Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival

Jordan Rosea,b,c, Christian Briana,b, Jade Woodsd, Aglaia Pappae, Mihalis I. Panayiotidisf, Robert Powersb,d, Rodrigo Francoa,b,⁎

a School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
b Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
c Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
d Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
e Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
f Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK

\section*{ARTICLE INFO}

\textbf{Keywords:}
Astrocytes
Microglia
Oligodendrocytes
Mitochondria
Glycolysis
Free fatty acid oxidation
Calcium
Redox
Inflammation

\section*{ABSTRACT}

Mitochondrial dysfunction is central to the pathogenesis of neurological disorders. Neurons rely on oxidative phosphorylation to meet their energy requirements and thus alterations in mitochondrial function are linked to energy failure and neuronal cell death. Furthermore, in neurons, dysfunctional mitochondria are reported to increase the steady-state levels of reactive oxygen species derived from the leakage of electrons from the electron transport chain. Research aimed at understanding mitochondrial dysfunction and its role in neurological disorders has been primarily geared towards neurons. In contrast, the effects of mitochondrial dysfunction in glial cells’ function and its implication for neuronal homeostasis and brain function has been largely understudied. Unlike neurons and oligodendrocytes, astrocytes and microglia do not degenerate upon the impairment of mitochondrial function, as they rely primarily on glycolysis to produce energy and have a higher antioxidant capacity than neurons. However, recent evidence highlights the role of mitochondrial metabolism and signaling in glial cell function. In this work, we review the functional role of mitochondria in glial cells and the evidence regarding its potential role regulating neuronal homeostasis and disease progression.

\section*{1. Introduction}

Mitochondria are involved in a myriad of processes relevant for cell function besides energy (ATP) production (Yin et al., 2014), making them more than simply powerhouses of the cell. Mitochondria are a hub for signaling processes that include the maintenance of calcium (Ca2+) homeostasis and the generation of signaling molecules and thus, signaling events (Blaższczak and Boini, 2017; Chandel 2015). For example, cell death progression is well known to be triggered by the release of mitochondrial pro-death proteins. Numerous pathological conditions have been connected to mitochondrial dysfunction. Accordingly, alterations in the functions of mitochondria are expected to have important implications for cellular function and disease progression.

In brain disorders (neurodegeneration) and injury (neurotoxicity and ischemia), neuronal cell death has been linked to alterations in mitochondrial homeostasis/function including traffic, quality control and turnover, homeostasis (bioenergetics and electron transport) and signaling (metabolism and Ca2+ handling) (Chaturvedi and Flint Beal, 2013; Yin et al., 2014). Neurons are dependent on mitochondrial oxidative phosphorylation (OXPHOS) to fulfill their energy demands. Because neurons have a limited capacity to upregulate glycolysis or to counteract oxidative damage, mitochondrial dysfunction with the concomitant energy failure and increased generation of reactive oxygen species (ROS) are considered central to neuronal cell loss in brain disorders (Fernandez-Fernandez et al., 2012; Herrero-Mendez et al., 2009). As such, research has been primarily directed at understanding the causes and consequences of mitochondrial dysfunction in neuronal populations affected during neurodegeneration or brain injury (Moran et al., 2012; Yin et al., 2014).

While initially considered as accessory cells to neurons, glial cells are now recognized to be essential for neuronal cell homeostasis, survival, and brain function and development (Bolanos, 2016; Fernandez-Fernandez et al., 2012; Kubik and Philbert, 2015). Importantly, genetic...
modifications or xenobiotics recognized to alter mitochondrial function in neurons (i.e. pesticides [rotenone or paraquat], metals [lead, arsenic], antibiotics, and drugs that target the integrity of mitochondrial DNA) are expected to alter mitochondrial function in glial cells as well (Fetterman et al., 2017; Chan, 2017; Kubik and Philbert, 2015; Meyer et al., 2013). Unfortunately, very few studies have addressed the pathological implications of mitochondrial dysfunction in glial cells and its consequences in neurological disorders. Herein, we review the current evidence demonstrating the importance of mitochondrial homeostasis and signaling in glial function and how their functional deficiency has important implications for brain disorders and injury that lead to or are a consequence of neuronal cell death.

