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ABSTRACT: Despite inherent complementarity, nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS) are
routinely separately employed to characterize metabolomics samples.
More troubling is the erroneous view that metabolomics is better
served by exclusively utilizing MS. Instead, we demonstrate the
importance of combining NMR and MS for metabolomics by using
small chemical compound treatments of Chlamydomonas reinhardtii as
an illustrative example. A total of 102 metabolites were detected (82
by gas chromatography−MS, 20 by NMR, and 22 by both
techniques). Out of these, 47 metabolites of interest were identified:
14 metabolites were uniquely identified by NMR, and 16 metabolites
were uniquely identified by GC−MS. A total of 17 metabolites were
identified by both NMR and GC−MS. In general, metabolites
identified by both techniques exhibited similar changes upon compound treatment. In effect, NMR identified key metabolites
that were missed by MS and enhanced the overall coverage of the oxidative pentose phosphate pathway, Calvin cycle,
tricarboxylic acid cycle, and amino acid biosynthetic pathways that informed on pathway activity in central carbon metabolism,
leading to fatty-acid and complex-lipid synthesis. Our study emphasizes a prime advantage of combining multiple analytical
techniques: the improved detection and annotation of metabolites.

Metabolomics is experiencing exponential growth1 and has
made substantial contributions to various research areas, such
as nutrition, plant physiology, cellular metabolism, disease
diagnosis and biomarker detection, and drug discovery and
development.2−45,6 To date, metabolomics has primarily relied
on the separate application of mass spectrometry (MS) or
nuclear magnetic resonance spectroscopy (NMR), but there
are also notable examples of the application of surface
enhanced Raman spectroscopy and Fourier transform infrared
spectroscopy (FTIR).7 Nevertheless, the vast majority of
recently published metabolomics studies are only making use
of GC−MS or liquid chromatography (LC)−MS despite prior
contributions from NMR and other analytical techniques.8 In
2017, only 5% of metabolomics manuscripts published in
PubMed described any form of a combined NMR and GC−
MS approach to metabolomics (Figure 1). This may be
explained, in part, by an erroneous belief that mass
spectrometry is the optimal analytical technique for metab-
olomics. Unfortunately, this false perspective has begun to
negatively impact the field and will likely limit the coverage of
the metabolome, potentially diminish the quality of research,
and hamper progress. Instead, metabolomics should seek to
maximize (not limit) the number of analytical techniques used
to characterize the entirety of the metabolome. Moreover, the
confidence and accuracy of metabolite identification and

quantification is improved by the application of multiple
analytical techniques. Thus, the goal of the field should be to
accurately address scientific questions by striving for the
broadest coverage of the metabolome, not by focusing on the
type of instrumentation used.
NMR and MS are inherently complementary due to their

distinct strengths and weaknesses. This, in turn, leads to
different sets of metabolites that are uniquely detected by
NMR and MS. Accordingly, combining both NMR and MS
will result in a greater coverage of the metabolome.
Simplistically, NMR detects the most-abundant metabolites,
and MS detects the metabolites that are readily ionizable. This
arises from fundamental differences between NMR and MS.
For example, NMR requires minimal sample handling, but
chromatography is a necessary component of MS metab-
olomics because of the relatively narrow molecular-weight
distribution of the metabolome.9 Chromatography methods
are plagued by non-uniform metabolite derivatization,
incomplete column recovery, decomposition during derivatiza-
tion, ion-suppression due to the coeluent matrix, and
misaligned retention times, to name a few reasons.10−14

Similarly, small molecules exhibit variable thermal stability that
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may lead to the loss of metabolites and the erroneous
accumulation of degradation products at temperatures
routinely used for gas chromatography (GC).15 Conversely,
NMR lacks the sensitivity to detect metabolites in the
submicromolar range (≥1 μM) and has limited spectral
resolution that often results in peak overlap.16 MS also has a
higher resolution (∼103 to 104) and dynamic range (∼103 to
104) relative to NMR.
Ambiguous peak assignments are a common problem

encountered by both NMR and MS. This issue is attributed
to limitations in the availability of reference spectra, insufficient
software and databases, and our incomplete knowledge of the
metabolome. It is believed that nearly all metabolomics
investigations have at least one misidentified or unidentified
metabolite.17 Natural product chemistry has routinely
employed protocols involving both NMR and MS data to
identify novel compounds, but the application of this
combinatorial approach has seen limited usage in metab-

