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Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological
problems from environmental issues to the identification of biomarkers for human diseases. Nuclear
magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but
separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique
strengths. NMR requires minimal sample handling without the need for chromatography, is easily quan-
titative, and provides multiple means of metabolite identification, but is limited to detecting the most
abundant metabolites (P1 lM). Conversely, mass spectrometry has the ability to measure metabolites
at very low concentrations (femtomolar to attomolar) and has a higher resolution (�103–104) and
dynamic range (�103–104), but quantitation is a challenge and sample complexity may limit metabolite
detection because of ion suppression. Consequently, liquid chromatography (LC) or gas chromatography
(GC) is commonly employed in conjunction with MS, but this may lead to other sources of error. As a
result, NMR and mass spectrometry are highly complementary, and combining the two techniques is
likely to improve the overall quality of a study and enhance the coverage of the metabolome. While
the majority of metabolomic studies use a single analytical source, there is a growing appreciation of
the inherent value of combining NMR and MS for metabolomics. An overview of the current state of uti-
lizing both NMR and MS for metabolomics will be presented.

� 2017 Elsevier B.V. All rights reserved.
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Fig. 1. The chart plots the number of MS metabolomics (green), NMRmetabolomics
(blue), and combined NMR and MS metabolomics (red) studies published per year
from 2001 to 2016. These data were obtained from a keyword search of all
documents on PubMed using the key words ‘‘MS and metabolomics”, ‘‘NMR and
metabolomics”, or ‘‘MS and NMR and metabolomics”.
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1. Introduction

Metabolic profiling has existed for hundreds of years and was a
common practice in ancient Chinese medicine [1]. At the turn of
the century the term ‘‘metabolomics”1 was coined and ignited
renewed interest in the field [2–4], which has led to rapid develop-
ments and advancements in metabolomics procedures and technolo-
gies [2–4]. In effect, metabolic profiling has transitioned from the use
of smell and/or taste to the application of advanced spectrometric
methods such as nuclear magnetic resonance (NMR) or mass spec-
trometry (MS) [5–8]. Consequently, metabolomics has become a
cornerstone of systems biology [9,10] since it enables unique
insights that cannot be obtained from other ‘‘omics” methods [10–
13]. Metabolomics directly relates a measurable chemical response
to a biological event, thereby linking the genotype and phenotype
of an organism [14]. Thus, the method is increasingly being used
in nutrition science [15], environmental science [16], biomedical
research [17] and precision medicine [18]. While interest has
expanded exponentially in recent years (Fig. 1), the field of metabo-
lomics is still in an early stage of growth and development, and faces
many technical challenges [5,7,8,19,20]. Before it can become a rou-
tine tool for the life sciences, many of these current limitations need
to be overcome. Similar to other ‘‘omics” methods, a single metabo-
lomics study may contain an abundance of data making it difficult to
correctly extract the relevant biological information [20–22]. Fur-
thermore, the specific analytical platform chosen for metabolomics
will uniquely limit the analysis because of spectral and chemical
ambiguity, which, in turn, will yield an imperfect biological picture
and incomplete coverage of the metabolome [23]. Sensitivity, resolu-
tion, dynamic range, ambiguous assignments, limits of detection,
and various other issues are universal problems encountered by all
analytical methods; there simply is not a single analytical source
that will detect the entire metabolome.

Over three decades ago, the fundamental importance and ben-
efit of employing several analytical methods to improve the quality
of data analysis and advance compound elucidation was highly
touted, which, at the time, produced an alphabet soup of hyphen-
ated methods [24]. Although successful hyphenated techniques
rarely expanded beyond combining a form of separation such as
liquid chromatograph (LC), gas chromatograph (GC), or capillary
electrophoresis (CE) with an analysis tool such as NMR or MS,
the need for multiple analytical platforms for complex analysis
was readily apparent [25]. This is especially true in the field of
metabolomics [23]. Nevertheless, to date, the majority of metabo-
lomics data sets have been acquired using only MS or NMR despite
their fundamental complementarity [23]. Fortunately, there is a
growing appreciation that combining MS and NMR data greatly
improves the coverage of the metabolome and enhances the accu-
racy of metabolite identification [26–31]. For example, it is well-
established that the structure elucidation of an unknown natural
product is greatly facilitated by combining the unique information
from NMR (e.g., chemical shifts, coupling constants, NOEs, spin sys-
tems, etc.) with MS (e.g., exact mass [molecular formula], molecular
fragments) [32,33].

A metabolomics study is defined by both the capabilities
and limitations of the analytical method employed, and may be
1 The term metabonomics is often used interchangeably with metabolomics and
the primary distinction between the two terms is historical instead of scientific. The
word metabolome was first used by Oliver et al. in 1998 to define, similar to the terms
proteome or transcriptome, the collection of metabolites present in a cell, tissue or
organism. Consequently, metabolomics as defined by Fiehn in 2001 is the ‘compre-
hensive and quantitative analysis of all metabolites’. The term metabonomics was
defined in 1999 by Nicholson et al. as ‘ the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to pathophysiological stimuli
or genetic modification’.
significantly hindered if only NMR or MS is used for the analysis.
The important advantages of using NMR for metabolomics include
a relatively high-throughput, non-destructive data acquisition,
minimal sample handling, simple methods for metabolite quanti-
tation, and redundant spectral information to improve the accu-
racy of metabolite identification [34–36]. Conversely, NMR is
limited to detecting only the most abundant metabolites
(P1 lM), while MS has a much higher sensitivity and readily mea-
sures concentrations in the femtomolar to attomolar range. MS
also boasts higher resolution (�103–104) and dynamic range
(�103–104). Conversely, MS only detects metabolites that readily
ionize, as a result of which upwards of 40% of chemical libraries
are not observable by MS [37,38]. Similarly, ion suppression is a
well-known problem in MS, which further reduces the detection
of ions of interest due to matrix effects [39]. Simply, the presence
of other compounds in the sample or containments from external
sources (e.g., plastics, buffers, solid phase, etc.) is a ‘matrix’ that
reduces the ability of a specific compound to be ionized through
a variety of proposed mechanisms [39]. For example, an ion sup-
pressing agent from the matrix may simply out-compete the com-
pound for available ions. Thus, ion suppression due to matrix
effects is a significant concern for metabolomics given the com-
plexity and heterogeneity of metabolomics samples. In effect, the
presence of one metabolite may lead to other metabolites being
undetected [40]. Thus, MS-based metabolomics typically involves
chromatography [41,42] to reduce peak overlap arising from the
relatively narrow nominal mass and mass defect distribution of
the metabolome [43]. But the use of chromatography may induce
biologically irrelevant variations in the metabolome resulting from
non-uniform metabolite derivatization, variable metabolite col-
umn recovery, metabolite decomposition during derivatization or
separation, metabolite ion-suppression due to co-eluting matrix
compounds, or misalignment of replicate retention times [44–
48]. Simply, NMR and MS have distinct strengths and weaknesses
and both uniquely benefit metabolomics.

