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ABSTRACT: Urine is a metabolite-rich biofluid that reflects
the body’s effort to maintain chemical and osmotic homeo-
stasis. Clinical diagnosis routinely relies on urine samples
because the collection process is easy and noninvasive. Despite
these advantages, urine is an under-investigated source of
biomarkers for multiple sclerosis (MS). Nuclear magnetic
resonance spectroscopy (NMR) has become a common
approach for analyzing urinary metabolites for disease
diagnosis and biomarker discovery. For illustration of the
potential of urinary metabolites for diagnosing and treating MS
patients, and for differentiating between MS and other
illnesses, 38 urine samples were collected from healthy controls, MS patients, and neuromyelitis optica-spectrum disorder
(NMO-SD) patients and analyzed with NMR, multivariate statistics, one-way ANOVA, and univariate statistics. Urine from MS
patients exhibited a statistically distinct metabolic signature from healthy and NMO-SD controls. A total of 27 metabolites were
differentially altered in the urine from MS and NMO-SD patients and were associated with synthesis and degradation of ketone
bodies, amino acids, propionate and pyruvate metabolism, tricarboxylic acid cycle, and glycolysis. Metabolites altered in urine
from MS patients were shown to be related to known pathogenic processes relevant to MS, including alterations in energy and
fatty acid metabolism, mitochondrial activity, and the gut microbiota.
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■ INTRODUCTION

Multiple sclerosis (MS) is a chronic disease of the central nervous
system (CNS) with both neurodegenerative and inflammatory
demyelinating components.1 The disease has a heterogeneous
clinical presentation and is characterized by clinical symptoms
that involve different parts of the CNS. Especially in the early
stages, MS shares features with other demyelinating diseases like
neuromyelitis optica-spectrum disorders (NMO-SD).2 Despite
recently updated classification criteria,3,4 differentiation between
the two diseases can be difficult but nevertheless vital, because
misclassification can lead to increased disease activity due to
incorrect treatment.5 Thus, the identification of metabolite
biomarkers for MS may help improve MS diagnostic protocols
and help better understand the pathogenesis of the disease.
Metabolite biomarkers are small chemical entities (<1500 Da)

found in biofluids where their presence or concentration has a
correlation with either the prognosis, existence, or progression of
a disease or the therapeutic response to a medication or
treatment.6 Metabolites are the end products of enzymatic
reactions or protein activity that are readily modulated by genetic

alterations, environmental stress, toxins, or drugs.7 Thus, all
phenotypic alteration caused by a disease or a medical treatment
is expected to exhibit a unique metabolic profile or fingerprint.8

The ability to accurately and efficiently detect these metabolic
alterations presents a potential avenue for personalized medicine
and disease diagnosis through the identification of metabolite
biomarkers.9 Unlike a single gene or protein routinely used as a
medical biomarker, a metabolomics biomarker is commonly
comprised of a dozen or more metabolites and provides a highly
unique signature that may increase the likelihood of a correct
diagnosis.10

The analysis of urine to obtain a metabolic profile has a
number of well-known advantages that includes ready
availability; a rapid, easy, inexpensive, and noninvasive sample
collection procedure; the ability to collect multiple, large samples
over a range of time-points; and well-established protocols for
storing, handling, and examining urine samples.11 The
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investigation of urine metabolites using nuclear magnetic
resonance spectroscopy (NMR) is experiencing a rapid growth
of interest, where NMRmetabolomics is routinely being used for
drug and biomarker discovery.12 NMR is an attractive technique
because it requires minimal sample preparations and is able to
simultaneously detect and quantify a variety of compounds from
a complex mixture without separation. NMR is commonly
combined with multivariate statistics to efficiently identify and
statistically validate the metabolomics profile.13

To date, investigations into MS metabolite biomarkers has
primarily focused on the analysis of cerebrospinal fluid (CSF)
and serum samples from MS patients.14,15 Little attention has
been given to the analysis of urine16 despite the fact that
metabolites excreted into urine are readily accessible and are
easily detected compared to CSF or blood samples.16 We
previously reported an NMR metabolomics analysis of urinary
markers of MS using the animal model experimental auto-
immune encephalomyelitis (EAE).17 The results of our prior
EAE animal study demonstrated the potential of using urine as a
source of metabolite biomarkers for MS. Herein, we report an
NMR metabolomics analysis of human urine samples collected
from healthy controls, MS patients, and NMO-SD patients. Our
results demonstrate a statistically significant difference in the
urinary metabolites observed between MS patients and healthy
controls and between MS and NMO-SD patients.

