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Abstract: Background: Principal Component Analysis (PCA) and Orthogonal Pro-
jections to Latent Structures Discriminant Analysis (OPLS-DA) are powerful statisti-
cal modeling tools that provide insights into separations between experimental groups 
based on high-dimensional spectral measurements from NMR, MS or other analytical 
instrumentation. However, when used without validation, these tools may lead inves-
tigators to statistically unreliable conclusions. This danger is especially real for Partial 
Least Squares (PLS) and OPLS, which aggressively force separations between ex-
perimental groups. As a result, OPLS-DA is often used as an alternative method when 
PCA fails to expose group separation, but this practice is highly dangerous. Without 
rigorous validation, OPLS-DA can easily yield statistically unreliable group separa-
tion. 

Methods: A Monte Carlo analysis of PCA group separations and OPLS-DA cross-validation metrics was 
performed on NMR datasets with statistically significant separations in scores-space. A linearly increas-
ing amount of Gaussian noise was added to each data matrix followed by the construction and validation 
of PCA and OPLS-DA models.  

Results: With increasing added noise, the PCA scores-space distance between groups rapidly decreased 
and the OPLS-DA cross-validation statistics simultaneously deteriorated. A decrease in correlation be-
tween the estimated loadings (added noise) and the true (original) loadings was also observed. While the 
validity of the OPLS-DA model diminished with increasing added noise, the group separation in scores-
space remained basically unaffected. 

Conclusion: Supported by the results of Monte Carlo analyses of PCA group separations and OPLS-DA 
cross-validation metrics, we provide practical guidelines and cross-validatory recommendations for reli-
able inference from PCA and OPLS-DA models. 

Keywords: PCA, PLS, OPLS, chemometrics, metabolomics. 