In recent years, technical advancements in high field magnets,
pulse sequences, and cryoprobe technology have led to some sig-
nificant improvements in the sensitivity and resolution of NMR
experiments [23]. This, in turn, has improved the quality of
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metabolomics data and has contributed to the observed increase in
NMR-based metabolomics studies. Despite these advancements,
one-dimensional (1D) 1H NMR spectra are still hindered by a sig-
nificant amount of peak overlap, even for high field magnets,
because of the limited chemical shift dispersion of metabolites
[8,49,50]. Thus, these recent improvements in NMR still do not
match the sensitivity and resolution advantages of MS [23,51].
Analogous advancements in MS have also occurred, which have
led to similar improvements in the quality of metabolomics data
sets. High resolution spectrometry, accurate mass, and isotope
labeling methods means that virtually every metabolite that is
not an isomer produces a unique m/z and should be readily identi-
fied [52]. In fact, a majority of metabolomics studies routinely rely
on MS (Fig. 1). Additionally, improvements in ionization methods
and separation techniques have helped reduce matrix effects due
to co-eluting compounds common in complex mixtures, but ion
suppression remains a primary issue for MS metabolomics
[11,53]. Electrospray ionization mass spectrometry (ESI-MS) sensi-
tivity is directly dependent on a compound’s pKa and hydrophobic-
ity, which can be negatively impacted by the heterogeneous
composition of a metabolomics sample [54]. For example, if two
compounds with different pKa values are present in the same elec-
trospray droplet, only the compound with the lower pKa value may
be protonated and detected. Thus, given the various limitations of
both NMR and MS, no single analytical platform has the ability to
analyze the entire metabolome alone [11,55]. Instead, while some
overlap exists, NMR and MS observe a highly complementary set of
metabolites [56,57]. Thus, applying both NMR and MS during a
metabolomics study will allow for a more comprehensive coverage
of the metabolome [57]. The combination of NMR and MS data will
also improve the identification of unknown analytes and will
increase the accuracy of identifying known metabolites
[28,31,51,57–60]. This occurs because metabolite identification
will be based on distinct and confirmatory evidence.

A grand challenge in the field of metabolomics is the rapid and
accurate identification of metabolites from the variety of complex
biological samples routinely analyzed (e.g., tissues, serum and cell
extracts) [61,62]. As a consequence, nearly all published metabolo-
mic studies contain at least one misidentified or unidentified
metabolite [62]. This is an unfortunate and unavoidable outcome
of our limited knowledge of the metabolome (the exact composi-
tion is currently unknown), the severe limitations in the software
and databases available for metabolite identification, and the rou-
tine reliance on a single analytical method. Despite the routine
application of NMR and MS to elucidate the structures of natural
products for drug discovery [32,33], most metabolic studies still
rely on only NMR or MS spectral data for metabolite identification
based on database searches [63]. Unfortunately, metabolic data-
bases only contain, at most, a few thousand reference NMR or
MS spectra of known metabolites. There is also minimal, if any,
coordination between the various metabolomics databases. This
leads to a significant amount of redundancy between databases,
and also results in unique data being present in individual data-
bases, requiring an investigator to search across multiple data-
bases. Also, many databases are cumbersome and utilize simple
search algorithms, which only allow for a single spectral category
per query [63]. Finally, most metabolomics databases are limited
to either NMR or MS reference data. Again, this is a result of the
fact that the metabolomics field has evolved to support only a sin-
gle analytical source. Thus, it is not possible to easily search meta-
bolomics databases for simultaneous matches against NMR andMS
spectral data. As a result, metabolomics will greatly benefit from
the creation of a unified NMR and MS database and the merging
of data. This is especially true given the growing recognition of
the value of combining NMR and MS for metabolite assignments
[28,29,51,57,58].
Multivariate statistical methods are normally applied to meta-
bolomics data sets in order to simplify and expedite the data anal-
ysis [12,64]. While chemometric techniques regularly streamline
the process of data analysis, these advanced multivariate statistical
techniques are routinely used incorrectly, lack proper validation,
and have, unfortunately, lead to a proliferation of erroneous data
in the scientific literature [65,66]. This problem becomes com-
pounded when an investigator is combining multiple analytical
sources. In most cases, the samples, data, and analysis are done
separately. The NMR and MS data sets are not integrated into a sin-
gle chemometrics model because, until recently, the field lacked
software capable of handling data from multiple analytical sources
[57,67,68]. Thus, any observed changes in the NMR and MS spectra
are not statistically correlated and, importantly, the metabolites
and pathways separately identified by NMR and MS may not be
biologically related. Only a minimal number of studies have been
reported that actually utilized both NMR and MS in a single
chemometrics model [69–72].

As outlined above, NMR and MS are routinely, but separately,
used for metabolomics studies despite their complementary
strengths. Nevertheless, there is a growing recognition of the ben-
efits of combining the two techniques for metabolomics as evident
by the increasing number of published manuscripts that utilized
both NMR and MS (Fig. 1). NMR and MS have been combined in
a number of ways that includes: (1) physically interfacing NMR
and MS hardware, (2) chemical modification of samples by deriva-
tization of metabolites with compounds that display unique char-
acteristics for MS and NMR detection, (3) stable isotope tracing by
isotopically labeling metabolites, (4) using combined cheminfor-
matics techniques on MS and NMR data sets for an accurate and
rapid analysis, or (5) unique data handling and data mining tech-
niques which correlate trends in both data sets by using multivari-
ate statistical-based methods [29,30,58]. Herein, we provide
illustrative examples for each of these methods and present an
overview of the various benefits derived from combining NMR
and MS for the analysis of metabolomics samples.
2. Brief overview of metabolomics

2.1. Current state of NMR and MS metabolomics

Both NMR- and MS-based metabolomics have been extensively
reviewed in the recent scientific literature [3,11,13,23,73–80]. Sim-
ilarly, a number of reviews describing the proper handling, prepa-
ration, and extraction of metabolic samples from urine, serum, cell
cultures, tissue cultures, and a variety of other biological sources
are readily available [36,81–85]. So, only a very brief overview of
the general procedure for metabolic profiling will be presented
here, primarily to highlight important differences when NMR and
MS are combined for a metabolomics study (Fig. 2) [86]. In princi-
ple, metabolomics is a relatively straightforward method: the
metabolome is harvested or extracted from two or more groups
(e.g., healthy vs. diseased), and an analytical technique (e.g., NMR
or MS) is used to acquire a spectral profile of each metabolic sam-
ple. Then, multivariate statistical techniques (e.g., principal compo-
nent analysis [PCA], orthogonal projections to latent structures
[OPLS], etc.) are used to determine whether the metabolomes differ
and, if they do, to identify the spectral features (i.e., the metabo-
lites) defining group separation. A typical outcome of a PCA or OPLS
model is a scores plot, where each NMR or MS spectrum has been
reduced to a single point in PC-space. The relative clustering of the
spectra in the scores plot identifies group membership. Similarly, a
backscaled loadings plot is often generated from the OPLS model
that is a pseudospectrum of the original NMR or MS data where
the relative intensity and direction of the spectral peaks indicates
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the contribution and correlation of the peak to the group separa-
tion. Alternatively, a heatmap can be generated that compares all
of the relative metabolite concentration changes per replicate. Fol-
lowing hierarchal clustering, if all or most of the replicates from
the same group cluster together, then the heatmap identifies key
metabolite concentration changes that define each group.