2. Glial cell types and their functional roles

Glial cells can be generally classified as macroglia (astrocytes and oligodendrocytes) or microglia. Macroglia originate from the embryonic ectoderm, while microglia originate from the mesoderm and enter the brain during embryogenesis. While initially grouped under the term “glia” (Greek term for glue), it is now clearly established that glial cells regulate a number of physiological processes required for proper neuronal survival and brain function. Refinement and revision of counting techniques have demonstrated that while the overall ratio of neurons to glial varies between different regions in the brain, a ratio of ~1:1 glia to neuron exists in the entire human brain, which is significantly smaller than previous estimates (~10:1). Oligodendrocytes are reported to be the most abundant type of glial cells (45–75%), followed by astrocytes (19–40%), and microglia (10% or less) (von Bartheld et al., 2016).

Oligodendrocytes are responsible for axon myelination at long membrane extensions, providing axons with an “insulating coat” that enhances nerve impulse conduction (Fig. 1.4). Oligodendrocytes have several extensions that form several internodal segments of myelin separated by gaps (Ranvier nodes) (Baumann and Pham-Dinh, 2001; Snell, 2010). Oligodendrocytes are found in both the gray and white matter, but are a major fraction of all the cells in the white matter.

Astrocytes are small cells with processes that are radially arranged. Astrocytes have considerable molecular, structural, and functional diversity at the regional level. Their extensions cover the external surface of brain capillaries (perivascular feet), the synaptic cleft between different regions in the brain, a ratio of ~1:1 glia to neuron exists in the entire human brain, which is significantly smaller than previous estimates (~10:1). Oligodendrocytes are reported to be the most abundant type of glial cells (45–75%), followed by astrocytes (19–40%), and microglia (10% or less) (von Bartheld et al., 2016).

Oligodendrocytes are responsible for axon myelination at long membrane extensions, providing axons with an “insulating coat” that enhances nerve impulse conduction (Fig. 1.4). Oligodendrocytes have several extensions that form several internodal segments of myelin separated by gaps (Ranvier nodes) (Baumann and Pham-Dinh, 2001; Snell, 2010). Oligodendrocytes are found in both the gray and white matter, but are a major fraction of all the cells in the white matter.

Astrocytes are small cells with processes that are radially arranged. Astrocytes have considerable molecular, structural, and functional diversity at the regional level. Their extensions cover the external surface of brain capillaries (perivascular feet), the synaptic cleft between different regions in the brain, a ratio of ~1:1 glia to neuron exists in the entire human brain, which is significantly smaller than previous estimates (~10:1). Oligodendrocytes are reported to be the most abundant type of glial cells (45–75%), followed by astrocytes (19–40%), and microglia (10% or less) (von Bartheld et al., 2016).

3. Mitochondrial dysfunction in glial cells and its effect on neuronal function/survival

3.1. Cell death

Apoptosis is a ubiquitous homeostatic mechanism critical for the turnover of cells throughout the lifespan of multi-cellular organisms. However, dysregulation of apoptosis occurs as either a cause or consequence of distinct pathologies that include neurodegenerative disorders (Fadeel and Orrenius, 2005). The signaling pathways that regulate the progression of apoptosis have been extensively characterized and divided into an extrinsic and intrinsic pathway. Induction of apoptosis via the extrinsic pathway is triggered by death ligand and their corresponding receptors leading to the activation of initiator caspases (Lavrik et al., 2005).

The intrinsic mitochondrial pathway of apoptosis is activated by a wide variety of stimuli that regulate the expression and function of the Bcl-2 (B-cell lymphoma 2) family of anti or pro-apoptotic proteins. The BH3-only Bcl-2 family members Bad, Bid, Bim and NOXA, regulate the anti-apoptotic Bcl-2 proteins Bcl-2, Bcl-xl and McI-1, to promote apoptosis. The pro-apoptotic effector proteins Bax and Bak are sufficient and necessary for inducing the permeabilization of the outer mitochondrial membrane and the release of cytochrome C (Cyt C) (Fig. 2.6). However, the activation of BH3-only proteins counteracts the direct inhibition of Bax and Bak by anti-apoptotic Bcl-2 proteins. Released Cyt C leads to the recruitment of Apaf1 and caspase 9 into a platform (apoptosome) that activates caspase 9 and subsequently, executioner caspases 3, 6, and 7. The extrinsic death receptor pathway can crosstalk to the intrinsic/mitochondrial pathway of apoptosis by an amplification loop induced by caspase dependent cleavage/activation of Bid (Green and Llambi, 2015).