■ METHODS AND MATERIALS

Patient Information and Clinical Manifestation

To ensure as much homogeneity as possible within the groups,
we selected definite aquaporin-4 (AQP4)-seropositive NMO-SD
patients with high antibody titers in the serum directed against
the water channel AQP4, and ensured that all were diagnosed
according to the criteria proposed by Wingerchuk 2006.4 Seven
of the patients had definite seropositive NMO, whereas 2 had
seropositive NMO-SD in the form of optic neuritis (ON) and
longitudinally extensive transverse myelitis (LETM) (Table 1
and Table S1). The mean age was 39.3 with a female
predominance as expected,18 and all received immunosuppres-
sive therapy in the form of azathioprine.
Similarly, all MS patients were diagnosed with relapsing-

remitting MS (RR-MS) according to the McDonald’s 2010
criteria19 and accordingly received immunomodulatory therapy.
Among this group, 5 patients received first-line therapy
(glatiramer acetate and interferon-β), 1 patient received
second-line therapy (natalizumab), and 2 patients received no
treatment (Table 1 and Table S1). The mean age was 44.6 years
with a female predominance. On average, the age at disease onset
is 34 years; however, none of these patients were newly
diagnosed. All healthy subjects were healthy volunteers with no
known neurological or autoimmune diseases. Neither MS nor
NMO/NMO-SD patients had experienced a relapse within 30
days of the sample collection. The study was conducted in
accordance with both the Hungarian and Danish National Ethics
Committee (38.93.316-12464/KK4/2010, 42341-2/2013/EKU,
S-20120066).
Urine Collection

Using theNMO-SD andMS database of the University of Pecs in
Hungary, we collected urine samples from 9 patients with NMO-
SD seropositive for antibodies against AQP4, 8 patients with RR-
MS, and 7 healthy subjects. Treatment, age, and gender of the
study populations are shown in Table 1 and Table S1. Urine
samples were collected as spot urine in the morning before

breakfast and administration of drug treatment and processed
within 2 h of collection. The time intervals between replicate
urine sample collections were variable. All patients were on
chronic treatment as indicated in Table 1 and Table S1.
Azathioprine and glatiramer acetate were administered daily,
interferon β-1b every other day, and natalizumab was
administered once a month. In cases of interferon β-1b
treatment, urine was collected the day after administration.
Urine was collected the day before the monthly natalizumab
infusion in the single patient treated with natalizumab. Samples
were centrifuged at 20,000g for 20 min at room temperature
(RT) to pellet cell debris, and the supernatants were stored at
−80 °C until use. Except for one MS patient, two analytical
replicate urine samples were obtained from each MS patient and
each healthy subject. Conversely, only one urine sample was
collected from each NMO-SD patient.
NMR Sample Preparation

The urine samples were thawed and then centrifuged at 13000
rpm for 5 min at RT to remove any precipitate. Then, 100 μL of
each urine sample was transferred into a new Eppendorf tube and
mixed with 500 μL of 50 mM phosphate buffer in 99.8% D2O
(Isotec, St. Louis, MO) at pH 7.2 (uncorrected); 50 μM of 3-
(trimethylsilyl) propionic acid-2,2,3,3-d4 (TMSP-d4) was added
to each sample as a chemical shift reference. The urine samples
were then transferred to a 5 mm NMR tube for NMR data
acquisition.
NMR Data, Collection, and Processing and Multivariate
Statistical Analysis

The one-dimensional (1D) 1HNMR experiments were collected
and processed as described previously.17 The NMR data
processing and multivariate statistical analysis were accom-
plished using ourMVAPACK software suite (http://bionmr.unl.
edu/mvapack.php).20 The 1D 1H NMR spectra were aligned
with the icoshift algorithm when the full-resolution spectra were
modeled using orthogonal projections to latent structure-
discriminant analysis (OPLS-DA). Alternatively, the 1D 1H
NMR spectra were binned using an intelligent adaptive binning
algorithm when S-plots and a shared and unique structure (SUS-
plot) plot were generated from the OPLS-DA model. The data