Since the numbers of replicates for a metabolomics data set are
typically far fewer then the number of variables, overfitting the
data, especially for supervised techniques like PLS or OPLS, is a seri-
ous concern [65,66,87]. In fact, a PLS/OPLS model can produce the
appearance of a clear group separation even for noise or com-
pletely random data [88]. As a result, model validation is a critical
final step before any biological interpretation of the model is reli-
able. CV-ANOVA [89], response permutation tests [87], and recei-
ver operating characteristic (ROC) curves [90] are routinely used
to provide standard p values and assess model validity. With a val-
idated model, the observed metabolite changes can then be used to
generate a metabolic network and identify the important meta-
bolic pathways associated with the phenotype [91].

Unlike the proteome and genome, the metabolome is relatively
unstable and is easily perturbed by the handling and processing of
the sample. For example, metabolites have different enzyme turn-
over rates and different temperature stabilities [92–94]. Thus, a
key concern is avoiding any changes in the metabolome that may
be induced from sample preparation. Therefore, fast and uniform
sample preparation protocols, rapid quenching of enzymatic activ-
ity, keeping samples cold throughout, and randomizing samples
through the entire sample handling and data collection procedure
are all important details that require optimization for a successful
metabolomics study. Since biological samples are the materials
that are analyzed, there is inherently a large natural variance to
the data. Thus, to obtain statistical significance a maximal number
of replicates, within practical constraints, is highly desirable [36].
Similarly, the data need to be properly normalized, scaled and
aligned to account for both biological and instrument variance,
and to remove bias due to the large range of metabolite concentra-
tions. Again, various normalization, scaling and alignment algo-
rithms are available and their utility for metabolomics has been
previously reviewed [95–97]. Finally, the raw NMR or mass spec-
tral data need to be properly processed before a reliable chemo-
metrics model can be generated. For NMR, processing includes
Fourier transformation, phasing, baseline correction, apodization,
zero filling and chemical shift referencing. Similarly, MS requires
centroiding, de-noising, de-isotoping, deconvolution and peak
alignment. It cannot be overstated that the resulting chemometric
models are incredibly sensitive to all aspects of the sample han-
dling and data processing. Thus, changing processing details, such
as a different apodization function or deconvolution algorithm will
Fig. 2. Illustration of the metabolomics work flow that combines advanced NMR spectros
to minimize variability and are analyzed by NMR profile to collect data on all metabolit
principal component analysis, partial least squares discriminant analysis, orthogonal pro
method, and other modes aiming to highlight underlying trends and visualization tools s
operating characteristic (ROC) curves are generally considered the method of choice fo
placed in a metabolic pathway to provide insight on the biochemical phenomena. (Sam
urine, plasma, etc.) for each group (e.g., healthy vs. disease). (NMR profile) A 1D 1H NMR
mass spectrum can be used instead or in addition to the NMR spectrum. (PRA) Illustra
Clockwise from upper-left, a scores plot from a PCA model indicating two distinct clusters
changes (x-axis) relative to each group replicate (y-axis). The relative color of each bi
heatmap identifies which set of metabolites are uniquely changing between each group.
error rate or misclassifications versus the number of trees. The results indicate that the h
number of trees. A back-scaled loadings plot, which is a pseudo 1D 1H NMR spectrum,
conveys the importance and correlation of the NMR peak to the observed group separa
further analysis of the key metabolites identified from the multivariate statistical analysi
(true positive rate) versus 1-specificity (false positive rate). The area under the curve is a
right is the pathway topology analysis produced by MetPA (http://metpa.metabolomic
MetPA assists in identifying the set of important metabolic pathways associated with th
identified from the observed metabolomic changes between the groups. Reproduced wi
likely lead to a different chemometrics model and, potentially, a
different biological interpretation. Consequently, great care must
be taken in optimizing data processing protocols in order to avoid
unintended biases in the data analysis. The complexity of the situ-
ation expands exponentially if two or more analytical sources are
combined to generate a single chemometrics model simply
because of the greater number of possible processing protocol
combinations. Thus, while metabolomics is conceptually quite
simple and straightforward to conduct, in practice it is difficult
to do correctly because of the complex number of steps and choices
available, with multiple sources of error encountered at each step
of the process.

2.2. Analyte compatibility for analysis by NMR and MS metabolomics

NMR and MS are the most popular analytical methods used for
metabolomics because of the wide array of chemical species both
techniques can probe and are likely to encounter in a complex
and heterogeneous metabolite mixture. MS is generally coupled
with a separation technique, with the majority of metabolomics
studies utilizing LC-ESI-MS [11,64,98]. The coupling of MS with
LC or GC is critical for reducing ion suppression, spectral complex-
ity and spectral overlap. To further reduce ion suppression, sam-
ples are typically acidified and salt concentrations are reduced,
usually with a desalting column [99]. Although NMR is occasion-
ally paired with a separation method, the hardware for an online
LC-NMR system can be somewhat crude or cumbersome, and the
process of manually collecting fractions is extremely time-
consuming. Moreover, a hybrid LC-NMR system does not provide
a substantial benefit since individual metabolites are readily
detectable by NMR without chromatographic separation [100].