While a number of studies have reported the induction of apoptosis in astrocytes and microglia under different experimental conditions, very little evidence exists about the loss or degeneration of these glial cells with respect to human disorders. In contrast, oligodendrocytes are known to degenerate in demyelinating disorders such as multiple sclerosis, and to be affected directly or indirectly by the majority of known disorders in the CNS including ischemia, trauma and neurodegeneration. Glutamate/Ca2+ excitotoxicity, inflammation (cytokines) and oxidative stress are common triggers for oligodendrocyte injury in these pathological situations (Fig. 1.4). Oligodendrocytes express ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainite receptors whose activation induces Ca2+ overflow and apoptotic cell death via the intrinsic mitochondrial pathway and the activation of Bax and caspase 3 (Fig. 1.4) (Ruiz et al., 2010; Sanchez-Gomez et al., 2011). The high lipid and iron content of oligodendrocytes also makes them susceptible to oxidative damage induced by cytokines (Zhang et al., 2005).

3.2. Bioenergetics and metabolism

Neurons are dependent on high rates of OXPHOS to meet their energy requirements, to maintain and restore ionic gradients, and for the uptake and recycling of neurotransmitters. In contrast, astrocytes are highly glycolytic, but a large portion of glucose is converted to lactate and released to the extracellular space (Fig. 2.2). Interestingly, glucose consumption in astrocytes exceeds their energy expenditure, which is explained by the astrocytes-neuron lactate shuttle hypothesis where lactate is shuttled from astrocytes (and oligodendrocytes) as a fuel for OXPHOS in neurons (Figs. 1.1 and 2.2) (Belanger et al., 2011; Funshilling et al., 2012a; Lee et al., 2012; Morrison et al., 2013). What limits OXPHOS in astrocytes? Recent studies have demonstrated that the activation of pyruvate dehydrogenase (PDH), which provides a route of entry for pyruvate into the tricarboxylic acid (TCA or Krebs) cycle, is reduced by its phosphorylation in astrocytes (Figs. 1.1 and 2.3) (Halim et al., 2010). Interestingly, astrocytes have the same oxidative capacity.
as neurons, but are resilient to mitochondrial dysfunction (Di Monte et al., 1992).

Other carbon sources can fuel OXPHOS in astrocytes. Glutamate can be metabolized through the TCA cycle, but astrocytes primarily metabolize it to glutamine by the activity of glutamine synthase (GS) (Fig. 2.4). However, when the extracellular concentration of glutamate increases to levels observed during synaptic transmission, the proportion of glutamate metabolized by the TCA cycle increases as well, while its conversion to glutamine decreases concomitantly (McKenna 2013; Nissen et al., 2015; Schousboe et al., 2014). Importantly, glutamate exerts a stimulatory effect on glycolysis as well (Loaiza et al., 2003; Pellerin and Magistretti 1994).

Acetate is also used as a carbon source by astrocytes, but its physiological significance has not been established (Belanger et al., 2011; Jiang et al., 2013). Astrocytes can oxidize free fatty acids (FFA) and ketone bodies. In contrast, due to their high lipid content, neurons and oligodendrocytes can only use ketone bodies as these cell types would be highly vulnerable to ROS formation generated by FFA oxidation (Iglesias et al., 2017; Schonfeld and Reiser 2013). Twenty percent of total energy expenditure in the brain is linked to FFA oxidation (FAO), which occurs primarily in astrocytes (Ebert et al., 2003). As mentioned above, astrocytes exhibit high rates of OXPHOS (Lovatt et al., 2007), but a larger proportion of their PDH is phosphorylated compared to neuronal PDH, inhibiting the conversion of pyruvate to acetyl-CoA (Halim et al., 2010). Thus, FAO might actually be a major source for acetyl-CoA into the TCA cycle (Panov et al., 2014) (Fig. 2.3).