INTRODUCTION 

 The use of Principal Component Analysis (PCA) as a 
first-pass method to identify chemical differences between 
high-dimensional spectral measurements is remarkably 
commonplace in chemistry, especially within the disciplines 
of metabolomics, quality control and process monitoring. 
For example, PCA is routinely used to differentiate between 
spectra of biofluids (e.g., urine or serum) collected from Nu-
clear Magnetic Resonance (NMR) spectroscopy and Mass 
Spectrometry (MS) [1]. Given a set of spectral measure-
ments, PCA – cf. refs [2-5] for a review – identifies a small 
set of unique spectral patterns that capture the greatest varia-
tion present in the original measurements. In concert with 
these spectral patterns (loadings), PCA returns a low-
dimensional score for each high-dimensional measurement  
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that relates that measurement to all others in the set. In ef-
fect, each spectral measurement is reduced to a single point 
in scores-space, which may be visualized using a two- or 
three-dimensional scatter plot. A desirable outcome of PCA 
is a scores plot in which two or more groups form statisti-
cally distinct clusters. Unless predetermined by the experi-
mental design, the absence of group separation usually indi-
cates a failed result. While PCA is a powerful means of ana-
lyzing spectral data, it will only reveal differences between 
measurements in its scores if those differences are major 
contributors to the total variability. Through a combined 
inspection of the scores and loadings produced by PCA, ana-
lysts may obtain a high-level view of global spectral features 
that contribute to the total variability within a dataset. 
 Often, analysts are less concerned with the general rela-
tionships between measurements – which PCA describes – 
than with how well the measurements predict a set of re-
sponse variables. As an illustration, metabolomics experi-
ments commonly aim to identify a set of metabolites whose 
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presence or concentration is altered in a disease state relative 
to healthy controls [1]. This is a multiple linear regression 
problem that is almost always intractable using classical sta-
tistical methods like ordinary least squares (OLS), because 
the number of measured spectra (i.e. number of samples or 
patients) never exceeds the number of spectral data points. 
The most elementary solution to this problem of high dimen-
sionality is to use PCA scores as a basis for OLS regression, 
an approach known as Principal Component Regression 
(PCR). However, PCR may fail to yield a useful regression 
model if the predictive variation in the data (e.g., cancer 
biomarkers) is overshadowed by other sources of variation 
(e.g., diet) [2]. Thus, Partial Least Squares (PLS) is fre-
quently used to obtain a biased regression model [6]. Unlike 
PCA, which is unsupervised, PLS is a supervised method 
that requires the analyst to explicitly assign a response value 
to each measurement. The PLS regression problem is known 
as Partial Least Squares Discriminant Analysis (PLS-DA) 
when the desired prediction is between measurements taken 
from two or more experimental groups (e.g., healthy vs. dis-
ease) [7, 8]. 
 PLS-DA provides an avenue for predicting group mem-
bership based on a set of high-dimensional measurements, 
and holds many advantages over PCA and PCR. However, 
PLS-DA tends to construct overly complex models when 
variation exists in the measurements that do not correlate 
with membership to an experimental group [9, 10]. In studies 
of complex mixtures such as metabolomics, spectral signals 
having high variability that does not relate to group member-
ship are nearly unavoidable. For this reason, Orthogonal Pro-
jections to Latent Structures Discriminant Analysis (OPLS-
DA) is often used in lieu of PLS-DA to disentangle group-
predictive and group-unrelated variation in the measured 
data. In doing so, OPLS-DA constructs more parsimonious 
and easily interpretable models compared to PLS-DA. 
 The combined application of PCA and (O)PLS-DA to 
spectral datasets yields valuable insights on both general 
spectral trends (PCA) and group-predictive spectral features 
(PLS). However, wanton use of this multivariate one-two 
punch without validation or knowledge of relationships be-
tween PCA and PLS model results can lead to statistically 
insignificant conclusions about the underlying chemistry. 
Unlike PCA, PLS and OPLS force separation between ex-
perimental groups in scores-space. OPLS is especially adept 
at forcing scores-space separation, because its integrated 
orthogonal signal correction (OSC) filter removes systematic 
spectral variation that does not agree with the assigned group 
memberships. When provided high-dimensional spectral data, 
PLS and OPLS will nearly always yield scores-space separa-
tion based on the assigned group memberships. These pow-
erful modeling features make PLS and OPLS fully capable 
of producing results based on noise alone, if so requested 
[11]. In short, PLS and OPLS are over-eager to please the 
analyst with positive results, and require rigorous cross-
validation to ensure reliability.  
 Unfortunately, validation of PLS and OPLS models is 
still far too infrequent in published work [12]. This is espe-
cially true in the rapidly growing field of metabolomics, 
where these methods are quite often – and quite mistakenly – 
considered surrogates for PCA. PCA, PLS and OPLS are 

distinct modeling frameworks that achieve very different 
goals and extract different information from a dataset. How-
ever, the optimistically forced group separations provided by 
(O)PLS-DA have spawned a pattern of misuse in me-
tabolomics and related fields. When PCA fails to identify 
significant separation between experimental groups, un-
trained analysts may move to biased, insufficiently vetted 
OPLS-DA models without considering the statistical impli-
cations [13, 14]. While it is certainly possible for OPLS-DA 
to identify separation when PCA does not, the statistical sig-
nificance of the separation must be validated before conclu-
sions are drawn from the results. In effect, the conclusions of 
studies that lack proper validation are automatically suspect 
from a statistical viewpoint, implying that future attempts to 
reproduce their results may fail. Thus, validation of all su-
pervised models is an absolute requirement in chemometrics. 
Even before supervised models are trained, the separation 
between groups in PCA scores-space may be used as an in-
formative predictor of whether reliable OPLS-DA models 
may be trained on the data. We present practical guidelines 
on what level of OPLS-DA model reliability may be ex-
pected based solely on PCA group separations. 