Table 1. Demographic Data of Hungarian Cohorta

HS n = 7 AQP4-NMO/NMO-SD n = 9 MS n = 8

Disease Subtype
NMO-SD 0 7 0
ON 0 1 0
LETM 0 1 0
RR-MS 0 0 8
Sex
female 4 6 6
male 3 3 2
mean age (range) 26.7 (25−30) 39.3 (22−55) 44.6 (31−70)

Treatment
azathioprine 0 9 0
natalizumab 0 0 1
interferon β-1b 0 0 3
glatiramer acetate 0 0 2
none of the above 7 0 2

aHS, healthy subjects; AQP4, aquaporin 4; NMO, neuromyelitis
optica; NMO-SD, neuromyelitis optica-spectrum disorder; MS,
multiple sclerosis; ON, optic neuritis; LETM, longitudinally extensive
transverse myelitis; RR-MS, relapsing-remitting multiple sclerosis.
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were normalized with a probabilistic quotient normalization
function and Pareto scaled prior to multivariate statistical
analysis. Fractions of explained variation (R2

X and R2
Y) were

computed during OPLS-DA model training. OPLS-DA models
were internally cross-validated using 7-fold Monte Carlo cross-
validation to compute Q2 values, which were compared to a
distribution of null model Q2 values in 1000 rounds of response
permutation testing. Model results were further validated using
CV-ANOVA significance testing.

Metabolite Identification

An SUS plot was generated from the OPLS-DA models using
MVAPACK to compare the MS and NMO-SD group against
healthy controls. The plot visualizes the correlation between
predictive components of each model and was used to identify
metabolite changes unique to either the MS or the NMO-SD
group. The chemical shift information from the loadings and
SUS plots were assigned to metabolites using Chenomx NMR
suite 7.0 (Chenomx Inc., Edmonton, Alberta, Canada) and the
Human Urine Metabolome database (http://www.
urinemetabolome.ca/). A 1H chemical shift error of 0.08 ppm

was used to match the experimental chemical shifts with database
values. Metabolite pathway analysis was accomplished using the
Metabolomics Pathway Analysis (MetPA) Web server (http://
metpa.metabolomics.ca/MetPA).

One-Way ANOVA and Univariate Statistical Analysis

One-way ANOVA and univariate calculations were conducted
using the R statistical package version 3.2.0.21 One-way ANOVA
was used to determine the statistical significance of individual
metabolite differences between healthy, MS, and NMO-SD
patients. Metabolites with a p-value ≤ 0.05 were then subjected
to Tukey’s multiple comparison of means test to identify the set
of metabolites that are statistically different between the paired
groups.22 A Student’s t test was also applied to determine the
statistical significance of metabolite differences between the two
groups. The p-values from the Student’s t test were further
adjusted using the Benjamini−Hochberg multiple hypothesis
method.23

Figure 1. (a) OPLS-DA scores resulting from modeling of the 1D 1H NMR data matrix from human urine samples collected from MS patients (cyan)
and healthy controls (red). A statistically significant degree of separation is observed between the two experimental classes. The leave-n-out cross-
validationmetrics areR2

Y = 0.77 andQ
2 = 0.39, and the CV-ANOVA and a response permutation test p-values are 7.8× 10−4 and 8.0× 10−3, respectively.

Ellipses enclose the 95% confidence intervals estimated by the sample means and covariances of each class. (b) Response permutation testing results for
OPLS-DA scores after 1000 random permutations of the group membership information (Y). The model significance is inferred from the degree of
vertical separation between the null distribution (leftmost) and the true R2

Y andQ
2 values (rightmost). The apparent discretization along the correlation

axis is a result of using binary class labels in Y.