olomics.18 Nevertheless, a few methods have recently been
described that combine NMR and MS to assign metabolites
and identify unknowns.19−21 Notably, the community has
recognized that metabolomics needs to continue to move in
this direction.8,21−26 There have also been a few recent
examples that highlight the utility and complementarity of
combining 1D 1H NMR with direct injection or LC− and
GC−MS experiments for metabolomics.27,28 Most of these
examples are methodology-driven; are focused on improving
statistical tools and modeling; or performed parallel, but
separate, sample analysis.29−31 In this regards, NMR is
routinely only used as a supplement to MS or in a secondary
confirmatory role. Accordingly, the full impact of using NMR
to characterize a metabolomics sample is missed.
Current estimates suggest the size of the human

metabolome is approximately 150 000 metabolites, but only
upward of a few hundred metabolites are typically identified in
a given metabolomics study.32 Combining MS with NMR and

Figure 1. Summary of metabolomics publications in PubMed that refer only to NMR (yellow), only to GC−MS (blue), or to both GC−MS and
NMR (gray).

Figure 2. (A) Workflow schematic showing the key steps in the combined NMR and GC−MS analysis of the C. reinhardtii metabolome. Three
biological replicates were prepared for each group consisting of the untreated controls, WD30030-treated cells, and WD10784-treated cells. A GC−
MS spectrum and a 2D 1H−13C HSQC NMR spectrum were collected for each biological replicate. (B) Multiblock PCA scores plot generated
from the combined GC-MS and 2D 1H−13C HSQC NMR data sets illustrating a distinct clustering for untreated controls (red squares) and the
WD30030- (green squares) and WD10784- (blue squares) treated cells. A total of three biological replicates are displayed per group, and each data
point represents the combined GC−MS and 2D 1H−13C HSQC NMR data sets plotted in principal component space. The ellipses represent a 95%
confidence limit of the normal distribution of each cluster. The associated dendrogram was derived from the PCA scores plot, and each node is
annotated with a Mahalanobis distance-based p value. The separation between untreated controls and WD30030 (p value of 2.5 × 10−3) and
WD10784 (p value of 8.9 × 10−4), respectfully, is considered statistically significant (p < 0.05). The color scheme for the dendrogram is the same as
the scores plot.
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other analytical techniques is necessary to move beyond this
self-imposed limit.
To address this need, a global metabolomics study was

performed in a platform-unbiased fashion to highlight the
intrinsic benefits of combining NMR and MS. In this regard,
NMR and MS data were collected on a similar set of samples
without complicating existing workflows or requiring major
protocol modifications. Accordingly, there were no serious
experimental barriers encountered that would prevent the
metabolomics community from adapting a combined NMR
and MS approach as a standard for the field. As an illustrated
example, the metabolome of Chlamydomonas reinhardtii grown
in tris-acetate phosphate (TAP) media (13C2-acetate for
NMR) was characterized by NMR and GC−MS. The cells
were also treated with two lipid accumulation modulators
(WD30030 and WD10784) as described by Wase et al.33 The
aqueous-extracted metabolomes from treated and untreated
cells were then compared to identify metabolic variations due
to the compound treatments. The eRah package was used to
perform peak picking, retention-time alignment, and metabo-
lite library search for the GC−MS data set.33,34 Similarly,
NMRpipe35 and NMRviewJ36 were used for processing and
peak picking the NMR data set and metabolite assignments
were performed using spectral databases.37 A schematic
overview of the workflow is shown in Figure 2A. Details of
data handling, processing and analyses are available as
Supporting Information.
The complete 2D 1H−13C HSQC NMR spectra obtained

from C. reinhardtii metabolome extracts were used for
unsupervised multivariate analyses to generate a principal
component analyses (PCA) scores plot with an associated
dendrogram (Figure S-1A). Statistical models were generated
after the data was processed as a matrix to be standard normal
variate (SNV) normalized and unit variance scaled. The
WD30030- and WD10784-treated cells formed distinct
clusters separate from the untreated control. The dendrogram

generated from the Mahalanobis distances between each point
in the PCA scores plot and the resulting p value between each
node indicates a statistically significant (p < 0.05) separation
between each group. Similarly, metabolite assignments from
the GC−MS spectral data set were obtained from the eRah
package and identified using the GOLM database.38 The
assigned metabolite peak areas were then imported as a matrix
into MVAPACK to obtain a comparable PCA scores plot and
dendrogram as described above (Figure S-1B).39 A similar
statistically significant group separation between the
WD30030- and WD10784-treated cells and the untreated
controls was obtained. Importantly, the NMR and GC−MS
data sets were successfully combined to generate a comparable
multiblock (MB)-principal component analysis (PCA) model
with a corresponding dendrogram (Figure 2B).30 The MB-
PCA model provides a single statistical model for both data
sets. In this manner, key metabolite differences between the
treated and untreated controls can be identified irrespective of
the analytical method.
Overall, 82 compounds were identified by GC−MS alone