MATERIALS AND METHOD 

 We performed a Monte Carlo simulation using MVA-
PACK (http://bionmr.unl.edu/mvapack.php, [15]) to analyze 
the relationship between group separation in PCA scores-
space and OPLS-DA cross-validation metrics as a function 
of spectral noise content. A data matrix of 32 binned 1D 1H 
NMR spectra from the freely available Coffees dataset [15] 
was used, as it contains highly significant separation be-
tween two experimental groups. A second data matrix com-
paring 50 1D 1H NMR spectra of chemically defined cell 
growth media was also subjected to Monte Carlo analysis. A 
set of 50 linearly increasing additive noise points was con-
structed such that the noise standard deviation increased rela-
tive to the intrinsic variation (l2 norm) of the original data 
matrix. Two hundred Monte Carlo iterations were performed 
at each noise point, where each iteration had a different sam-
ple of Gaussian noise added to the data matrix based on the 
current noise standard deviation. Within each iteration, a 
three-component PCA model and an OPLS-DA model with a 
single predictive component were constructed. Component 
counts for PCA and OPLS-DA models were forced, rather 
than determined by cross-validation, to ensure that enough 
components were available for subsequent computations. For 
each OPLS-DA model, a CV-ANOVA [16] was performed 
to assess model reliability. In addition, the Mahalanobis dis-
tance (DM) [17] between groups within PCA scores-space 
was computed at each iteration to quantify the significance 
of the group separation. The correlation between the OPLS-
DA model loadings and the original noise-free loadings were 
also computed at each iteration to determine how well the 
OPLS-DA model reproduced the “true” loadings. Key results 
of the Monte Carlo analysis are shown in Fig. (1 and 2). 

Initial Datasets 

 Two groups of observations (Light and Medium Decaf-
feinated) from the binned data matrix were extracted from 
the latest version of the Coffees dataset [15]. The resulting 



PCA as a Practical Indicator of OPLS-DA Model Reliability Current Metabolomics, 2016, Vol. 4, No. 2    99

data matrix (referred to as X: N = 32, K = 284) contains a 
highly significant separation between the two groups based 
on caffeine 1D 1H NMR spectral features. A second dataset, 
generated from a comparison of two chemically defined cell 
growth media, was used to provide further support for the 
trends observed during Monte Carlo analysis of the Coffees 
data matrix. The resulting Media data matrix (N = 50, K = 
238) also contains highly significant separation between two 
groups based on binned 1D 1H NMR spectral features. 
 Prior to Monte Carlo simulation, the l2 norm (largest sin-
gular value) of each data matrix X was computed and stored 
as �max. A set of 50 noise standard deviations (�) was com-
puted, where each value ranged linearly from �max 500 to 
�max/10. For each noise standard deviation, a set of 200 
Monte Carlo iterations was performed. Another set of 200 
iterations was also performed on the original data matrix X 
without any added noise. 

Monte Carlo Simulation 

 At each Monte Carlo iteration, an N-by-K matrix of noise 
values were drawn as NK independently and identically dis-
tributed samples from a zero-mean normal distribution hav-
ing a standard deviation of �, corresponding to the current 
noise value as described above. The data matrix X was 
summed with the noise matrix, and a three-component (A = 

3) PCA model was computed on the resulting sum (X’) after 
scaling [18] using a NIPALS algorithm [2]. To illustrate the 
effects of scaling in our Monte Carlo analysis, data matrices 
from the Coffees dataset were UV-scaled, and data matrices 
from the Media dataset were Pareto-scaled. The explained 
variation (R2) of each principal component was computed 
from the sum of squares of the outer product of the compo-
nent’s scores and loadings (tpT), divided by the total data 
matrix sum of squares. A Monte Carlo leave-n-out cross-
validation (MCCV) was performed based on the modified 
method of Krzanowski and Eastment [19] (vide infra) in 
order to obtain a per-component predictive ability (Q2) statis-
tic. A seven-fold partitioning of the observations and vari-
ables, randomly resampled ten times, was performed for 
each PCA MCCV run [20]. Following model training, the 
Mahalanobis distance between the two groups was computed 
using PCA scores [17]. 
 After computation of the Mahalanobis distance, the noisy 
data matrix X’ was Pareto-scaled and subjected to OPLS-DA 
using a Pareto-scaled binary (0, 1) response vector (y) and a 
NIPALS OPLS algorithm [10]. A one-component (Ap = 1, Ao 
= 1) OPLS model was constructed, from which backscaled 
predictive loadings were extracted by dividing by the coeffi-
cients obtained from Pareto scaling [21]. The Pearson corre-
lation coefficient between backscaled loadings and the 
known “true” loadings – corr(p,p0) – was computed for later 