Figure 2. (a) Back-scaled OPLS-DA loadings plot resulting frommodeling of the 1D 1HNMRdata matrix from human urine samples collected fromMS
patients and healthy controls. (b) S-plot from the OPLS-DAmodel generated from binned 1D 1HNMR spectra from the MS and healthy controls data
sets (Figure S1). The x- and y-axis of the S-plot measures the covariance and correlation, respectively. The green and red triangles identify metabolites
with a relative increase or decrease in concentration in urine samples from MS patients compared to healthy controls, respectively. The blue triangles
correspond to unknown metabolites. The black triangles correspond to all other bins or metabolites. The metabolites are labeled as follows: 1, 2-
hydroxyisovalerate; 2, isovalerate; 3, 3-hydroxyisobutyrate; 4, propylene glycol; 5, 3-hydroxybutyrate; 6, methylmalonate; 7, 3-hydroxyisovalerate; 8,
lactate; 9, alanine; 10, acetate; 11, N-acetylglutamine; 12, acetone; 13, acetoacetate; 14, oxaloacetate; 15, succinate; 16, citrate; 17, creatine; 18,
creatinine; 19, malonate; 20, choline-containing compounds; 21, trimethylamine N-oxide; 22, glycine; 23, phenylalanine; 24, phenylacetylglycine; 25,
hippurate; and 26, xanthine.
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■ RESULTS

Urine Metabolomics Signature for MS Patients

A 1D 1H NMR spectrum was acquired for each of the 29 urine
samples collected from seven healthy individuals and eight
patients previously diagnosed withMS. The 1D 1HNMR spectra
capture a “snapshot” of the state of the urinary metabolome and
provides a direct means of determining if the metabolic profiles
differ between healthy and MS patients. The NMR data set was
modeled by OPLS-DA, and the resulting scores plot (Figure 1a)
shows a clear separation between the healthy controls and MS
patients. Importantly, all of the biological replicates were
assigned to the correct class in the OPLS-DA scores plot. The
leave-n-out cross-validation metrics of R2

Y = 0.77 and Q2 = 0.39
indicates an acceptable level of fit and predictive ability. A reliable
model is also indicated by a p-value of 7.8 × 10−4 from the CV-
ANOVA test and a p-value of 8.0 × 10−3 from the response
permutation test (Figure 1b).
A back-scaled loadings plot was generated from the OPLS-DA

model to identify the spectral regions (metabolites) that
primarily contribute to the observed class separation in the
scores plot (Figure 2a). Twenty-six metabolites are differentially

altered in the urine samples collected from healthy individuals
and MS patients. The identified metabolites are from metabolic
pathways associated with energy metabolism, fatty acid synthesis,
and gut microflora, which include amino acid derivatives and
amino acid degradation products (Table S2). An S-plot was then
used to identify the major contributors to these observed class
differences in the OPLS-DA scores plot (Figures S1 and 2b). The
S-plot identified creatinine, hippurate, 3-hydroxybutyrate,
malonate, oxaloacetate, and trimethylamine N-oxide as having
the highest covariance and correlation (from the 26 metabolites)
with the OPLS-DA model from the healthy and MS data sets. A
one-way ANOVA analysis was performed for each metabolite
identified from the multivariate statistical analysis to determine if
a statistically significant difference exists between the healthy and
MS groups. Metabolites with a p-value ≤ 0.05 were selected
(Table S3) and further subjected to Tukey’s multiple
comparisons of means test.22 This analysis indicated that the
set of metabolites, including creatinine (p-value = 4.2 × 10−4), 3-
hydroxyisovalerae (p-value = 3.2 × 10−02), and oxaloacetate (p-
value = 5.0 × 10−02) discriminate between healthy controls and
MS patients (Figure S2). A Student’s t test followed by the
Benjamini−Hochberg multiple hypothesis test (Figure S3)

Figure 3. (a) OPLS-DA scores resulting from modeling of the 1D 1H NMR data matrix from human urine samples collected from NMO-SD patients
(cyan) and healthy controls (red). A statistically significant degree of separation is observed between the two experimental classes. The leave-n-out cross-
validation metrics are R2

Y = 0.93 andQ
2 = 0.68, and the CV-ANOVA and a response permutation test p-values are 7.3× 10−3 and 0, respectively. Ellipses

enclose the 95% confidence intervals estimated by the sample means and covariances of each class. (b) Response permutation testing results for OPLS-
DA scores after 1000 random permutations of the group membership information (Y). The model significance is inferred from the degree of vertical
separation between the null distribution (leftmost) and the true R2

Y andQ
2 values (rightmost). The apparent discretization along the correlation axis is a

result of using binary class labels in Y.

