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Abstract
Introduction Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired 
gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes.
Objective To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or 
respond to gemcitabine treatment.
Results We applied 1D 1H and 2D 1H–13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer 
cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells 
upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the 
pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a “binary 
switch” in response to gemcitabine treatment and acquired resistance.
Conclusion Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses 
to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient’s therapeutic 
response.

Keywords NMR metabolomics · Pancreatic cancer · Gemcitabine · Drug resistance

1 Introduction

A drug has to pass through a variety of complex biological 
systems and must survive different cellular processes in 
order to reach its molecular target and exhibit a positive 
therapeutic response. In many instances, both the drug and 
the exposed cells undergo a molecular change that either 
favors the desired outcome or leads to the development of 
resistance. Acquired resistance has been well-documented 
in the application of antibiotics and is commonly due to 
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the overexposure or incorrect administration of the drugs. 
In this regard, bacteria rapidly acquire antibiotic resistance 
by altering their genetic expression, protein structure or 
metabolic processes. Since antimicrobial resistance is such 
a common problem, an array of therapeutic approaches 
and improved sensitivity tests have been developed to 
monitor a patient’s response to treatment and to improve 
therapeutic outcomes (Davies and Davies 2010; Hous-
man et al. 2014). Similar efforts are on-going to combat 
acquired resistance for anticancer therapeutics. This has 
led to increased efforts to understand mechanisms of drug 
resistance and for the development of methods to test 
patient-specific drug sensitivity (Uhr et al. 2015). How-
ever, there are still serious unmet needs to achieving preci-
sion cancer therapies by identifying an optimal cancer-cell 
specific treatment (Bardin et al. 2014).

Cancer cells employ a variety of mechanisms to acquire 
resistance against chemotherapeutics (Rahman and Hasan 
2015). In which, metabolic rewiring of tumors has been 
identified as a critical step in drug resistance. Cancer cells 
alter their metabolism by monitoring nutrient uptake (such 
as glucose and glutamine), which results in modulating 
certain metabolic pathways in response. Gemcitabine is an 
antimetabolite drug widely used in the treatment of breast, 
lung and pancreatic cancers. It is a prodrug activated by 
the effect of kinases in the cytoplasm. Gemcitabine is the 
first treatment of choice for pancreatic cancer patients, 
and is commonly used by its self or in combination thera-
pies. Unfortunately, it is routine for patients to develop 
gemcitabine resistance shortly after beginning treatment 
(Fryer et al. 2011). We recently demonstrated that acquired 
resistance to gemcitabine results in the reprograming of 
glucose metabolism and an enhanced carbon-flow through 
the pyrimidine synthesis pathway (Shukla et al. 2017). 
This metabolic phenotype for pancreatic cancer cell lines 
is regulated by MUC1 and HIF1α cross-talk.

1D 1H NMR metabolomics is a versatile tool of sys-
tems biology that is routinely used to elucidate various 
metabolic alterations (Gebregiworgis and Powers 2012). 
Accordingly, we have utilized NMR metabolomics to study 
the impact of MUC1 overexpression (Chaika et al. 2012), 
to monitor tumor microenvironment alteration (Gebregi-
worgis et al. 2017), and as a means to reverse antibiotic 
resistance (Gaupp et al. 2015; Gardner et al. 2018). NMR 
metabolomics provides a detailed and specific analysis 
of metabolic perturbations by combining stable isotope 
labeling schemes (e.g., 13C glucose) with two dimensional 
(2D) NMR experiments (e.g., 1H–13C HSQC, HMBC, 
etc.). In this communication, we extend our investigation 
into the altered metabolism of gemcitabine resistance cell 
lines; and describe a global metabolic response to gem-
citabine treatment.

2  Results and discussion

2.1  Unique metabolic phenotype for gemcitabine 
resistant cells

Briefly, ten replicates for each of the wild-type (WT, 
human pancreatic cancer cell line: T3M4 or Capan-1), 
gemcitabine resistant (GemR), WT treated with 10 nM of 
gemcitabine (WT+), and GemR treated with 10 nM of 
gemcitabine (GemR+) cell cultures were prepared as pre-
viously described for the 1D 1H NMR experiments (Shukla 
et al. 2017). As previously reported, the 10 nM gemcit-
abine dosage is significantly below a dosage (~ 1 µΜ) 
required to induce cell death in any of the cell lines(Shukla 
et al. 2017). Similarly, three additional replicates of WT, 
GemR, WT+, and GemR+ Capan-1 cells were prepared 
where the glucose in the culture media was replaced with 
0.5  mM of 13C6-glucose. Please see the supplemental 
material for additional experimental details.