 
Fig. (1). Relationships to OPLS-DA CV-ANOVA p values obtained through Monte Carlo simulation of the Mahalanobis distance (DM) be-
tween classes in PCA scores-space. Panels (A) and (B) hold results computed from the Coffees and Media datasets, respectively. The density 
of points in both panels is indicated by coloring, where red indicates high point density and blue indicates low density. 

 

 
Fig. (2). Relationships to OPLS-DA CV-ANOVA p values obtained through Monte Carlo simulation of correlation between OPLS-DA 
model predictive loadings given noisy data (p) and loadings obtained on the original data matrix (p0). Panels (A) and (B) hold results com-
puted from the Coffees and Media datasets, respectively. The density of points in both panels is indicated by coloring, where red indicates 
high point density and blue indicates low density. 
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visualization. Explained variation (R2
Y) was computed from 

the sum of squares of the y-factors (tcT), divided by the sum 
of squares of y. A Monte Carlo leave-n-out internal cross-
validation (MCCV) of the OPLS model was performed using 
a seven-fold partitioning of the data matrix that was ran-
domly resampled ten times [22]. Discriminant predictive 
ability (DQ2) statistics were computed as the mean DQ2 ob-
tained from MCCV results [23]. Thus, each OPLS model 
contained a set of ten fitted residual matrices from cross-
validation available for use in CV-ANOVA significance 
testing [16]. During CV-ANOVA calculations, the median 
values of mean square error (MSE) were computed from all 
residual matrices, and the ratio of median fitted MSE to me-
dian residual MSE was calculated to yield an F-statistic for p 
value generation. 

Monte Carlo Cross-validation of PCA Models 
 In the modified method of Krzanowski and Eastment 
(modified K+E), the observations and variables of the data 
matrix are partitioned into n groups, allowing multiple data 
matrix elements to be left out and recomputed for each group 
[19]. In modified K+E, each cross-validation group is 
formed by a regular grid of data matrix elements, but this is 
merely one way to partition the data matrix. In our Monte 
Carlo modified K+E scheme, observations and variables are 
randomly partitioned into n groups for each Monte Carlo 
iteration, resulting in multiple irregular “grids” of data ma-
trix elements being left out and recomputed [20]. The results 
– mean and standard deviation Q2 values – of PCA MCCV 
are then collated in exactly the same manner as those from 
PLS or OPLS MCCV [22]. 

RESULTS AND DISCUSSIONS 

 As expected, PCA scores-space distances between ex-
perimental groups rapidly decrease as noise is added to the 
data, which also forces a rise in OPLS-DA cross-validation 
statistics. As a result, a strong exponential relationship is 
observed between Mahalanobis distances calculated from 
PCA scores and CV-ANOVA p values from the OPLS-DA 
models (Fig. 1). Because PCA modeling uses no group 
membership information, the scores-space distances in Fig. 1 
are essentially the least biased method of appraising dis-