Figure 4. (a) Back-scaled OPLS-DA loadings plot resulting from modeling of the 1D 1H NMR data matrix from human urine samples collected from
NMO-SD patients and healthy controls. (b) S-plot from the OPLS-DA model generated from binned 1D 1H NMR spectra from NMO-SD and healthy
controls data sets (Figure S2). The x- and y-axis of the S-plot measures the covariance and correlation, respectively. The green and red triangles identify
metabolites with a relative increase or decrease in concentration in urine samples from NMO-SD patients compared to healthy controls. The blue
triangles correspond to unknown metabolites. The black triangles correspond to all other bins or metabolites. The metabolites are labeled as follows: 6,
methylmalonate; 8, lactate; 9, alanine; 10, acetate; 11, N-acetylglutamine; 12, acetone; 13, acetoacetate; 14, oxaloacetate; 15, succinate; 16, citrate; 17,
creatine; 18, creatinine; 19, malonate; 20, choline-containing compounds; 21, trimethylamine N-oxide; 22, glycine; 23, phenylalanine; 24,
phenylacetylglycine; 25, hippurate; and 27, timethylamine.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b01111
J. Proteome Res. 2016, 15, 659−666

662

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01111/suppl_file/pr5b01111_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.5b01111


identified acetate and creatinine as statistically different between
healthy controls and MS patients.23 The Benjamini−Hochberg
adjusted p-value, one-way ANOVA, and multivariate analyses are
fundamentally distinct techniques that emphasize different
aspects of the data and have no expectations of producing
identical results. Thus, a subset of the eight metabolites
corresponding to acetate, creatinine, hippurate, 3-hydroxybuty-
rate, 3-hydroxyisovalerae, malonate, oxaloacetate, and trimethyl-
amine N-oxide have the potential of differentiating between
healthy controls and MS patients.

Urine Metabolomics Signature for NMO-SD Patients

Because NMO-SD is an inflammatory demyelinating disease of
the CNS similar to MS, but antibodies play a major role in the
pathogenesis in contrast to the supposedly heterogeneous
pathogenesis in MS, we considered NMO-SD as a valuable
negative control for identifying biomarkers specific to MS.2 A 1D
1HNMR spectrum was acquired for each of the 23 urine samples
collected from seven healthy individuals and nine patients
previously diagnosed with NMO-SD. The NMR data set was
modeled by OPLS-DA, and the resulting scores plot (Figure 3a)
shows a clear separation between the healthy controls andNMO-
SD patients. All of the biological replicates were assigned to the
correct class in the OPLS-DA scores plot. The leave-n-out cross-
validation metrics of R2

Y = 0.93 and Q2 = 0.68 indicates a
reasonable level of fit and predictive ability. A reliable model is
also indicated by a p-value of 7.3 × 10−3 from the CV-ANOVA
test and a p-value of zero from the response permutation test
(Figure 3b). A back-scaled loadings plot (Figure 4a) identified 20
metabolites differentially altered in the urine samples collected
from healthy individuals and NMO-SD patients. The identified
metabolites are amino acids and amino acid derivatives,
tricarboxylic acid (TCA) cycle intermediates, choline-containing
compounds, andmetabolites from the gut microflora (Table S2).
An S-plot was then used to identify the major contributors to this
observed class differences in the OPLS-DA scores plot (Figures
S4 and 4b). The S-plot identified acetate, creatinine, 3-
hydroxybutyrate, methylmalonate, oxaloacetate, and succinate
as having the highest covariance and correlation (from the 20
metabolites) with the OPLS-DA model from the healthy and
NMO-SD data sets. A one-way ANOVA analysis was performed
for each metabolite identified from the multivariate statistical

analysis to determine if a statistically significant difference exists
between the healthy and NMO-SD groups. Metabolites with a p-
value ≤ 0.05 were selected (Table S3) and further subjected to
Tukey’s multiple comparisons of means test.22 This analysis
indicated that the set of metabolites, including creatinine (p-
value 4.0 × 10−07), 3-hydroxybutyrate (p-value 2.9 × 10−02),
oxaloacetate (p-value 2.7 × 10−02), and methylmalonate (p-value
2.6 × 10−06) discriminates between healthy controls and NMO-
SD patients (Figure S2). A Student’s t test followed by the
Benjamini−Hochberg multiple hypothesis test (Figure S3) also
identified the same set of metabolites as statistically different
between healthy controls and NMO-SD patients. Similar to our
comparison between healthy controls and MS patients, we
identified a subset of the six metabolites corresponding to
acetate, creatinine, 3-hydroxybutyrate, methylmalonate, oxaloa-
cetate, and succinate that have the potential of differentiating
between healthy controls and NMO-SD patients.
Metabolite Pathway Analysis