Besides different chromatographic needs, MS and NMR require
different sample conditions. NMR samples are commonly prepared
in a buffered deuterated solvent to provide a lock signal and main-
tain a constant pH of 7.4 in order to minimize chemical shift devi-
ations and replicate physiological conditions [9,99]. In general,
detecting a metabolite by NMR is not dependent on the sample
condition. However, NMR is a relatively insensitive technique
and requires maximizing metabolite concentrations to ensure
detection. On average, NMR metabolomics requires a minimal
sample volume of approximately 30–600 lL, with metabolite con-
centrations of approximately lM to mM. Because of the higher
sensitivity of MS, the concentration requirements can be signifi-
cantly reduced to as low as nM to pM, with sample volumes on
the order of a few microliters. While MS is intrinsically more sen-
sitive than NMR, detecting a specific metabolite does require the
metabolite to be efficiently ionized. Different groups of metabolites
will preferentially ionize under drastically different experimental
copy techniques with multivariate statistics. Samples are collected in a uniform way
es potentially present in the sample. Pattern recognition approaches (PRA) include
jections to latent structures, heat map, support vector machines, and random forests
uch as contribution. Trend and box plots are used to further evaluate these. Receiver
r evaluating the performance of potential biomarkers. The markers are eventually
ples) Multiple replicate samples are obtained from cells, tissues, or biofluids (e.g.,
spectrum is collected for each metabolomics sample, which becomes the data set. A
tions of typical multivariate statistical analysis of the metabolomics NMR data set.
or groups are present in the data set. A heatmap shows the clustering of metabolite

n corresponds to the metabolite concentration difference between replicates. The
The result of a random forest classification is summarized by plotting the out-of-bag
ealthy and disease groups can be separated with an error rate of <5% with a nominal
is generated from an OPLS model. The relative intensity and direction of each peak
tion in the corresponding scores plot. (ROC) Illustrations of the validation and the
s that define the group separation. On the left is a ROC curve, which plots sensitivity
measure of the accuracy of the model to correctly predict group membership. On the
s.ca) from the list of metabolites identified by the multivariate statistical analysis.
e phenotype. (Pathways) Illustration of metabolic networks or signaling pathways
th permission from Ref. [86].
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conditions, which depend on mode of polarization, pH and the ion-
ization efficiency of the specific metabolite. Thus, the detectability
of a metabolite may vary dramatically depending on sample condi-
tions. For example, 0.1% formic acid or acetic acid is commonly
added to MS samples to enhance protonation and increase sensi-
tivity. Conversely, a deuterated solvent used in NMR could compli-
cate the analysis of an MS spectrum because exchangeable
hydrogens would still be observed, but ambiguous mass shifts
may occur. The exchangeable hydrogens are likely not observed
in the NMR spectrum, potentially eliminating the ability to detect
a given metabolite. Moreover, minimal sample handling is desired
to reduce experimental errors. Thus, these necessary differences in
sample conditions present a practical challenge, namely how can a
single metabolomics sample be analyzed by two distinct analytical
platforms?

To address the need for distinct NMR and MS sample prepara-
tions, Beltran et al. examined 12 extraction protocols and evalu-
ated various solvents and temperatures to identify conditions
compatible for use by both LC-ESI-MS and NMR [101]. A single
metabolite extract from a liver tissue was used for the NMR and
MS metabolomics studies. The combination of solvent conditions
used for metabolite extraction ranged in polarity and consisted of
a 2 mL combination of either: (i) 1:1 methanol/H2O, (ii) 1:1 ace-
tonitrile/H2O, (iii) 7:2:1 methanol/chloroform/H2O, or (iv) 7:2:1
acetonitrile/chloroform/H2O. The extractions were also conducted
at three different temperatures: �20 �C, 25 �C, or 60 �C. After each
extraction, the metabolomics samples were dried and then dis-
solved in deuterated acetonitrile/H2O (2:8) before acquiring a 1D
1H NMR spectrum. A resulting PCA model comparing the range of
solvent conditions revealed a large variance between the different
extraction protocols. Interestingly, extraction temperature had a
minor impact on group separation. Methanol/H2O was the most
efficient extraction method and the least influenced by tempera-
ture. In contrast, acetonitrile/chloroform/H2O was the least effi-
cient extraction method.

A very intriguing aspect of this study was the LC-MS analysis of
metabolites in deuterated solvent. Pure metabolomics standards or
liver metabolite extracts were prepared in either H2O or D2O
(Fig. 3) [101]. In this manner, the impact of solvent exchange on
NMR and MS spectral data was evaluated. D2O did not affect mea-
surements of metabolite concentrations. In addition, D2O did not
induce a mass shift or perturb the isotopic distribution. Metabo-
lites with readily exchangeable hydrogens were also investigated
and, surprisingly, no difference in the spectra due to D2O was
observed. The lack of deuterium exchange in metabolites was
attributed to the mobile phase; since the deuterated metabolomics
sample was injected into an un-deuterated mobile phase, deuter-
ated metabolites were readily back-exchanged to a protonated
species.

A similar study conducted by Marshall et al. identified a rela-
tively straightforward and simple protocol to simultaneously
investigate by both NMR and MS a metabolomics sample extracted
from a cell lysate [57]. Human dopaminergic neuroblastoma cells
were lysed by incubating with cold methanol (�80 �C) for
15 min. The methanol was also used as the first metabolite extrac-
tion step. After removing the methanol supernatant, the cell debris
were then washed with an 80%/20% methanol/ddH2O water mix-
ture, followed by a second wash with 100% ddH2O. The super-
natants from the three extractions were combined and then split
into two portions: 1.8 mL for NMR and 200 lL for MS. The MS sam-
ple was then diluted tenfold with a 49.75:49.75:0.5 H2O/
methanol/formic acid mixture containing 20 lM reserpine as an
internal mass reference. The NMR sample was dried using a com-
bination of RotoSpeed vacuum and lyophilization, and then resus-
pended in a 50 mM deuterated phosphate buffer (pH 7.2) with
TMSP-d4 as a chemical shift reference. The separate NMR and MS
metabolomics samples were then used to obtain a 1D 1H NMR
spectrum and a direct-injection ESI-MS mass spectrum.
3. Approaches for combining NMR and MS for metabolomics

3.1. Interfacing NMR and MS hardware

Natural product chemistry is a staple of drug discovery and the
pharmaceutical industry, and has an obvious synergy with meta-
bolomics since both fields are focused on the characterization of
chemical entities extracted from a complex biological mixture
[102,103]. NMR and MS spectral data have been routinely used
in tandem to characterize natural products and their secondary
metabolites isolated from crude complex samples [102]. Since
metabolites and natural products are essentially the same, these
well-established protocols are an invaluable resource for charac-
terizing the vast number of unknown metabolites in the metabo-
lome. Natural product research is commonly guided by and
focused on identification of biologically active fractions from com-
plex mixtures, which are then analyzed by a sequential series of
purification steps and MS profiling until a biologically active com-
pound is isolated for structural determination by NMR and MS
methods [104,105]. In general, only a few nanograms or micro-
grams of a natural product are available for structural characteriza-
tion. Therefore, sensitivity and efficiency are key concerns. In the
case of NMR, the development of microcoils, microflow and cyro-
probes have significantly improved the dynamic range and sensi-
tivity of NMR and have thus greatly benefited the structural
characterization of sample-limited natural products and metabo-
lites [106–108]. Mass spectrometry has made similar advance-
ments that have also benefited natural products chemistry and
metabolomics by developing high-resolution mass spectrometers
and tandem MS-MS methods to improve the accuracy and ease
of structure elucidation [109–113].