Oligodendrocytes have similar rates of glycolysis compared to astrocytes, but release less lactate since a larger proportion of pyruvate derived from glucose is metabolized via PDH into the TCA cycle. Similar to astrocytes, oligodendrocytes can carboxylate pyruvate to oxaloacetate via pyruvate carboxylase (PC) to replenish TCA intermediates (anaplerosis) or recycle pyruvate (Fig. 2.3) (Amaral et al., 2016). In astrocytes however, pyruvate carboxylation also serves to compensate for the generation of glutamate and subsequently glutamine that is then shuttled to neurons (glutamate-glutamine cycle) (Figs. 1.2 and 2.4) (Schousboe et al., 2014). Lactate metabolism in oligodendrocytes has been demonstrated to participate in oligodendrocyte differentiation and myelination. (Rinholm et al., 2011). Importantly, mitochondrial respiration/metabolism seems to be primarily involved in oligodendrocyte differentiation, while glycolysis appears to be sufficient to maintain post-myelinated (differentiated) oligodendrocytes (Funschilling et al., 2012b).
Accordingly, demyelination disorders linked to mitochondrial dysfunction seem to be primarily linked to increased oxidative damage and changes in FFA metabolism but not energy failure (Lin et al., 2012; Swalwell et al., 2011; Viader et al., 2013).

3.3. Calcium

Calcium (Ca$^{2+}$) signaling and homeostasis are tightly coupled. Ca$^{2+}$ gradients across membranes and cellular compartments are established by the activity of Ca$^{2+}$ pumps/transporters. The controlled activation of Ca$^{2+}$ fluxes allows its release and the subsequent activation of a diverse array of signal transducers including kinases, enzymes and ion channels. Mitochondria are now recognized as important Ca$^{2+}$ reservoirs or sinks. The regulation of Ca$^{2+}$ signaling is not a simple process of its release and subsequent compartmentalization. Instead, it involves a highly localized release and controlled diffusion of Ca$^{2+}$ across intracellular compartments and in most cases, the coordinated action of more than one Ca$^{2+}$ reservoir or uptake system. The spatiotemporal complexity of this process is reflected by the existence of patterns of Ca$^{2+}$ waves or sparks that are decoded by transducers selectively localized in different cellular compartments. Sequestration of Ca$^{2+}$ within the mitochondrial matrix is partially driven by the negative environment generated by the extrusion of protons (H$^+$) across the inner mitochondrial membrane by the ETC (Fig. 2.3). Translocation of Ca$^{2+}$ into the matrix is mediated by the mitochondrial Ca$^{2+}$ uniporter (MCU) in an energy-independent manner (Fig. 2.5). Ca$^{2+}$ release from the mitochondria is mediated by Ca$^{2+}$ exchangers (the sodium [Na$^+$])/Ca$^{2+}$ [mNCX] and mitochondrial H$^+$/Ca$^{2+}$ exchangers.
In microglia, mitochondrial Ca^{2+} in astrocytes (Wu et al., 2007). Not only do mitochondria regulate Ca^{2+} signaling (Fig. 2.5) (Rizzuto et al., 2012).

Very little is known about the impact of mitochondrial Ca^{2+} accumulation on glial signaling. However, in other cell types, functional mitochondria in astrocytes and oligodendrocytes regulate Ca^{2+} waves generated by the activation of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and the release of Ca^{2+} from the ER (Boitier et al., 1999; Simpson and Russell, 1996; Smith et al., 2005). Mitochondrial Ca^{2+} has also been shown to regulate vesicular glutamate release from astrocytes that modulates synaptic communication and excitability (Reyes and Parpura, 2008). Ca^{2+} accumulation in mitochondria also modulates oxidative phosphorylation and energy production. PDH activation also regulates Ca^{2+}-dependent dephosphorylation, while Ca^{2+} binding also regulates α-ketoglutarate (αKGDH)- and isocitrate (IDH)-dehydrogenase activity increasing NADH levels, electron flow, and ATP synthesis (Fig. 2.5) (Rizzuto et al., 2012). Accordingly, Ca^{2+} release from the ER stimulates mitochondrial-dependent energy production in astrocytes (Wu et al., 2007). Not only do mitochondria regulate Ca^{2+} accumulation and dynamics, but also its release. A recent report demonstrated that Ca^{2+} release via mNCX is coupled to the store-operated Ca^{2+} entry triggered by Ca^{2+} depletion from ER stores regulating astrocytes proliferation and excitotoxic Glu release (Parnis et al., 2013).