The complete list of 27 metabolites (Tables S2 and S4)
differentially altered in urine samples collected from MS and
NMO-SD patients relative to healthy controls were uploaded to
the MetPA Web server. MetPA used the Homo sapiens pathway
library, the hypergeometric test for the over-representation
analysis, and the out-degree centrality for the pathway topology
analysis. MetPA estimates a metabolite’s relative importance,
provides a global overview of the metabolic changes, and assists
in identifying important pathways associated with the disease
phenotype. The synthesis and degradation of ketone bodies,
amino acid metabolism, propionate metabolism, pyruvate
metabolism, the TCA cycle, and glycolysis were identified as
high impact pathways in MS and NMO-SD patients (Figure 5
and Table S5).
Urine NMR Metabolomics Signatures That Differentiate MS
and NMO-SD Patients

The two back-scaled loadings plots and the two S-plots were
directly compared to identify metabolites that were distinctly
altered in the urine samples from eitherMS orNMO-SD patients
relative to healthy controls (Figures 2 and 4 and Figure S5). Eight
metabolites, alanine, hippurate, 2-hydroxyisovalerate, 3-hydrox-
ybutyrate, isovalerate, malonate, oxaloacetate, and trimethyl-
amine N-oxide were identified as being uniquely altered in urine

Figure 5. (a) SUS plot generated from the OPLS-DAmodels compare the MS and NMO-SD groups against healthy controls. NMR bins within the MS
specific orNMO-SD specific regions of the SUS plot are labeled with red or blue triangles, respectively. The resulting chemical shift information from the
SUS plot was assigned tometabolites using ChenomxNMR suite 7.0. Themetabolites are numbered accordingly: 1, 2-hydroxyisovalerate/isovalerate; 6,
methylmalonate; 8, lactate; 9, alanine; 10, acetate; 16, citrate; 17, creatine; 21, trimethylamineN-oxide; and 25, hippurate. (b) Overview of the pathway
topology analysis produced by MetPa (http://metpa.metabolomics.ca/MetPA). The highest ranked pathways are numbered accordingly: 1, synthesis
and degradation of ketone bodies; 2, propionate metabolism; 3, pyruvate metabolism; 4, TCA cycle; 5, alanine, aspartate, and glutamate metabolism;
and 6, glycolysis or gluconeogenesis.
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samples from MS patients relative to NMO-SD patients. Eight
other metabolites, acetate, acetone, citrate, creatine, creatinine,
lactate, methylmalonate, and succinate were identified as being
uniquely altered in urine samples from NMO-SD patients
relative to MS patients.
For further refinement of a metabolic signature unique to MS

patients, an SUS plot (Figure 5a) was generated from the MS vs
healthy and the NMO-SD vs healthy OPLS-DA models using
binned NMR data (Figures S1 and S4). The two sets of
metabolites identified from the overlaid back-scaled loading plots
were then assigned to appropriate bins in the SUS plot. In this
manner, only metabolites that clearly fell within the MS specific
or NMO-SD specific regions of the SUS plot were identified as
statistically significant and retained. This analysis reduced the
number of urine metabolites specific to MS (2-hydroxyisovaler-
ate, alanine, hippurate, isovalerate, trimethylamine N-oxide) or
to NMO-SD (acetate, creatine, lactate, methylmalonate, and
citrate) to five each.
The results of the multivariate statistical analysis was further