The off-line combination of MS and NMR has clearly advanced
natural products and metabolomics research, but an innovative
on-line combination of the two instruments has the potential to
significantly increase throughput, efficiency and sensitivity
[59,60]. HPLC fractions are routinely collected and separately ana-
lyzed by NMR and MS, but an on-line analysis allows for the simul-
taneous detection of metabolite data that are then easily cross-
correlated between the two platforms while also reducing, or
potentially eliminating, sample handling errors. This is especially
true in regard to the manual manipulation of severely sample-
limited natural products or metabolites. Additionally, the duplicate
isolation of redundant or unwanted compounds is a large issue in
the natural products field. It is simply undesirable to expend valu-
able resources to re-discover known natural products. Dereplica-
tion is the commonly employed process of examining active
fractions to recognize and eliminate previously identified natural
products to avoid unnecessary compound isolation [114]. Derepli-
cation routinely occurs by rapidly comparing experimental NMR
and/or MS spectral data against spectral libraries of known natural
products [60]. Employing an LC-NMR-MS instrument for dereplica-
tion would significantly reduce the time requirements, lower the
amount of sample required and increase identification accuracy
[60].

Previously, physically siting an instrument in close proximity to
an NMR magnet was difficult, as it caused severe spectral distor-
tions, required long sample transfer lines, and demanded signifi-
cant laboratory space [59]. Fortunately, interfacing LC, NMR, and
MS instrumentation has been greatly simplified by the advent of
shielded magnets [115–117]. The stray fields have been signifi-
cantly reduced for shielded magnets, and, in some cases, the 5
gauss line lies within the magnet’s dewar. This permits a close



Fig. 3. (A) Scatter plot representing the area of each feature from the XCMS matrix of LC/MS data of liver samples reconstituted in H2O and D2O. A correlation coefficient (R2)
of 0.998 indicates a high linear regression, which demonstrates that differences between the number and abundance of features detected in liver extracts reconstituted in
H2O and D2O are insignificant. (B) Mass spectra of phenylalanine, tryptophan, and LysoPC (16:0) reconstituted in D2O (top) and H2O (bottom). Labile hydrogens are marked in
red. Mass spectra show that the isotopic distributions of the compounds are not altered by D2O, indicating either slow H/D exchange of acidic protons in solution or fast back-
exchange of labile deuterons in aqueous LC/MS buffers due to a total solvent accessibility of small molecule structures. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.) Reproduced with permission from Ref. [101].
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arrangement of instruments without incurring any magnetic inter-
ference or disturbing field homogeneity. The availability of bench-
top mass spectrometers has also aided in the coupling of multiple
platforms. An MS instrument with a small footprint and superior
resolution makes it possible to site an LC-NMR-MS spectrometer
in a smaller laboratory space then previously possible. Moreover,
the proximity of the instruments simplifies sample transfer
between them. For example, an NMR and mass spectrometer can
be interfaced to LC by using a post-column splitter or the Bruker
NMR-Mass Spectrometry Interface (BNMI). The post-column split-
ter simultaneously directs LC flow to both the NMR and MS spec-
trometers in a 9–1 ratio, respectively. BNMI is a valve-switching
interface that is a computer-controlled splitter and double dilutor,
which allows for proton–deuterium exchange to occur for NMR,
and the optimal selection of solvent polarity for MS. Additionally,
BNMI has a loop storage mode, which allows for a portion of the
LC eluent to be temporarily stored in a sample loop while waiting
for the NMR instrument to be available. A storage mode allows for
NMR acquisition times that are significantly longer than the LC
experiment to maximize NMR signal-to-noise.

Recently, Lin et al. described an LC-NMR-MS approach, which
significantly reduced sample size, increased concentration sensi-
tivity by 10-fold, and enhanced mass sensitivity by 1000-fold
[59,98]. The method significantly outperformed traditional offline
LC-NMR-MS by the addition of a nanoSplitter for nanospray LC-
MS and a microcoil flow probe for NMR analysis. In addition, the
analysis of the LC flow normally occurs with a 9:1 split between
NMR and MS, respectively. But, instead, the improved performance
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required an LC flow that was split 98% to NMR and 2% to MS [59].
The LC-NMR-MS system exhibited a 93% sample recovery and
yielded a limit of detection as low as 50-ng (RSD 1.17%) for NMR.
Similarly, four natural products (ambiguine A, I, E, and hapalindole
H) from a cyanobacterial extract were readily detected by LC-MS at
a concentration of only 30 lg/mL. Thus, interfacing LC with parallel
NMR and MS analysis may greatly benefit metabolomics by
improving throughput, by increasing sensitivity and coverage,
and by reducing the amount of sample required for a study.

3.2. Chemical modification

The diverse and complementary set of information obtained
from NMR and mass spectral data is the major reason for combin-
ing the two methods for metabolomics. However, combining two
distinct data sets also increases the complexity of the analysis.
The NMR and MS results obtained from a single heterogeneous
sample are not easily correlated [30]. For example, it is not a trivial
task to definitively assign an NMR chemical shift and a MS m/z
value to a specific metabolite. Simply, there is no information in
the NMR or MS spectrum that indicates that the chemical shift
and m/z value are from the same metabolite. The lack of a correla-
tion may also appear to produce contradictory results. For exam-
ple, the presence of a metabolite may only be supported by one
method or the two methods may appear to predict vastly different
concentrations. As a result, the complexity of analyzing NMR and
MS spectra may hinder an interpretation or yield erroneous results.
Consequently, a novel twist on the well-established method of
chemical derivation has been employed to overcome this lack of
a correlation between NMR and MS spectral data [30]. A chemical
Fig. 4. Schematic figure illustrating the ‘‘smart isotope tag” approach used to detect t
containing metabolites with 15N-cholamine enables their enhanced detection by both N
agent is introduced into a complex mixture that reacts with a
specific chemical moiety or functional group within the metabo-
lite. The resulting chemical modification is then visible by both
NMR and MS.