In microglia, mitochondrial Ca^{2+} influx via the mitochondrial transient receptor potential vanilloid 1 channel (TRPV1) depolarizes mitochondria resulting in mROS production, mitogen activated protein kinase (MAPK) activation, and enhanced migration (Miyake et al., 2015).

3.4. Inflammation

Inflammation is a key contributor to most neurological disorders. In a steady “basal” state, microglia perform continuous surveillance of the CNS, secrete neurotrophic factors such as insulin-like growth factor 1 (IGF1), brain-derived neurotrophic factor (BDNF), transforming growth factor-β (TGFβ) and nerve growth factor (NGF). Microglia also promote synapse pruning for refinement of neuronal circuits during development. Classical activation of microglia (M1) conveys the production of ROS and reactive nitrogen species (RNS), and the release of the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1β (IL-1β) to promote brain tissue repair upon injury (removal of cell debris and restoring of tissue integrity). However, upon prolonged activation, ROS/RNS and cytokines promote neuronal dysfunction as well. Disease-associated factors such as xenobiotics, protein aggregates, and damage (DAMPs) or pathogen-associated molecular patterns (PAMPs) can activate microglia through a variety of surface receptors. These receptors include Toll-like receptors (for lipopolysacharide [LPS], oxidized low-density lipoprotein [LDL], and molecules released by damaged or dead cells including high-mobility group box 1 [HMGB1] and nucleotides), nucleotide-binding oligomerization domain (Nod)-like receptors (for amyloid proteins), receptors for advanced glycation end-products or RAGE (that are also activated by HMGB1), and purinergic receptors (for purines and pyrimidines including nucleoside triphosphates, e.g. ATP) (Hou et al., 2014). Pro-inflammatory cytokines released from microglia also “activate” astrocytes, which might produce TNF to potentiate microglia activation as well. As such, co-cultures of microglia and astrocytes produce more neurotoxic factors than either cell type activated alone (Saigo and Glass, 2011). Whether astrocytes can be activated in the absence of microglia is still unclear since most studies using primary cultures of astrocytes also contain at least 5% of microglia that significantly contribute to astrocyte activation (Facci et al., 2014; Marinelli et al., 2015). The alternative (M2-like) phenotype of microglia is observed to be induced by transforming growth factor-β (TGFβ), IL-4, IL-6 and IL-10 secreted from glioma cells (Saigo and Glass, 2011).

Mitochondrial dysfunction triggers inflammatory responses (West). During inflammation, changes in mitochondrial metabolism also contribute to the activation of microglia. The M1 phenotype of microglia was recently reported to be paralleled by a metabolic switch from mitochondrial OXPHOS to glycolysis that enhances carbon flux to the PPP (Fig. 1.5) (Gimeno-Bayon et al., 2014; Orihuela et al., 2016; Voloboueva et al., 2013). Interestingly, inhibition of complex I activity activates microglia (Shaikh and Nicholson 2009; Ye et al., 2016; Yuan et al., 2013), while impairment of mitochondrial fission reduces the production of pro-inflammatory signals (Park et al., 2013). Induction of the M2-like phenotype results in no observable changes in mitochondrial oxygen consumption or lactate production (Orihuela et al., 2016). However, mitochondrial toxins such as 3-nitropropionic acid and rotenone impair the transition to the M2 phenotype induced by IL-4 (Ferger et al., 2010). These results suggest that mitochondrial dysfunction in microglia can exacerbate the pro-inflammatory M1 phenotype resulting in the release of neurotoxic pro-inflammatory cytokines, and enhanced ROS/RNS formation (Tang and Le, 2016).

