitter offset)¼ 4.70 ppm,
D1 ¼ 1 s, NS (number of scans) ¼ 128, DS (dummy/steady
state scans)¼ 16, P1¼ 9.5–13.5 μs, SPNAM (shaped pulse for
water suppression) ¼ SINC1.1000 at 26.39 dB or 0.00228 W.

14. The NMR data acquisition parameters need to be adjusted to
compensate for differences in the field strength and sensitivity
of the NMR spectrometer actually used for the data collection.
Specifically, the number of scans, the number of data points,
the sweep width (13.79 ppm, 1H frequency range), and the
frequency offset (centered on water peak at 4.70 ppm) need to
be adjusted according to the type and configuration of the
NMR spectrometer used for the study.

15. For high-throughput NMR data collection, please refer to the
Bruker ICONNMR manual to explore various configuration
options. For example, composite experiments allow for the
collection of multiple 1D and 2D experiments for the same
metabolomics sample. An experimental set consisting of a 1D
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1H, a 2D 1H-13C HSQC, and a 2D 1H-13C HMBC experi-
ment may be subsequently collected for the same sample
before moving to the next sample in queue.

16. It is imperative that NMR data be collected at the same tem-
perature for a queue of metabolomics samples. ICONNMR
assists this by allowing for a temperature delay when a large
number of samples are in the SampleJet queue. For example, a
15–60 s delay may be inserted prior to data acquisition to allow
each sample to equilibrate to the probe temperature. We rec-
ommend a 60-second delay for both pre- and post-sample
insertion to prevent any temperature variation.

17. Parameters to check before you queue experiments in
ICONNMR for 1D 1H NMR are number of scans ns, number
of dummy scans ds, 90-degree pulse p1, delay d1, sweep width
sw, receiver gain rg, experiment temperature te, and automa-
tion setup aunm. We recommend using au_zgonly as the auto-
mation setup. This will collect all samples at the same receiver
gain, which will avoid peak intensity variation across the
dataset.

18. In addition to 2D 1H-13C-HSQC NMR experiments, NMR
metabolomics studies may make use of HMBC, TOCSY,
HSQC-TOCSY, 2D J-resolved spectra, or other experiments.
Similarly, 15N-, 31P-, and other isotope-labeled metabolites
may be detected in addition to 1H- and 13C-labeled metabo-
lites. Accordingly, experimental parameters, data processing
and preprocessing methods, and data analysis techniques all
need to be adjusted to accommodate the specifics of each NMR
experiment. Nevertheless, there is enough similarity that the
detail discussion of the application of 2D 1H-13C-HSQC
NMR experiments may provide a useful initial guide to the
application of other NMR experiments to metabolomics.

19. 2D 1H-13C-HSQC parameters (hsqcetgpsisp2)—1024 data
point in F2 and F1, nonuniform sampling at 25%,
O1P ¼ 4.7 ppm, O2P (offset for 13C) ¼ 75 ppm, NS ¼ 64,
DS ¼ 16, d1 ¼ 2, P1 ¼ 10–13 μs depending on salinity,
CPDPRG2¼ garp (decoupling program), and PCPD2¼ 55 μs
at PLW12 ¼ 4.09 W

20. Nonuniform sampling of 2D 1H 13C HSQC data can be
performed on metabolomics samples. We have successfully
acquired data at 20% sparsity using a burst augmented sched-
uler available from http://bionmr.unl.edu/dgs-gensched.php
[33]. Download the sampling schedules as a text file for
Topspin.

21. A minimalistic approach to the processing of NMR and mass
spectrometry data is optimal for a metabolomics analysis utiliz-
ing multivariate statistics such as PCA andOPLS. The resulting
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multivariate statistical model is dependent on the choice of
processing and preprocessing protocols. In effect, a different
statistical model is likely to be obtain based on the presence
(or absence) of baseline correction and the type of baseline
correction method chosen. Similarly, the type of weighting
(apodization) function, the type of spectral alignment or refer-
encing, the resulting phase correction or phase correction
algorithm, the number of zero-fills or the application of linear
prediction, or any other data manipulation method will affect
the outcome of the statistical model. Accordingly, it is best to
avoid any unnecessary data processing steps since it is difficult
to ascertain if the data processing induced a biologically irrele-
vant bias to the data or actually improved the model.

22. Before proceeding to statistical analysis, it is necessary to create
an experiment design. Progenesis QI supports Between-subject
design and Within-subject design. Between-subject design sepa-
rates samples according to the experimental condition (control
vs treated) for the statistical comparison. Within-subject design
is a repeated measures study design where the same subject
(i.e., cell, animal, or human) is compared across the full range
of experimental conditions (before treatment and after treat-
ment, different time points, etc.).