Chemical modification has frequently been used for LC-MS and
GC–MS [118–121]. Traditionally, compound derivatization has
been used to separate stereoisomers or to improve ionization effi-
ciency in LC-MS. Chemical modification for GC–MS is generally
used to promote the volatility of compounds [122]. Fariba et al.
exploited the benefits of chemical modification by using 15N-
cholamine, a so-called ‘‘smart tag”, to specifically label carboxyl-
containing metabolites [30,123]. A permanent charge and an 15N
isotope label are incorporated into the metabolites through a con-
densation reaction [30]. Each chemically labeled metabolite would
then have a unique set of 1H and 15N chemical shifts that can be
easily detected with a 2D 1H-15N HSQC NMR spectrum. Only
metabolites labeled with 15N-cholamine are observed in the NMR
spectrum because of the low natural abundance of 15N (0.37%).
Similarly, the incorporation of a permanent charge into the
metabolite significantly improved its ionization efficiency. Sensi-
tivity enhancements exceeding three orders of magnitude were
observed for labeled metabolites, which could be easily detected
in the positive mode compared to unlabeled metabolites in the
negative mode. Thus, the increased MS sensitivity and the unique
1H-15N chemical shifts establish a correlation between the NMR
and MS data for a labeled metabolite. The smart-tag approach
was successfully demonstrated with a standard mixture of 48
metabolites that each contain a carboxyl-group and are prevalent
in human biofluids (Fig. 4) [30]. The experiment was successfully
repeated with human serum and urine samples. The chemical shift
he same metabolites using NMR and MS with high sensitivity. Tagging carboxyl-
MR and MS. Reproduced with permission from Ref. [30].
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assignments obtained from the standard metabolite mixture was
used to quickly and accurately assign the 48 metabolites in the
biofluids. Thus, 15N-cholamine was shown to be useful for correlat-
ing data across multiple analytical platforms through chemical
derivatization, and as a valuable approach to aid in the metabolite
profiling of complex biological mixtures.

3.3. Stable isotope tracers

The ability to simultaneously measure hundreds of chemical
species from a complex biological sample is the primary reason
NMR and MS are routinely used in metabolomics, but the over-
whelming amount of data can also confound the analysis. Conse-
quently, the majority of metabolomics studies are end-point or
single time-point measurements despite the obvious advantage
of flux analysis. Fortunately, MS and NMR can de-convolute these
complex data sets based on their unique ability to identify and dis-
tinguish between different isotopes. Thus, NMR and MS metabolo-
mics analysis can be greatly simplified by using stable isotope
tracers. Stable Isotope-Resolved Metabolomics (SIRM) has been
used to monitor metabolite flux, to reveal novel metabolic
networks, and has recently been shown to correlate data across
MS and NMR platforms [124–130]. In this manner, SIRM may
overcome common limitations encountered with steady-state
metabolite profiling. SIRM also enables the combined use of NMR
and MS for metabolomics, but, more importantly, the SIRM
approach greatly benefits from combining both NMR and MS
[126–129,131].

SIRM uses stable isotope-enriched nutrients containing 13C-
carbons or 15N-nitrogens, which are provided to an organism as
the primary source of carbon or nitrogen. The 13C-carbons or
15N-nitrogens are distributed throughout the organism’s metabo-
lome based on active metabolic processes. The resulting 13C- or
Fig. 5. Metabolic model of liver acetate oxidative metabolism used to estimate hepatic T
red occurs during the initial incorporation of label from 1-13C-acetate to glutamate on
during the 2nd pass through the TCA cycle, with label originating from internal scramblin
of the references to color in this figure legend, the reader is referred to the web version
15N-labeled metabolites are readily detected by NMR and MS. In
this manner, SIRM reveals the unique flow of 13C-carbons or 15N-
nitrogens through metabolic pathways in order to highlight sys-
tematic changes due to environmental stress, genetic mutations,
a disease state, a drug treatment, or numerous other factors.
Importantly, SIRM allows for monitoring the flow of position-
specific carbons or nitrogens between metabolites (i.e., isotopomer
or isotopologue probing). In essence, it is possible to decipher the
chemical source of each carbon or nitrogen in a given metabolite
(Fig. 5) [132]. Moreover, the analysis can be fine-tuned by repeat-
ing the experiments with different labeled metabolites (e.g., glu-
cose, pyruvate, etc.) or different labeling within a metabolite (e.g.,
[1-13C] glucose, [2-13C] glucose, etc.). Identification of position-
specific carbon or nitrogen labeling is relatively straightforward
by NMR since, in general, each carbon or nitrogen has a unique
chemical shift. For example, consider the distinct carbon chemical
shifts observed for L-alanine: 178.5 ppm (C0), 53.4 ppm (Ca) and
19.0 ppm (Cb). Conversely, it is not possible to identify position-
specific carbon or nitrogen labeling by MS except in the case of a
compound containing a single carbon or nitrogen, or by employing
MSn fragmentation analysis. Instead, the number of isotopically
labeled carbons or nitrogens is easily determined by MS from an
observed mass shift. In addition, the abundance of each isotopomer
is readily obtainable from an MS spectrum by comparing the rela-
tive intensity of each molecular-ion peak. Conversely, obtaining
the number and abundance of each isotopomer and isotopologue
is not easily obtained from an NMR spectrum.

Lane et al. used direct infusion FT-ICR-MS combined with 1D
and 2D NMR methods to identify isotopomers of glycerophospho-
lipids (GPL) derived from [U-13C]-glucose in breast cancer MCF7-
LCC2 cell extracts [124]. An algorithm was also presented that
accounts for the contribution of natural abundance 13C following
the incorporation of 13C-carbon derived from glucose [133]:
CA cycle flux (VTCA) and anaplerosis (VANA). Carbon positional enrichment denoted in
the first pass through the TCA cycle. Positional enrichment denoted in blue occurs
g at succinate or from bicarbonate (HCO3

�)/13CO2 via anaplerosis. (For interpretation
of this article.) Reproduced with permission from Ref. [145].