3.5. Redox homeostasis and detoxification of xenobiotics

In general, neurons have limited defense mechanisms against ROS compared to astrocytes. This enhanced resistance to oxidative damage is observed despite the fact that astrocytes have a deficient mitochondrial respiration and increased ROS formation when compared to neurons (Lopez-Fabuel et al., 2016). A comparative study also demonstrated that astrocytes are more resistant to oxidative damage than microglia or oligodendrocytes (Hollensworth et al., 2000). Astrocytes contain higher levels of endogenous antioxidants and antioxidant systems that include NADPH and G6PD (glucose-6-phosphate dehydrogenase). Astrocytes’ resistance to oxidative damage is explained by the activation of the antioxidant response via the nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor (Garcia-Nogales et al., 2003; Shih et al., 2003). Both neurons and astrocytes can synthesize GSH, but neurons depend on the supply of GSH precursors from astrocytes (Fig. 1.3). GSH is released from astrocytes via the ATP-binding cassette transporter subfamily C member 1 transporter (ABCC1, or multidrug-resistance-associated protein 1 [MRP1]) (Hirrlinger and Dringen, 2005). Extracellular GSH is then degraded by the γ-glutamyl transeptidase (γGT) to produce l-cysteine-l-glycine (CysGly), which is cleaved further by the neuronal aminopeptidase N (ApN) into the amino acids glycine and cysteine that are taken up by neurons for de novo GSH synthesis (Fig. 1.3) (Aoyama et al., 2008; Belanger et al., 2011). The glutamate-glutamine cycle may also be involved in the regulation of the neuronal redox environment by astrocytes since GSH synthesis also requires glutamate. The importance of astrocytes for neuronal redox homeostasis was evidenced by a recent study demonstrating that conditional depletion of astrocytes promotes neuronal injury by oxidative stress (Schreiner et al., 2015). Astrocytes are also the first line of defense against xenobiotics entering into the brain since their extensions cover the external surface of capillaries as part of the blood brain barrier. Detoxification of electrophiles is dependent on the formation of irreversible adducts with GSH that in many cases depends on the activity of glutathione-S-transferases (GST) and their efflux through MRPs (Dringen et al., 2015).

But what is the role of mitochondria in the redox homeostasis of astrocytes and neurons? The loss of GSH by its export to neurons or due to the detoxification of electrophiles is expected to prompt astrocytes to replenish GSH precursors. Interestingly, GSH depletion upregulates mitochondrial activity in astrocytes (Vasquez et al., 2001) and we have recently observed that mitochondrial OXPHOS is essential for the detoxification of electrophiles via the GSH/MRP system (manuscript in preparation), but the exact mechanisms that regulate this phenomenon are still unclear.
4. Conclusions and perspectives

Mitochondrial dysfunction has been recognized as central to the pathogenesis of neurological disorders. However, the majority of current research efforts have been focused on understanding the causes and consequences of mitochondrial dysfunction in neuronal cells, which rely on OXPHOS to generate energy and are also more sensitive to mitochondrial ROS formation. Less is known about the functional role of mitochondria in glial cells and its implications for neuronal survival and brain function. In this work, we have provided an overview of the role of mitochondria in glial cell function that includes metabolism, redox homeostasis, Ca\(^{2+}\) signalling, inflammation, and cell death. The evidence so far clearly demonstrates the importance of mitochondrial health in glial cells and its relevance to neuronal function. Nevertheless, this review also highlights our limited understanding of mitochondrial function in glial cells and the need for further investigations in this area that is expanding. For example, recent studies have demonstrated that damaged mitochondria can be transferred from neuronal axons for their turnover in astrocytes (Davis et al., 2014), and conversely, astrocytes have been shown to transfer mitochondria to promote neuronal survival (Hayakawa et al., 2016) (Fig. 1.3).

Many questions remain to be answered regarding the role of mitochondrial dysfunction in neurological disorders, but it is time for us to think about mitochondrial health and dysfunction in a more inclusive context outside neuronal cells.

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) Centers of Biomedical Research Excellence (COBRE) Redox Biology Center (P30 GM103355, NIGMS) and the Nebraska Center for Integrated Biomolecular Communication (P20 GM113126, NIGMS); and the Office of Research of the University of Nebraska-Lincoln. The research was performed in facilities renovated with support from the National Institutes of Health (R015468-01).

References

Copyright © 2017 Elsevier Inc. All rights reserved.
in cortical microglia and astrocytes. J. Neuroinflammation 12, 244.