The 1D 1H NMR spectra collected from each cell 
lysate was analyzed using our MVAPACK metabolic 
toolkit (http://bionm r.unl.edu/mvapa ck.php) to generate a 
principal component analysis (PCA) model (Worley and 
Powers 2014). An unsupervised PCA model was used to 
illustrate the unique metabolic signature for each cell type, 
and to identify metabolic alterations that resulted from 
either gemcitabine resistance or from gemcitabine treat-
ment (Gebregiworgis and Powers 2012). The resulting 
PCA scores plots and associated tree diagrams shown in 
Fig. 1A, B and Fig. S1 clearly indicates that the metabo-
lomes from the WT and WT-treated cells form distinct and 
separate groups. Conversely, the metabolomes from GemR 
and GemR-treated cells clustered together but separately 
from the gemcitabine-sensitive metabolomes.

The PCA scores plot demonstrates the overall metabolic 
impact of gemcitabine treatment on sensitive cells; and 
the corresponding lack of a response for resistant cells. 
Furthermore, the PCA scores plot identifies the presence 
of a metabolic adaptation for gemcitabine resistant cells. 
In effect, a distinct metabolic phenotype was observed for 
pancreatic cancer cells resistant to gemcitabine treatment. 
Furthermore, the observed alteration in metabolism may 
facilitate our understanding of the mechanism of gemcit-
abine resistance and provide a means to reverse the pro-
cess (de Cavalcante and Monteiro 2014). Importantly, our 
results demonstrate a potential utility in precision medi-
cine since the distinct metabolic phenotypes observed for 
WT and GemR cell lines may be leveraged for predicting 
a patient’s response to a gemcitabine treatment.

An orthogonal projection to latent structures—discrimi-
nant analysis (OPLS-DA) model was also generated from 
the 1D 1H NMR datasets to identify key metabolites that 

http://bionmr.unl.edu/mvapack.php


Insights into gemcitabine resistance and the potential for therapeutic monitoring  

1 3

Page 3 of 7   156 

Fig. 1  Unique metabolic phenotype for gemcitabine resistant cells. 
(A) PCA scores plot generated from 1D 1H NMR spectra from cell 
lysates of wild type T3M4 cells (WT, filled red square, n = 8), WT 
cells treated with 10  nM of gemcitabine (WT+, filled yellow dia-
mond, n = 9), gemcitabine-resistant (GemR, filled blue circle, n = 10) 
cells, and GemR cells treated with 10 nM of gemcitabine (GemR+, 
filled green triangle, n = 8). Please see supplemental methods and 
Figure S4 for explanation of excluded outliers. The ellipses corre-
spond to 95% confidence intervals for a normal distribution. (B) Met-
abolic tree diagram generated from the PCA score plots. The number 
at each node is the p-value calculated from the Mahalanobis distance 
between each group. The coloring is identical to the PCA scores plot. 
(C) Back-scaled loadings plot generated from a validated OPLS-
DA model  (R2 0.99, Q2 0.90, CV-ANOVA p-value 7.94 × 10−7, per-
mutation test p-value 0) comparing the WT and WT+ 1D 1H NMR 
datasets. Positive peaks indicate an increase in WT+ and negative 
peaks are a decrease in WT+. (D) metabolic pathway summarizing 
the key metabolite differences between WT and WT+ as determined 