crimination ability. As the groups become less distinguish-
able based on their spectral measurements, PCA will expose 
less separation in the scores. When PCA fails to expose 
group separation, OPLS-DA will continue to do so at the 
expense of model reliability, as it is relying on weaker 
sources of variation in the measured data. While the exact 
form of the relationship between distance and p value will 
depend on the input data and responses, our analysis pro-
vides clear evidence that distances between groups in PCA 
scores may be used as a qualitative ruler of future supervised 
model reliability. The effects of different data scaling meth-
ods may be observed by comparing the results of Fig. 1A 
with those in Fig. 1B. While the Pareto-scaled Media results 
exhibit a slightly less curved relationship, they fully corrobo-
rate the relationships observed from the UV-scaled Coffees 
data. From these analyses, we have observed no evidence 
to suggest the relationship between PCA scores-space dis-
tances and OPLS validation statistics is dataset- or scaling-
dependent. While it is theoretically possible to contrive a 
dataset that does not follow this trend, such an example 
would be uncommon in most real studies. The shrinkage of 
Mahalanobis distances as data matrix noise increases oc-
curs concomitantly with a rapid loss of correlation between 
ideal OPLS predictive loadings and estimated loadings 
(Fig. 2 and 3A). It is critical to note, however, that group 
separations in OPLS scores-space do not appreciably de-
crease (Fig. 4) with the decreased loading correlations (Fig. 
2 and 3A) or the increased CV-ANOVA p values (Fig. 1 
and 3B). In effect, the OPLS model has identified different, 
less reliable sources of variation in the noisy data matrix in 
order to maintain group separation. OPLS-DA requires 
only that some variation in the measured data correlates 
with group membership, regardless of whether that varia-
tion is signal or noise [6, 10, 24]. When the true predictive 
spectral features that reflect the underlying biochemistry 
have become masked by noise, OPLS-DA will shift its fo-
cus to the variation that best predicts group membership. 
This is evident by the relative stability in the R2 and Q2 
values despite the deterioration in the model reliability. 
Because OPLS-DA provides the most optimistic result pos-
sible, validation becomes a necessity.  

 
Fig. (3). (A) Decrease of correlation between estimated loadings (p) and true loadings (p0) occurs as varying degrees of noise are added to 
the Coffees (red) and Media (blue) data matrices. Light shaded regions indicate confidence intervals of plus or minus one standard deviation 
from the mean correlation. A value of 1X additive noise corresponds to a noise standard deviation equaling 0.002 times the data matrix l2 
norm. (B) Increase of p values from CV-ANOVA OPLS-DA validation as varying degrees of noise are added to the Coffees (red) and Media 
(blue) data matrices. Light shaded regions indicate confidence intervals of plus or minus one standard deviation from the median p value. 
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CONCLUSION 

 PCA, PLS and OPLS-DA are integral to metabolomics. 
When properly employed, these methods provide valuable 
insights on group relationships from simple visual inspection 
of scores-space clustering patterns. Unfortunately, these in-
sights come with pitfalls that are often missed by novice in-
vestigators, leading to misinterpretation. Using NMR me-
tabolomics datasets with statistically significant group sepa-
rations, we demonstrate that separation between these groups 
in PCA scores is strongly related to OPLS-DA cross-
validation statistics from the same data. As noise is added to 
the data, PCA group separations decrease while OPLS-DA 
CV-ANOVA p values increase towards non-significance. 
Eventually, no group separation is visible in the PCA scores 
(Fig. 4E) and the corresponding OPLS-DA model is no 
longer statistically valid (p value 0.197). Despite being sta-
tistically invalid, the OPLS-DA scores still exhibit clear 
group separation (Fig. 4F). This disconnect between ob-
served group separations and model significance in (O)PLS 
is a source of error in metabolomics that has often led to the 

publication of statistically unreliable results. Our results il-
lustrate that if a PCA model fails to achieve group separa-
tion, a subsequent OPLS-DA model, despite any appearance 
of group separation, is often unreliable or invalid. While 
(O)PLS may reveal group separations even when PCA fails 
to do so, these results require rigorous cross-validation to 
ensure validity.  
 The principal strength of OPLS-DA models in me-
tabolomics is their identification of spectral features (i.e. 
metabolite changes) that define the separations between ex-
perimental groups. In effect, OPLS-DA is used to identify 
the biologically relevant changes in the metabolome. Fig. (2) 
demonstrates that spectral features (metabolites) that are 
identified for the invalid model (p value 0.197) have no rela-
tionship to the “true” metabolite changes identified without 
added noise. If an investigator were to interpret the features 
identified by the invalid OPLS-DA model, it would yield 
complete biological nonsense.  
 Adding to the confusion is the routine observation that R2 
and Q2 values may still be in an acceptable range for an inva-