Fig. 6. High resolution NMR spectra of a methanolic extract of LCC2 cells. Glycerophospholipids were extracted from LCC2 cells grown in the presence of 10 mM [U-13C]-
glucose for 24 h. (A) 1D 1H NMR spectrum and (B) TOCSY spectrum. The TOCSY spectrum was recorded at 18.8 T 293 K with 50 ms mixing time at a B1 field strength of 9 kHz.
The data were processed with one linear prediction and zerofilling in t1 and apodized using an unshifted Gaussian function in both dimensions. (C) 1D 1H NMR spectra, top:
1D 13C-edited 1H (HSQC) spectrum, bottom: high resolution 1H NMR spectrum. High resolution FT-ICR mass spectrum of a methanolic extract of LCC2 cells. (D) FT-ICR-MS
profile spectrum of an LCC2 methanol extract after 24 h labeling with [U-13C]-glucose. A close up of them/z region from 760 to 782 is shown. The accurate masses (better than
1 ppm) at high resolution (>100,000 at measured mass) enable assignment of the GPLs and their isotopologues. Masses were externally calibrated, and secondarily calibrated
with respect to internal standard reserpine; intensities have been arbitrarily scaled to 100 units for m0 at m/z = 760.5860. (E) Mass distribution of PC 34:1 normalized to the
total intensity as a function of time. The distribution at 0 h is indistinguishable from the expected natural abundance intensity. Line graphs are used here for clarity only; no
values are implied between data points. (F) Time courses of selected mass peaks. (j) m0, (h) m0 + 3, (d)R(m0 + 2n); (s)R(m0 + 3 + 2n). The m0 + 3 intensities were fitted to a
(1 � exp(�kt)) with a = 0.11 ± 0.008 and k = 0.19 ± 0.04 h�1. Reproduced with permission from Ref. [124].
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where IMþi;NA is the expected intensity of the ith isotopologue peak,
NA13C is the 13C natural abundance (1.1%), CMax is the total number
of carbons in the molecule, k is the total number of 13C carbons, n is
the number of 13C carbons incorporated from a labeling source, k-n
is the number of natural abundant 13C carbons. Analysis of the 1D
1H NMR spectra identified phosphatidylcholines with approxi-
mately two double bonds as the major GPL present in the MCF7-
LCC2 cell extracts (Fig. 6A–C). Based on the relative intensity of
the assigned GPL NMR resonances, it was determined that the cho-
line head groups were not 13C labeled, but the fatty acyl chains and
the glycerol moieties were predominately derived from [U-13C]-
glucose. Specifically, the glycerol moiety was determined to be
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44 ± 1.2% 13C, and the C2, C3 and C4 positions of the fatty acids were
determined to have an average 13C incorporation of 46 ± 4%. These
results indicated that nearly 50% of GPL was newly synthesized in
24 h. The FT-ICR-MS data (Fig. 6D–F) complemented the NMR
results by identifying the individual GPL species [i.e., PC (34:1)]
and the abundance of the corresponding 13C isotopologues as a
function of time. Specifically, the m0 isotopologue decreased and
the m0 + 3, m0 + 2n + m0 + 3 + 2n isotopologues sequentially
increased as 13C-carbon from glucose was incorporated into PC
(34:1). The odd number isotopologues were derived from 13C glyc-
erol and unlabeled fatty acids, while conversely; even number iso-
topologues resulted from unlabeled glycerol and 13C fatty acids.
Interestingly, the abundance of the n = 10–20 fatty acid chains
increased with time, but only a minimal mass shift was observed.
A 12C acetate pool persisted for twenty-four hours from fatty acid
turnover and internal triglyceride stores. In fact, only 30 to 50% of
the 34 carbons were incorporated into PC (34:1) from 13C acetyl
CoA. Consistent with the NMR results, the mass spectral data indi-
cates that 46% of glycerol and 44% of the fatty acyl moieties are 13C-
labeled. Moreover, based on these measurements, isotopologue dis-
tributions of GPLs over a twenty-four period were accurately mea-
sured and simulated. Thus, the authors clearly demonstrate the
value of combining NMR and MS to monitor the synthesis of various
GPLs from pools of metabolite. The combination of MS and NMR
yielded positional isotope labeling information, 13C isotopologue
distributions, and enabled the accurate and efficient identification
of GPL species. SIRM using both NMR and MS greatly improves
the analysis of metabolomic flux (i.e., metabolite synthesis and
turnover).

3.4. Combined cheminformatics methods

The effective handling and analysis of large amounts of infor-
mation (i.e., ‘‘Big data”) presents unique challenges [134–137].
The field of metabolomics faces similar concerns, which make it
difficult to handle the large amounts of information with tradi-
tional methods such as database management, basic statistical
methods, or simple manual analysis [138]. Combined cheminfor-
matic approaches present a valuable alternative to accelerate the
accurate processing of ‘‘omics” data sets. Since a considerable
amount of data may be generated by combining NMR and MS,
combined cheminformatics approaches are increasingly being
employed during metabolomics studies. Recently, the SUMMIT
and NMR/MS translator methods were developed for the rapid
and accurate identification of metabolites [28,29]. SUMMIT MS/
NMR and the NMR/MS translator combine NMR and MS to eluci-
date the structures of unknown metabolites from complex mix-
tures. NMR/MS translator combines COLMAR [139] database
search queries and experimental NMR and MS spectral data to
accelerate accurate metabolite identification [28]. NMR/MS trans-
lator uses 1D 1H NMR, or 2D 1H-13C HSQC and 2D 1H-13C HSQC
TOCSY chemical shifts to perform a COLMAR database search and
return a list of possible metabolite candidates. The query candidate
list is then used to produce a simulated mass spectrum for each
possible metabolite, which includes possible adducts, fragments,
and isotope distributions. These simulated mass spectra are then
compared against an experimental metabolomics mass spectrum
to make metabolite assignments. In effect, potential metabolites
identified by NMR are confirmed by MS. As a proof of concept,
the NMR/MS translator was used to successfully analyze a model
mixture of 26 metabolites with 2D 1H-13C HSQC NMR spectra
and DI-ESI-MS positive and negative mode spectra. The NMR/MS
translator was further validated using a set of human urine sam-
ples from healthy volunteers. A total of 98 urine metabolites were
identified by the NMR/MS translator, which included 8 metabolites
that were not previously observed in a comprehensive study of
human urine. Importantly, only 48 of these metabolites were cor-
rectly identified using MS data alone, including MS/MS fragmenta-
tion patterns. The NMR/MS translator approach automates the
metabolite assignment and avoids labor-intensive manual analy-
sis, which enhances coverage, improves consistency, and increases
throughput.

SUMMIT MS/NMR is an alternative high throughput approach
that combines MS with NMR data to identify unknownmetabolites
in a complex biological sample (Fig. 7) [29]. The SUMMIT MS/NMR
approach relies on the acquisition of a high-resolution mass spec-
trum, in which each m/z peak is converted into a molecular for-
mula. The list of molecular formulas is then used to generate a
set of all feasible structures (e.g., a structural manifold) with the
ChemSpider database [140], which are used to predict an NMR
spectrum using MestReNova 9.0.1 (Mestrelab Research, Santiago
de Compostela, Spain). The COLMAR algorithm [139] is then used
to compare the experimental NMR data against the database of
predicted NMR spectra. Importantly, the experimental 2D 1H–13C
HSQC NMR spectrum is deconvoluted into subspectra correspond-
ing to the individual components of the mixture using connectivity
information derived from 2D 1H–1H TOCSY, 2D 1H–13C HSQC-
TOCSY, and 2D 1H–13C HMBC spectra. The potential metabolites
are rank-ordered based on the relative agreement between
the experimental NMR subspectrum and the simulated NMR
spectra.