from the OPLS-DA back-scaled loadings plot in c. An up arrow indi-
cates an increase in the metabolite in WT+ and a down arrow indi-
cates a decrease in the metabolite in WT+. (E) Back-scaled load-
ings plot generated from a validated OPLS-DA model (R2 0.99, Q2 
0.96, CV-ANOVA p-value 2.52 × 10−7, permutation test p-value 0) 
comparing the WT and GemR 1D 1H NMR datasets. Positive peaks 
indicate an increase in GemR and negative peaks are a decrease in 
GemR (F) Metabolic pathway summarizing the key metabolite dif-
ferences between WT and GemR as determined from the OPLS-DA 
back-scaled loadings plot in (E). An up arrow indicates an increase 
in the metabolite in Gem R and a down arrow indicates a decrease 
in the metabolite in GemR. The metabolite labeling in the OPLS-DA 
back-scaled loadings plots in (C) and (E) are numbered as follows: 
1, branched chain amino acids (leucine, isoleucine, valine); 2, lac-
tate; 3, alanine; 4, acetate; 5, glutamate; 6, glutamine; 7,glutathione; 
8,malate; 9,aspartate; 10, creatinine; 11, creatinine phosphate; 12, 
glycerophosphocholine; 13, taurine, 14, glycine, 15, myo-inositol 16, 
AXP (AMP, ADP, and ATP)
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contribute to group specific separations (Fig. S2). Accord-
ingly, the OPLS-DA model comparing the WT and WT-
treated metabolome identified key-metabolic changes in 
response to gemcitabine treatment. The high-quality and 
statistical validity of the resulting OPLS-DA model from 
the WT/WT+ NMR dataset is evident by an R2 of 0.99, 
a Q2 of 0.90, a CV-ANOVA p-value of 7.9 × 10−7, and a 
permutation test p-value of 0. A back-scaled loadings plot 
generated from the OPLS-DA model is shown in Fig. 1C. 
A total of 16 metabolite changes were identified from the 
back-scaled loadings plot that significantly contributes 
to the metabolome differences between WT and WT-
treated cells. The key metabolite changes between WT 
and WT+ are summarized in the pathway diagram shown 
in Fig. 1D. An OPLS-DA model was similarly generated 
from the WT/GemR NMR dataset to identify key metabo-
lite changes associated with gemcitabine resistance. The 
high-quality and statistical validity of the resulting OPLS-
DA model from the WT/GemR NMR dataset is evident 
by an R2 of 0.99, a Q2 of 0.96, a CV-ANOVA p-value of 
2.52 × 10−7, and a permutation test p-value of 0. Notably, 
the same set of 16 metabolites were identified from the 
WT/GemR OPLS-DA back-scaled loadings plot as was 
observed in the WT/WT+ OLPS-DA model (Fig.  1E, 
F). But, significantly, the relative metabolite trends are 
reversed when these two statistical models are compared. 
Specifically, acetate, alanine, and glutathione are increased 
in GemR cells compared to WT, while glycine, myo-
inositol, taurine, glycerophospocholine, and creatinine 
phosphate are decreased in GemR cells relative to WT 
(Fig. 1D, F). Again, these metabolic trends are completely 
reversed when WT-treated cells are compared to WT cells. 
Importantly, the metabolites involved in this metabolic 
“switch” have been previously linked to pancreatic cancer.

Myo-inositol and its metabolites regulate cancer cell pro-
liferation, migration and the phosphatidylinositol-3-kinase 
(PI3K)/AKT signaling pathway (Vucenik and Shamsuddin 
2003). Accordingly, many genes and pathways associated 
with myo-inositol synthesis and its biological activity have 
also been correlated with pancreatic cancer. Interestingly, 
natural and synthetic derivatives of myo-inositol have a dem-
onstrated anticancer activity by reducing HIF1α expression 
and by decreasing the cellular concentration of nucleotides. 
Furthermore, the myo-inositol induced reduction in nucle-
otide concentrations also enhances gemcitabine efficacy 
(Raykov et al. 2014). Thus, drugs that target myo-inositol 
metabolism may also reverse gemcitabine resistance, and 
may be useful as part of a combination therapy.

Serine derived glycine is a precursor of single carbon 
metabolism and de novo purine nucleotide synthesis, which 
are critical processes in cancer pathogenesis (Yang and 
Vousden 2016). As noted above, a reduction in the cellular 
concentration of nucleotides enhances gemcitabine efficacy. 

Alternatively, an increase in glycine uptake and its metabo-
lism has been observed to promote tumorigenesis (Amelio 
et al. 2014). Glycine is also an important metabolite in glu-
tathione biosynthesis (Lu 2009). An increase in the expres-
sion of glutathione generating enzymes has been previously 
associated with gemcitabine resistance (Ju et al. 2015). 
Gemcitabine is known to increase reactive oxygen species 
and, presumably, an increase in the production of glutathione 
would negate the impact of this additional ROS. Consistent 
with these prior observations, we observed a decrease in 
glycine and a concurrent increase in glutathione in GemR. 
This could be attributed to an increase in the transformation 
of glycine into glutathione to combat gemcitabine-induced 
ROS. The reduction in glycine may also be a result of an 
increase of carbon-flow into nucleotide synthesis.