supported by a follow-up univariate analysis.24 A one-way
ANOVA analysis was performed for each metabolite identified
from the multivariate statistical analysis to determine if a
statistically significance difference exists between the healthy,
MS, and NMO-SD groups. Metabolites with a p-value ≤ 0.05
were selected (Table S3) and further subjected to Tukey’s
multiple comparisons of means test.22 This analysis indicated
that the set of metabolites, including creatinine (p-value = 1.5 ×
10−02), 3-hydroxybutyrate (p-value = 8.0 × 10−3), 3-hydrox-
yisovalerate (p-value = 8.4 × 10−05), and methylmalonate (p-
value = 1.1 × 10−4), discriminate between MS and NMO-SD
patients (Figure S2). An identical set of metabolites was also
obtained using the Student’s t test followed by the Benjamini−
Hochberg multiple hypothesis test (Figure S−3).23 It is
important to note that, in addition to being identified by the
univariate analysis, 3-hydroxybutyrate was also identified in both
S-plots but was absent in the SUS plot. 3-Hydroxybutyrate was
likely missing in the SUS plot due to a serendipitous cancellation
because it was located in opposite regions in the two S-plots
(Figures 2 and 4).

■ DISCUSSION
A wide range of chemicals from food, medication, environmental
contaminants, normal biological processes, and disease con-
ditions are routinely excreted into the urine to maintain chemical
homeostasis. Consequently, urinalysis has been used to diagnose
diseases and evaluate a patient’s well-being for years. More
recently, there has been a growing interest in identifying urinary
metabolite biomarkers to monitor the prognosis, existence, or
progression of various cancers, cardiovascular diseases, and
neurological diseases.25 Despite the high-rate of misdiagnosis,
little attention has been paid toward the analysis of urinary
metabolites for diagnosing MS.26 To address this oversight, we
previously demonstrated that urinary metabolites can differ-
entiate between EAE mice (prototypic disease model for MS)
from healthy and fingolimod (MS drug)-treated EAEmice.17 We
extended this initial animal study by using NMR, multivariate
statistics, one-way ANOVA, and univariate statistics to analyze
changes in urine samples collected from MS and NMO-SD
patients. Although the sample size was limited, we were still able
to observe a potentially unique metabolic signature in urine
samples collected from MS patients. Importantly, the MS
metabolic signature was likely to be distinct from the urinary
metabolites identified for NMO-SD patients. Our results are also

consistent with a recent study byMoussallieh et al.15 that showed
an increase in serum acetate levels in NMO-SD patients relative
to MS patients. However, the limited sample size requires us to
describe our statistical model and the set of potential urinary
metabolite biomarkers as only a working hypothesis. A major
revision may occur as the number of patients per group increases
significantly. Nevertheless, we are encouraged by the fact that we
were able to link all of the metabolites and metabolic pathways
identified from the urine of MS patients to known pathologic
processes associated with MS.
Glycolysis and the synthesis and degradation of ketone bodies

were identified as two potentially high-impact pathways from our
NMR metabolomics analysis of urine samples from MS patients.
Specifically, we observed significant concentration changes in the
glycolysis intermediates lactate and acetate and the ketone bodies
3-hydroxybutyrate and acetoacetate. This observation is
consistent with basic brain chemistry that is expected to be
altered by MS. The brain has a high energy need and uses 25% of
the total available glucose. Interestingly, the brain also uses
ketone bodies as an alternative energy source.27 Thus, alteration
in glycolysis and the synthesis and degradation of ketone bodies
is consistent with an alteration in energy generation. Besides
energy generation, ketone bodies are also associated with fatty
acid metabolism. This is pertinent because prior analysis of CSF
and serum samples from MS patients indicated altered energy
and fatty acid metabolism.28

The observed alterations in energy generation have led to the
speculation that MS might be associated with mitochondrial
defects.29 In fact, Witte et al. demonstrated an occurrence of
severe mitochondrial defects in MS lesions.30 Because the
mitochondria are the primary source of energy in axons, the
observed defects would be expected to alter energy generation. In
the mitochondria, ATP is produced via the TCA cycle, the
electron transport chain (respiratory chain), and oxidative
phosphorylation. From our NMR metabolomics analysis, we
identified the TCA cycle as another possible high-impact
pathway that was altered in the urine samples from MS patients.
Intermediates of the TCA cycle, such as citrate, oxaloacetate, and
succinate were altered in the urine from MS patients. Of
particular note, pyruvate and amino acid metabolism (alanine,
aspartate, and glutamate) pathways, which are directly coupled to
the TCA cycle, were also identified as potential high-impact
pathways. Defects in the amino acid metabolism pathway are
known to cause a range of neurological issues.31

