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Nuclearmagnetic resonance (NMR) spectroscopy has proven invaluable in the diverse field of chemometrics due
to its ability to deliver information-rich spectral datasets of complex mixtures for analysis by techniques such as
principal component analysis (PCA). However, NMR datasets present a unique challenge during preprocessing
due to differences in phase offsets between individual spectra, thus complicating the correction of random dilu-
tion factors that may also occur. We show that simultaneously correcting phase and dilution errors in NMR
datasets representative of metabolomics data yields improved cluster quality in PCA scores space, even with sig-
nificant initial phase errors in the data.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a ubiquitous in-
strumental method in chemistry, owing to its ability to reveal informa-
tion on the structure, dynamics and environment of molecules or
mixtures of molecules containing NMR-active nuclei. This capability and
the near universality of NMR-active half-integer spin protons in organic
and bio-organicmoleculesmakeNMR an ideal platform for chemometric
analyses of chemical and biological systems [1–4]. More often than not,
the chemometric analysis of NMR spectra involves dimensionality reduc-
tion procedures such as principal component analysis (PCA) [5] and par-
tial least squares projections to latent structures (PLS) [6] to reveal
differences between spectra in a dataset. Whereas the unsupervised
PCA algorithm will reveal differences between experimental groups
only when those differences account for the majority of the gross data
variation, PLS is capable of forcing separation between statistically indis-
tinguishable groups. Irrespective of themultivariate classificationmethod
used, greater statistical significance and increased biological relevance
may be attributed to separations between experimental groups having
greater variation between groups than within them [7].

As a consequence of the need to reduce within-group variation far
below between-group variation, chemometric NMR spectral data is
characteristically preprocessed to correct for errors in phase and base-
line [8]. Subsequent pretreatment through variable scaling and spectral
normalization prior tomultivariate analysis is then performed to correct
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for large disparities in signal intensities and random ‘dilution’ errors, re-
spectively [8,9].

1.1. Phase correction

Modern FT-NMR spectrometers effectively acquire a rotating-frame
free induction decay (FID) signal through the use of quadrature phase
detection of the incoming signal [10]. This detection method imparts
phase information to the FID by the creation of both an in-phase compo-
nent i(t) and a quadrature component q(t), phased 90° from i(t). Ideally,
the detected FIDwould arrive in-phasewith respect to the receiver, and
fine tuning of acquisition parameters can often accomplish this [11].
However, variations in receiver phase, dead time between the transmit
and receive gating circuits, anddelays arising fromanalog and digitalfil-
tering can all produce phase errors. After Fourier transformation, these
phase errors result in a mixture of desirable absorptive spectral lines
and broad dispersive lines between the I(ω) and Q(ω) frequency-
domain signals, which are reversed through a process of phase correc-
tion as follows:

A ωð Þ ¼ I ωð Þ cos φð Þ−Q ωð Þ sin φð Þ ð1Þ

D ωð Þ ¼ I ωð Þ sin φð Þ þ Q ωð Þ cos φð Þ: ð2Þ

Phase correction ideally results in a purely absorptive spectrum in
A(ω) and a purely dispersive spectrum in D(ω), and relies on the accu-
rate determination of the phase errorφ(ω), an expansion of phase error
terms as powers of ω:

φ ωð Þ ¼ φ0 þ φ1ω þ φ2ω
2 þ… ð3Þ
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Fig. 1. Comparison of PCA cluster quality for 1HNMRmetabolomics data normalized using
different algorithms. The minimum J2 value (worst cluster quality) for each model is re-
ported here, as it is a more effective indicator of overall model and cluster quality than
the mean or median. See Supplementary Figure S-10 for complete five-number summa-
ries of the J2 values obtained from normalization of this example dataset.
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Realistically, phase errors higher than first-order are not observed,
and phase correction rests on the determination of a zero-order phase
error φ0 and a first-order phase error φ1. This determination may be
performed manually, through software-interactive adjustment of
zero- and first-order corrections by the spectroscopist. However, manu-
al phase correction is generally too time-consuming in the case of che-
mometric datasets, in which there are tens or hundreds of spectra to
correct. In that case, the task of phase correction is handed to any num-
ber of automated routines that correct each spectrum individually.
Spectra may be automatically phase-corrected by maximization of the
most negative absorptive data point [12], analysis of the absorption-
versus-dispersion [13] or symmetry [14] characteristics of spectral
lines, baseline optimization [15] or entropy minimization [16], to
name a few. It is worthy of mention that, when the ultimate fate of
the spectra is multivariate analysis, the optimization of each spectrum
in isolation is wasteful of information that is available from treating
the dataset as an ensemble. In fact, phase differences between spectra
non-linearly affect both line shapes and baseline, possibly emphasizing
spectral details that imply no experimentally relevant conclusions.