23. The ions and adducts for a compound are automatically recom-
bined by Progenesis QI, but it is advisable to review the
deconvolution results. It is important to make sure the same
pattern of adducts are assigned equally across all replicates and
between all groups. Progenesis compares each detected ion
with each of its co-eluting ions. If by chance their mass differ-
ence matches the difference between two adduct masses (i.e.,
from the previously chosen list), then it is probably an
adducted form of the same compound. Progenesis groups the
two ions as the same compound and automatically assigns the
ions to the respective adduct. However, if an interesting com-
pound is identified in the sample, it is important to review the
deconvolution process to make sure all of the ions grouped
together are actually adducts of the same compound.

24. Adducts assigned to a compound should have the same reten-
tion time as the compound. Thus, compare the chromato-
grams from the potential adduct with the compound to
determine how well the chromatograms overlay. If a poor
match is observed, then remove the adduct.

25. A primary goal of the LC-MS data analysis is to identify meta-
bolites that exhibit significant concentration differences
between groups. This is accomplished in the Progenesis soft-
ware by creating tags to identify metabolites that exhibit a
statistically significant (ANOVA [51] p-value<0.05) difference
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in relative abundance between the groups. Progenesis relies on
PCA for this analysis.

26. For NMR, relative peak intensities are averaged across all repli-
cates per group and also for each NMR peak assigned to the
metabolite. Most metabolites will have more than one peak in
an NMR spectrum, and all NMR peaks should be incorporated
into an average relative peak intensity. Please note that NMR
peaks may need to be scaled by the number of attached hydro-
gens, since peak intensity is proportional to the number of
nuclei.

27. Of course, there are a variety of options beyond the standard
Student’s t-test such as Mann-Whitney U test [58], Welch’s t-
test [59], Hotelling’s t-squared statistic [60], and one-way
analysis of variance [52], among others. The proper choice of
a statistical test depends on a number of factors, which is well
beyond the scope of this protocol review. For an introduction
to the topic, please see A Biologist’s Guide To Statistical Think-
ing And Analysis [61].

28. In effect, the uncertainty in each pairwise comparison
(as determined by the Student’s t-test) is compounded with
the addition of each metabolite to a set. The actual p-value for a
set of metabolites is defined as:

p ¼ 1� 1� αð Þm ð3Þ
where m is the number of hypotheses (metabolites) and α is
typically defined as 0.05. Accordingly, a set of ten metabolites
becomes an insignificant p ¼ 0.401 even though each individ-
ual metabolite is statistically significant based on a pairwise
Student’s t-test with a p < 0.05.

29. A heat-map displaying all of the replicates from each group is
preferred to only a group average plot. Specifically, the hierar-
chical clustering of each replicate is indicative of the relative
group separation and provides further confirmation of an
observed group separation from a PCA, PLS, or OPLS
scores plot.

30. A valid PCA, PLS, or OPLS model typically has R2 values >Q2

values and Q2 values >0.4.

31. While p-values <0.05 are typically acceptable, more often than
not, high-quality PLS/OPLSmodels frommetabolomics data-
sets yield p-values <<0.001.

32. Chenomx maintains a series of 1D 1H NMR databases for a
variety of NMR field strengths and sample pH. Use the data-
base that matches the experimental conditions of the dataset
being analyzed.
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33. Most NMR metabolomics databases function in a similar man-
ner to HMDB [31]. Simply upload a peak list with a set of
chemical shift tolerances and obtain a list of potential matches.

34. The identification process is also available in open-source soft-
ware such as MZmine [28] or web-based tools such as
MetaboAnalyst [29].

35. It is also possible to create or select your own search parameter.
Click on Edit and select Create New. Select a database file in
Structure Data Format (SDF) as input.

36. The possible compound assignments are based on an overall
score determined by the mass error, retention time error, isotope
similarity, fragmentation score, and, if available, collision cross
section. The confidence of the identification may be increased
by including theoretical fragmentation (see Note 37).

37. ChemSpider is a database comprised of 67 million compounds
and, accordingly, is not restricted to known metabolites
[30]. But, Progenesis can use the ChemSpider database for in
silico prediction of fragmentation patterns. Progenesis cannot
do this with HMDB [31].

38. Subheading 3.19.3 sets a global threshold setting for all meta-
bolites. Sometimes this may be too restrictive for specific meta-
bolites, where a lower global threshold setting may cause a
large number of erroneous assignments. Subheading 3.19.4
describes a manual approach to adjust the threshold settings
for individual metabolites to recover incorrectly missed assign-
ments while avoiding a high false assignment rate.
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