and 20 by NMR alone, and 22 were common to both methods
(Tables S-1−S-3). Of these 102 detected metabolites, a total of
47 metabolites of interest were perturbed upon compound
treatment (Table S-4). Thus, a greater coverage of compound-
induced changes in the C. reinhardtii metabolome was obtained
by combining the metabolite assignments from the NMR and
GC−-MS data sets. Specifically, 14 unique metabolites were
identified from the NMR analysis of 13C2-acetate labeled C.
reinhardtii cells that were significantly perturbed upon
treatment with either WD30030 or WD10784. Metabolites
were assigned using the Biological Magnetic Resonance Bank
(BMRB) metabolomics database.40 Similarly, 16 unique
metabolites were identified from the GC−MS spectra using
the GOLM database. Furthermore, an additional 17 metabo-
lites were identified by both NMR and GC−MS. In total, the
metabolites comprise the following metabolic pathways: the

Figure 3. Metabolic pathway summarizing the coverage of the C. reinhardtii metabolome (metabolites of interest) from the combined application
of NMR and GC−MS. Metabolites that were only identified by NMR are colored blue. Metabolites that were only identified by GC−MS are
colored red. Metabolites identified by both methods are colored black, and metabolites that are not identified are colored gray. The embedded
Venn diagram identifies the total number of metabolites of interest within these metabolic pathways that were identified either by NMR, by GC−
MS, or by both techniques.

Journal of Proteome Research Letter

DOI: 10.1021/acs.jproteome.8b00567
J. Proteome Res. 2018, 17, 4017−4022

4019

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00567/suppl_file/pr8b00567_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00567/suppl_file/pr8b00567_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00567/suppl_file/pr8b00567_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00567/suppl_file/pr8b00567_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00567/suppl_file/pr8b00567_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.8b00567


oxidative pentose phosphate pathway, the Calvin cycle, the
tricarboxylic acid cycle, and the amino acid biosynthetic
pathways. A summary of the C. reinhardtii metabolic changes
of interest resulting from treatment with WD30030 and
WD10784 is shown in Figure 3.
NMR and GC−MS identified nine glycolytic intermediates

in which fructose, glycerol, and pyruvate were uniquely
identified by NMR, and fructose-6-phosphate was unique to
GC−MS. All 20 amino acids were detected from the combined
data sets, but asparagine, cysteine, histidine, serine, and
tryptophan were only observed with GC−MS. Consequently,
glycine, lysine, methionine, and valine were unique to NMR.
Tricarboxylic acid cycle and Calvin cycle metabolites exhibited
the most variation. Acetate, isocitrate, 2-ketoglutarate, malate,
and succinate were identified by NMR, but fumarate was
limited to GC−MS. Ribulose and its phosphate derivatives
were exclusively assigned through GC−MS. Nucleotide and
nucleoside analogs were the metabolite group consistently
observed by both techniques. A total of 7 out of the 10
metabolites (2-deoxy adenosine, adenosine, guanosine, hypo-
xanthine, inosine, thymine, and xanthosine) were observed by
both NMR and GC−MS. Cytosine and uridine were uniquely
identified by NMR, whereas uracil was only observed by GC−
MS. A complete list of metabolites identified by NMR and GC
are provided in Tables S-1−S-4).
The complete set of 22 metabolites identified by both NMR

and GC−MS, including the 17 metabolites of interest depicted
in Figure 3, were further evaluated for overall consistency
between the two methods. A correlation between the 22
common metabolites was evaluated using Pearson correlation
within the R environment (http://www.r-project.org), and the
resulting comparison is plotted in Figure 4. While there is
significant scatter, the overall trend is quite similar. It is
important to note that only relative changes in metabolite
concentrations were compared. Furthermore, the GC−MS
metabolomics analysis was untargeted and lacked any

metabolite-specific calibration. Conversely, the absolute
quantitation of metabolite concentration changes is an
inherent strength of NMR. However, NMR was only used to
monitor the relative changes in metabolites derived from 13C2-
acetate, whereas GC−MS captured total metabolite changes.
Differences in the number of sample processing steps may also
impart unintended variations. Metabolite derivatization has
been identified as a major source of sample variation.10,12,14