Alanine metabolism is a critical source of stromal cell 
derived fuel for cancer cell proliferation and survivability 
(Sousa et al. 2016). Thus, alterations in alanine metabolism 
may be an important process for acquiring gemcitabine 
resistance. Our observation that alanine metabolism was 
altered in both GemR and WT-treated cells are consistent 
with this viewpoint. Specifically, we observed a decrease 
in alanine in WT-treated cells and a corresponding increase 
in GemR cells. This result is also consistent with the obser-
vation that elevated alanine transaminase serum levels is 
linked to a poor therapeutic outcome and the development 
of gemcitabine resistance (Matsubara et al. 2010).

Acetate is a major carbon source for fatty acid and phos-
pholipid biosynthesis, particularly in proliferating cancer 
cells and during metabolic stress. Acetyl-CoA synthetase 2 
(ACSS2) catalyzes the conversion of acetate to acetyl-CoA. 
ACSS2 has been observed to inhibit tumor growth when 
depleted in hepatocellular carcinoma xenografts (Comer-
ford et al. 2014). Our observation that acetate is depleted 
in WT-treated, but increased in GemR cells, highlights that 
acetate could serve as an important fuel for proliferating 
cancer cells.

Taurine has been previously observed to have an anti-
proliferative effect on breast, colon, cervical, and hepatic 
cancers (Tu et al. 2015). In this regard, an increase in taurine 
concentration leads to apoptosis. Taurine was increased in 
the WT+ cells, but decreased in GemR. Our observations 
align with previous reports indicating that an acquired gem-
citabine resistance inhibits gemcitabine-induced apoptosis.

A connection between creatine/creatine phosphate and 
pancreatic cancer has not been previously observed. Never-
theless, an alteration in the expression of creatine kinase, the 
enzyme that catalyzes the reversible conversion of creatine 
to creatine phosphate, has been strongly associated with 
other tumors such as small cell lung carcinoma (Gazdar 
et al. 1981).

A notable decrease in glycerophosphocholine was also 
observed in GemR cells with a corresponding increase 
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in WT+ cells. This is consistent with abnormal choline 
metabolism that is a characteristic of multiple cancers 
and the associated changes in the expression of impor-
tant choline metabolizing enzymes and choline transport-
ers (Glunde et al. 2015). Since 11C Choline PET imaging 
is already used for diagnosing cancer (Hara et al. 1998), 
choline metabolism might yield a promising biomarker for 
gemcitabine-sensitive pancreatic cancers.

A receiver operating characteristics (ROC) analyses was 
applied to further asses the predictive power of the NMR 
metabolomics data to discriminate WT (T3M4 and Capan-
1) cells from WT+ and GemR cells. The ROC curves (Fig. 
S3) show that the WT, WT+ and GemR cells were all con-
fidently identified (AUC > 0.9) using only five spectral 
features from the 1D 1H NMR data sets. Notably, each of 
these spectral features was similarly identified from the 
OPLS-DA loadings plots. Thus, the essentially identical 
results obtain from both univariate and multivariate analy-
sis for two different cell lines provides strong validation 
for the observed alteration in the cellular metabolomes.

2.2  Altered metabolism in gemcitabine resistant 
cells

We have previously demonstrated that glucose metabolism is 
altered in gemcitabine resistant cells (Shukla et al. 2017). The 
application of stable isotope-resolved metabolomics (SIRM) 
techniques provides further confirmation for the role of metab-
olism in gemcitabine resistance. 2D 1H–13C heteronuclear 
single quantum coherence (HSQC) NMR spectra was used 
to analyze the metabolites derived from 13C6-glucose in WT 
Capan-1, WT-treated, GemR and GemR-treated cell lysates. 
A total of 30 metabolites were identified from the 2D 1H–13C 
HSQC NMR spectra. The relative metabolite concentrations 
are plotted in a heatmap with hierarchical clustering (Fig. 2A). 
Consistent with the PCA analysis of the 1D 1H NMR dataset 
(Fig. 1 and S1), two major branches consisting of WT/WT+ 
and GemR/GemR+ was observed in the heatmap. Again, this 
indicates that a metabolic phenotype associated with gemcit-
abine-resistance was the major feature differentiating the four 
cell cultures. Furthermore, the gemcitabine sensitive cells 
formed two distinct branches based on gemcitabine treatment 
status. In contrast, the GemR cells formed a single branch irre-
spective of gemcitabine treatment.