SUMMIT MS/NMR was validated using a DI-ESI-MS spectrum of
a model mixture containing 10 metabolites [29]. The 50 largestm/z
peaks were selected, which yielded 22 molecular formulas, 362
potential structures, and 4772 predicted 2D 1H–13C HSQC NMR
spectra. SUMMIT MS/NMR ranked 6 of the 10 metabolites as the
top hit and three other metabolites were identified as the
second-best hit. The remaining metabolite did not ionize. For the
three metabolites identified as second best, the top hits were struc-
turally very similar (i.e., allo-isoleucine instead of leucine). The
approach was repeated using an MS spectrum of a polar extract
of an E. coli lysate. The 500 largest m/z peaks were selected corre-
sponding to 56 molecular formulas and 13,872 structures and
1H–13C HSQC spectra. A total of 21 metabolites were accurately
and rapidly identify by SUMMIT MS/NMR, and then confirmed
using a set of 2D 1H-13C NMR experiments. Thus, both SUMMIT
MS/NMR and NMR/MS translator clearly illustrate the inherent
value of combining NMR and MS to enhance metabolomics.

3.5. Multivariate statistical methods

A well-known problem with metabolomics data is the presence
of confounding factors that may complicate the identification of
group membership. For example, the analysis of urine or serum
to identify biomarkers may be masked by metabolites associated
with age, diet, ethnicity, gender, or race, among other factors. Mul-
tivariate statistical methods are able to cope with these multipara-
metric data sets and extract group membership [141]. For a
detailed and comprehensive review of multivariate statistics and
its application for metabolomics see Worley et al. [12]. Chemomet-
ric techniques can be divided into supervised or unsupervised
methods. In metabolomics, unsupervised methods are commonly
used to identify global trends or group membership. Alternatively,
supervised methods are highly valuable for identifying the spectral
features (or metabolites) that primarily contribute to the differen-
tiation between groups. PCA, PLS, and OPLS are the chemometric
methods commonly used in metabolomics based on a single analyt-
ical source. The limited availability of chemometric methods appli-
cable to multiple analytical sources is one reason NMR and MS
have not been commonly combined for metabolomics.

Nevertheless, multivariate statistical techniques have been pre-
viously applied for the combined analysis of MS and NMR data sets.



Fig. 7. Schematic representation of the SUMMIT MS/NMR strategy for the identification of metabolites in complex metabolomic mixtures by the combined use of mass
spectrometry and 1D 1H NMR spectroscopy. High-resolution MS yields the unique molecular formulas of the metabolites present in the mixture (left). For each molecular
formula, all possible structures are generated, representing the total structural manifold depicted as the sum of the three local manifolds (green, red, blue; middle), each
belonging to a different mass. Next, NMR chemical shifts are predicted for all manifold structures. Comparison of the predicted with the experimental NMR chemical shifts
(right) allows identification of the structures that are present in the mixture, requiring neither an NMR nor an MSmetabolomics database [28,29,58]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.) Reproduced with permission from Ref. [29].
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Chen et al. generated individual PCA models for NMR and MS data
sets and then combined the scores from each analysis into a three
dimensional (3D) scores plot. The combined scores yielded a
greater between-class separation than the original NMR or MS
scores alone. Unfortunately, such an analysis ignores the highly
informative correlations that exist between the two data sets. Gu
et al. replaced the binary class designation of an MS data set with
the first principal component (PC1) from a PCA model generated
from NMR data to produce a subsequent OPLS-DA model for the
MS data [70]. Again, a greater class separation was observed when
the MS OPLS-DA model was generated with the NMR PC1 com-
pared to the binary classification [57]. Nevertheless, such an anal-
ysis carries no statistical guarantee of success for any data set.

Recently, it was shown that a chemometrics model generated
by integrating NMR and MS metabolomics data provided better
group separation and a greater level of model interpretability than
with NMR or MS data sets alone [57]. Marshall et al. combined 1D
1H NMR and DI-ESI-MS. Multiblock methods are similar to tradi-
tional PLS and PCA, but provide a means for analyzing data from
multiple analytical sources [142–144]. The spectral observations
from each analytical method are placed into separate ‘‘blocks,”
which allows for the generation and simultaneous usage of
within-block and between-block data correlations. Since the blocks
share common trends, a model based on the between-block corre-
lations will provide a better agreement with the biological groups.
In effect, better discrimination between groups is expected by
combining NMR and MS data than would be achieved from only
the individual data sets. DI-ESI-MS and 1D 1H NMR spectra were
collected on cell lysates obtained from human dopaminergic
neuroblastoma cells (SK-N-SH) treated with different neurotoxins:
rotenone, 6-hydroxydopamine (6-OHDA), 1-methyl-4-
phenylpyridinium (MPP+), or paraquat. The PCA model produced
from the 1D 1H NMR data set yielded only two groups correspond-
ing to the untreated controls and cells treated with the different
neurotoxins. In effect, NMR detected no difference in the metabo-
lome of neuronal cells after treatment with the different neurotox-
ins. The PCA model generated from the MS data set produced a
modest separation between four groups. The untreated controls,
MPP+, and paraquat treatment each formed a separate group. Both
the rotenone and 6-OHDA cell treatment were clustered together
and formed the fourth group (Fig. 8). The MB-PCA and MB-PLS
models generated from both the DI-ESI-MS and 1D 1H NMR data



Fig. 8. Scores generated from (A) PCA of 1H NMR, (B) PCA of DI-ESI-MS, and (C) MB-PCA of 1H NMR and DI-ESI-MS. Separations between classes are greatly increased upon
combination of the two data sets via MB-PCA. Symbols designate the following classes: Control ( ), Rotenone ( ), 6-OHDA ( ), MPP+ ( ), and Paraquat ( ). Corresponding
dendrograms are shown in (D–F). The statistical significance of each node in the dendrogram is indicated by a p value. Reproduced with permission from Ref. [57].
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sets yielded five distinct groups corresponding to each neurotoxin
treatment and the untreated controls. This clearly demonstrated
that each neurotoxin induced dopaminergic neuronal cell death
through a distinct molecular mechanism. A detailed analysis of
the metabolic impact of paraquat revealed that paraquat ‘‘hijacks”
the pentose phosphate pathway (PPP) to increase NADPH-reducing
equivalents and stimulate paraquat redox cycling, oxidative stress,
and cell death [57,71]. Thus, a successful outcome for a metabolo-
mics study was critically dependent on combining NMR and MS
data.
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4. Conclusion

Metabolomics is an invaluable tool of systems biology and has
made significant contributions to several diverse fields, including
drug discovery, disease diagnosis, nutrition, environmental studies,
and personalized medicine. To date, the majority of metabolomics
data sets have been acquired using either MS or NMR separately.
However, it is well known that combining MS and NMR data
greatly improves the coverage of the metabolome and enhances
the accuracy of metabolite identification. Consequently, combining
NMR and MS techniques for metabolomics is a growing trend that
will greatly benefit the quality and accuracy of metabolomics data.
Herein we have reviewed several methodologies for integrating
NMR and MS for the analysis of metabolomics samples. As demon-
strated throughout this review, combining NMR and MS greatly
enhances and improves the outcomes of metabolomics studies.
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