We also observed an increase in creatine and a decrease in
creatinine in the urine from MS patients. The creatine/
phosphocreatine/creatine kinase system is critical for maintain-
ing energy levels in the brain and as a high-energy phosphate
shuttle from the mitochondria to the cytoplasm.32

Our NMR metabolomics analysis also identified propionate
metabolism as another likely high-impact pathway altered in the
urine of MS patients. Propionate (short-chain fatty acid) is
primarily derived from the catabolism of lipids (fatty acid
metabolism) or proteins, where its accumulation is toxic and
inhibits TCA cycle enzymes and cell growth.33 Propionate and
propionyl-CoA are detoxified by the mitochondria through the
methyl-malonyl-CoA pathway.34 Genetic flaws in the propionate
metabolism pathway cause faulty amino acid and fatty acid
metabolism that lead to various neurological problems.34 Thus,
the observed alteration in propionate metabolism appears to be
consistent with a recent view thatMSmay also be associated with
dysfunction in lipid metabolism.35
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Gutmicrobiota are known to establish a symbiotic relationship
that provides essential health benefits to the host.36 A similar
correlation between gut microbiota and MS has been previously
observed.36 In fact, Cantarel et al. described a difference in
specific operational taxonomic units of gut microbiota in MS
patients. Their finding also indicated that immunomodulatory
medications cause alterations in the gut microbiota of MS
patients.37 Herein, we observed hippurate, a mammalian
microbial cometabolite that was altered in the urine of MS
patients. Propionate (described above) is also a metabolite of the
gut microbiota. Thus, differences in urinary hippurate and
propionate levels may be a result of a change in the gut
microbiota or alterations in the relevant metabolic pathway.38

Taken together, these findings suggest a potential role of gut
microbiota in the pathogenesis and treatment of MS.

■ CONCLUSIONS
Although CNS and serum metabolites have been previously
considered as a source of MS and NMO-SD biomarkers, we have
demonstrated that the urine metabolome shows significant
promise for investigating and diagnosing MS and NMO-SD. We
observed a set of eight potential urinary metabolites (acetate,
creatinine, hippurate, 3-hydroxybutyrate, 3-hydroxyisovalerae,
malonate, oxaloacetate, and trimethylamine N-oxide) associated
with MS that may be prospective biomarkers. Similarly, we
observed a set of eight potential urinary metabolites (acetate,
creatinine, 3-hydroxybutyrate, 3-hydroxyisovalerae, methylmal-
onate, oxaloacetate, and succinate) associated with NMO-SD.
Critically, we observed a distinct set of urinary metabolites
(creatinine, 3-hydroxybutyrate, 3-hydroxyisovalerate, methyl-
malonate) that possibly differentiates MS from NMO-SD
patients. This is despite the fact that NMO-SD is also an
inflammatory immune-mediated disease of the CNS that was
once considered a variant of MS. The observation that all of the
metabolites and metabolic pathways identified from the urine of
MS patients are linked to known pathologic processes associated
with MS supports the potential reliability of our study, although
the sample size was small. Specifically, metabolite changes are
associated with alterations in energy and fatty acid metabolism,
mitochondrial activity, and the gut microbiota. Although our
results highlight the promise of urinary biomarkers as a tool to
diagnose MS and NMO-SD, the limited sample size necessitates
interpreting our results as only a proof-of-principle that requires
further validation. It is possible that an increase in the number of
patients per group may lead to a change in the observed set of
urinary metabolites that differentiates between MS patients,
NMO-SD patients, and healthy controls. Nevertheless, as
evident by a number of other recent MS and NMO-SD studies
where practical considerations limit sample size,39−43 a
conservative interpretation does not negate the inherent
scientific value of our observations. Instead, given the ease and
ready access of urine samples from MS and NMO-SD patients,
our results establish the urine metabolome as a potentially
valuable resource for investigating the pathology of MS and
NMO-SD for obtaining a rapid and reliable diagnosis and for
monitoring a patient’s response to treatment.
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