Fig. 2  Altered metabolism in gemcitabine resistant cells. (A) Heat-
map and hierarchical clustering analysis generated from 2D 1H–13C 
HSQC spectra of WT, WT+, GemR and GemR+ cell lysates. Peak 
intensities for each metabolite was normalized by the mean of all the 
peaks and then scaled by the maximum peak intensity for the metab-
olite across the four groups. The column clustering identifies group 
membership and the row clustering identifies metabolites with simi-

lar trends across the groups. (B) A metabolic pathway summarizing 
the metabolite differences between WT and GemR (first arrow); and 
between WT and WT+ (second arrow), respectively. A red arrow 
indicates a decrease in the metabolite in WT+ or GemR relative to 
WT. A green arrow indicates an increase in the metabolite in WT + or 
GemR relative to WT
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In addition to clustering based on group membership, the 
metabolites in the heatmap were also hierarchically clus-
tered (Fig. 2A). As a result, the metabolites formed three 
distinct branches. The top branch contains metabolites that 
exhibited a decrease in concentration in response to acquir-
ing gemcitabine resistance. This branch includes important 
metabolites such as glucose, glucose 6-phosphate, aspartate, 
and citric acids. The middle branch contains metabolites that 
all increased in concentration upon developing gemcitabine 
resistance. These metabolites include nucleotide analogs of 
adenine, cytidine, guanine and uracil along with amino acids 
such as glutamine, and alanine. The bottom cluster contains 
metabolites with distinct patterns dependent on the cell lines 
gemcitabine treatment. In effect, these metabolites primarily 
reflect the response of WT cells to treatment and are major 
contributors to distinguishing WT from WT+ cells.

The pathway shown in Fig. 2B summarizes the metabolic 
changes that resulted from either gemcitabine resistance 
(first arrow) or from WT cell’s response to treatment (second 
arrow). The acquisition of gemcitabine resistance resulted 
in a major metabolic “switch”. This is further evident by 
the complete pairwise reversal in metabolite concentration 
changes as depicted in Fig. 2B. Specifically, if a metabolite 
increased as a result of acquiring gemcitabine resistance, it 
was then observed to decrease in the WT cell’s response to 
gemcitabine treatment or vice-versa.

Our NMR metabolomics analysis indicated that GemR 
cells exhibited an altered nucleotide biosynthesis, which 
resulted from a redirection in carbon-flow from other major 
metabolic pathways. Specifically, metabolites from glyco-
lysis and the pentose phosphate pathway were decreased in 
GemR. Presumably, this was a result of carbon flowing from 
glycolysis and PPP into nucleotide biosynthesis in order to 
increase the cellular concentration of nucleotides. This is 
consistent with prior observations that gemcitabine efficacy 
is affected by the nucleotide cellular pool (Raykov et al. 
2014) and our observation that deoxycytidine triphosphate is 
a competitive-inhibitor of gemcitabine (Shukla et al. 2017). 
Again, the metabolic response of gemcitabine sensitive cells 
(e.g., wild-type cells) to a gemcitabine treatment was a com-
plete reversal of the response in gemcitabine-resistant cells 
(e.g., GemR). In summary, GemR cells and WT-treated cells 
metabolize glucose differently. In GemR, glucose is primar-
ily funneled into nucleotide synthesis to negate gemcitabine 
activity; whereas, glucose is primarily directed into aerobic 
glycolysis in a WT cell’s response to gemcitabine treatment.

3  Conclusion

A unique metabolic phenotype was identified for pancre-
atic cancer cells with an acquired resistance to gemcitabine. 
A metabolic “switch” was observed when comparing 

gemcitabine-resistant cells to a wild-type cell’s response to 
gemcitabine treatment. This metabolic switch enabled gem-
citabine-resistant cells to funnel carbon from glucose into 
nucleotide biosynthesis, where the increased cellular pool 
of nucleotides function as a competitive inhibitor of gemcit-
abine. The distinct metabolic profiles for both a response to 
treatment and an acquired-drug resistance suggest a potential 
utility of metabolomics for monitoring a patient’s response 
to gemcitabine therapy.
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