 
Fig. (4). Comparison of representative PCA (A, C, E) and OPLS-DA (B, D, F) scores resulting from modeling the original Coffees data 
matrix (A, B), the 4X noisy data matrix (C, D) and the 20X noisy data matrix (E, F). Class ellipses represent the 95% confidence regions for 
class membership. CV-ANOVA p-values for the OPLS-DA model generated from the original data matrix, 4X and 20X noisy data matrix 
are 2.82x10-11, 2.99x10-4, and 1.97x10-1, respectively. 
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lid OPLS-DA model. R2 and Q2 values by themselves are 
optimistic measures of model fit and consistency that are 
without a proper standard of comparison [5]. In short, R2 
provides a measure of model fit to the original data, and Q2

provides an internal measure of consistency between the 
original and cross-validation predicted data. While R2 and Q2 
provide a weak measure of model reliability, assuming that a 
model is reliable from only R2 and Q2 values is inadequate. 
As we demonstrate, an invalid (p value 0.197) OPLS-DA 
model (Fig. 4F) yielded an excellent R2 value of 0.997 and 
an acceptable Q2 value of 0.528. Ideally, external cross-
validation methods, which exclude a large set of measure-
ments from model training for later prediction, would be 
used to construct more accurate Q2 values. However, the 
scarcity of data in most metabolomics experiments forces the 
use of internal cross-validation, resulting in over-optimistic 
Q2 values.  
 The presented Monte Carlo simulations once again illus-
trate how noise can masquerade as group-predictive variation 
in statistical analyses of high-dimensional spectral measure-
ments. Moreover, our simulations touch on an often-overlooked 
distinction between group separations and reliable, statisti-
cally significant group separations in PCA/PLS scores-space. 
Although PLS and OPLS may separate experimental groups 
in situations where PCA cannot, this outcome should raise a 
red flag to the analyst that the model is suspect and the data 
may not sufficiently predict group membership. Only after 
rigorous cross-validation can it be safely inferred that OPLS-
DA group separations are reliable and significant. If cross-
validated estimates of OPLS scores still separate the desired 
experimental groups, and CV-ANOVA and permutation test-
ing report significant p values, the models may then be used 
for chemical inference. If cross-validation is left unreported, 
conclusions drawn from the models must be met with strong 
skepticism [11, 12]. 
 The results of our Monte Carlo analysis relating PCA 
scores-space separations to OPLS-DA cross-validation met-
rics effectively summarize the reasons why rigorous cross-
validation is necessary in chemometric studies relying on 
multivariate analyses [11]. More specifically, it reaffirms the 
importance of PCA as a first-pass unsupervised tool in meta-
bolic fingerprinting and untargeted metabolic profiling stud-
ies, where group separations in scores-space are often the 
sole basis for further experimentation. It is an unfortunate 
common practice in such studies to dismiss completely over-
lapped experimental groups in PCA scores-space and move 
ahead to (usually un-validated) supervised methods such as 
PLS and OPLS that force scores-space separation. Such 
practices almost guarantee the irreproducibility of any con-
clusions drawn from trained multivariate models, as the rela-
tionship we have obtained between Mahalanobis distances 
from PCA scores and CV-ANOVA p values from OPLS 
validation indicates. Even in light of the powerful prediction 
ability of PLS and OPLS, PCA remains a highly useful, 
practical method for examining unbiased group separations. 
It is therefore highly recommended that methods which as-
sign Mahalanobis distance-based confidence ellipses to 
classes in PCA scores [25], report cross-validation estimated 
scores plots for PLS and OPLS models, and provide one or 
more cross-validation metrics during model training [15] be 
used in these studies whenever possible.  

 Our Monte Carlo analysis is only a case study for two 
specific data matrices, and is not meant to provide a truly 
quantitative relationship between any of the discussed met-
rics over all possible metabolomics studies. Instead, it lends 
positive numerical support to our recommendations that ana-
lysts rigorously cross-validate their models by multiple 
means, including CV-ANOVA, response permutation test-
ing, and even qualitative examination of PCA scores-space 
group separations. We hope the results presented in this 
work may be used to further promote best practices of super-
vised multivariate model training and validation in the com-
munity. 
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