Similarly, variable metabolite stability during GC−MS data
acquisition is another potential source of error.15 Finally, a
limited number of biological replicates will also contribute to a
larger variance. We want to emphasize that, given these
unavoidable discrepancies and the limited number of sample
replicates, the observed correlation between the relative
changes in metabolite concentration is quite notable.
Importantly, the overall trend (or direction) in metabolite
concentration change is preserved for the majority of
metabolites despite the scatter in the magnitude of these
changes. Furthermore, a simple comparison of metabolite
trends is probably the limit of the data given the distinct and
numerous sources of variance.
A pair-wise comparison between the 22 individual

metabolites identified by both NMR and GC−MS are plotted
as line curves in Figure S2. Again, an acceptable level of
consistency is achieved in the pair-wise comparisons. A general
agreement was also observed in the relative changes between
both compound treatments. Any observed discrepancies
between metabolite trends may be explained by the fact that
GC−MS is capturing the total metabolite change, while NMR
is only capturing the changes in metabolites derived from 13C2-
acetate. In this regard, both measurements are likely correct
but are simply observing different aspects of the metabolome.
Again, this highlights the inherent strength of combining both
NMR and MS. Conversely, if GC−MS observes a significantly
lower metabolite concentration relative to NMR, this is a likely
an error in the GC−MS data due to a limited thermal stability
of the metabolite, variations in derivatization efficiency, and
the multipeak phenomena.12−15 Additionally, given the fact
that NMR routinely provides highly accurate sample
quantitation relative to MS, NMR is likely to provide the
correct metabolite change when the methods disagree (Figure
S3).41

Extensive (nearly complete) coverage of key metabolic
pathways associated with lipid accumulation was only achieved
by combining NMR and GC−MS data. In effect, the NMR
data filled-in the metabolites that were missed by GC−MS.
Importantly, the broader coverage of the C. reinhardtii
metabolome was able to provide a comprehensive view of
the algae’s response to a compound treatment. This level of
detail is essential to further our understanding of the
mechanism of action of drug leads, of drug resistance, and of
disease development and progression, among numerous other
potential utilities. Achieving this level of coverage of the
metabolome requires employing multiple analytical techniques.
This viewpoint is consistent with some prior observa-
tions.8,21−26 For example, Chen et al. noted an improvement
in biomarker identification by combining 1D 1H NMR and
GC−MS for the analysis of urine from patients with bipolar
disorder.42 Another recent example highlighted the use of 1D
1H NMR and GC−MS for the analysis of bronchial-wash fluid
to investigate responsiveness to air pollution.43 Barding et al.
have highlighted similar improvements in coverage of the
metabolome in molecular response of rice to stress.44 These

Figure 4. Comparison of the 22 relative metabolite concentration
changes detected by NMR and GC−MS. Metabolite changes
resulting from treatment with WD30030 and WD10784 are colored
green or blue, respectively. The regression line fitted to the data
exhibited a correlation coefficient of R2 0.55 and a confidence interval
with a p value of <0.001.
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studies were able to combine multiple data sets to obtain a
robust set of biomarkers, which further emphasizes the benefit
of combining multiple analytical platforms for metabolomics.
These are other recent examples in which both NMR and
GC−MS metabolomics data sets have been integrated for
applications in biomarker identification, food chemistry, and
plant physiology.45−48

To date, the majority of metabolomics studies have been
self-limited to a single analytical platform (Figure 1). This is
despite the fact that NMR and MS (and other analytical
techniques) are highly complementary. Furthermore, existing
workflows (Figure 2A) can easily accommodate the inclusion
of both techniques. Consequently, there is little to no barrier to
the broad adoption by the scientific community of a
multianalytical approach to metabolomics. Importantly, and
as clearly demonstrated herein, combining NMR and MS
improves the coverage of the metabolome, increases the
accuracy of metabolite assignments,19−21 and provides
redundant validation of metabolite changes. In fact, our results
demonstrate a limited overlap in the metabolites identified by
both NMR and GC−MS. However, most metabolites in
common did exhibit consistent trends in relative concentration
changes, showcasing the robustness of the combined approach.
Our results provide clear evidence that both NMR and MS are
equally valuable and necessary for metabolomics studies and
that combining multiple analytical sources is essential to the
future of metabolomics.
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(27) Bingol, K.; Brüschweiler, R. NMR/MS translator for the
enhanced simultaneous analysis of metabolomics mixtures by NMR
spectroscopy and mass spectrometry: Application to human urine. J.
Proteome Res. 2015, 14 (6), 2642−2648.
(28) Bingol, K.; Bruschweiler-Li, L.; Yu, C.; Somogyi, A.; Zhang, F.;
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