1.2. Normalization

Despite the quantitative nature of 1H NMR experiments, chemomet-
ric samples exhibit variable total analyte concentrations due to variations
in sample preparation, instrument stability, or even the samples them-
selves. These dilution errors are especially common in metabolomic
analyses of biofluids such as urine, where total concentrations may
vary several orders of magnitude. To ensure spectral intensities in a
dataset are directly comparable and related to concentrations, normali-
zation is applied to the spectra. The most common normalization
method used in chemometrics is unit-integral or constant-sum (CS) nor-
malization, where each spectrum is scaled such that its total integral is
unity [9]. CS normalization doesmore harm than good, however, as it in-
troduces false correlations between spectral peaks and poorly tolerates
large disparities in peak intensities.

In an attempt to overcome the drawbacks of CS normalization,
Dieterle et al. introduced probabilistic quotient (PQ) normalization, in
which the median quotient between all corresponding spectral data
points is used as an estimate of the true dilution factor [17]. Shortly
after, a method of normalization based on histogram matching (HM)
was proposed as an alternative to PQ normalization, taking cues from
image processing algorithms [18]. Based on their ability to more accu-
rately recover true dilution factors, both PQ and HM normalization
were reported to outperform CS normalization on real and simulated
1H NMR metabolomics datasets. Quantitative evidence of improved
PCA or PLS cluster quality was not provided using these new normaliza-
tion methods. Finally, while more commonly applied to infrared spec-
troscopic data, standard normal variate (SNV) normalization and its
mathematical cousin,multiplicative scatter correction (MSC), are candi-
date methods for 1H NMR spectra [19].

Normalization applied directly to NMR data is sub-optimal, as even
small phase differences between spectra can frustrate the estimation
of dilution factors. Possibly worse, blind normalization of poorly phased
spectra can accentuate experimentally irrelevant spectral features dur-
ing dimensionality reduction, leading to erroneous conclusions. These
difficulties motivated our development of phase-scatter correction
(PSC) as a means of simultaneously correcting these coupled phase
and dilution errors.

2. Methods

2.1. NMR data processing

Previously collected one-dimensional (1D) 1H NMR spectral data
from published work [20] was leveraged as a typical metabolomics
dataset for performance analysis of PSC versus other normalization
methods. FIDs were extracted from Bruker-format files using the
NMRPipe software package [21] and loaded into the GNU Octave
environment [22] for processing. Time-domain signals were zero-filled
to 32 k real points and Fourier transformed, resulting in a complex
data matrix of 177 spectra divided amongst 16 classes (N = 177,
K = 32,768, M = 16). Spectra were both automatically phase corrected
by simplex entropy minimization [16] and manually phase corrected by
applying a constant phase correction value to all spectra. Both automat-
ically and manually phase corrected datasets were then normalized
using the CS, PQ, HM, SNV, MSC and PSC methods. Each normalized
dataset was binned using a uniform 0.04 ppm bin width, scaled per-
variable to unit variance, and subjected to PCA. The J2 statistic [23] was
calculated for each class to provide a measure of cluster quality for the
scores from each normalization method, as follows:

J2;k ¼
Cj j
Ckj j ð4Þ

where Ck is the covariance matrix of the scores in class k, C is the covari-
ancematrix of all scores, and the vertical bars represent the determinant.
Thus, as a cluster shrinks relative to the entirety of the scores-space data,
its J2 statistic will increase. While J2 provides a measure of individual
cluster tightness, it does not capture the degree of cluster overlap within
a dataset. Fig. 1 shows the results of the J2 calculation for normalization
methods applied to real 1H NMR metabolomics data.

To quantify differences between extracted PCA models of automati-
cally andmanually phase corrected datasets, the angle between the first
principal component loadings of each pair of models (θ) was calculated
as follows:

θ ¼ cos−1 pauto:pmanð Þ ð5Þ

where pauto and pman are the first-component loadings resulting from a
given normalization method's data after automatic and manual phase
correction, respectively. The loading angle θ for a given normalization
method is a reflection on that method's ability to properly normalize
data and produce consistent PCA models from two different initial
phase error conditions.

2.2. Simulated spectral datasets

The 1H NMR spectra of 100 mM samples of 32metabolites (Table 1)
at pH 7.4 were downloaded from the Biological Magnetic Resonance



Table 1
Metabolite spectra used in Monte Carlo simulations.

Aminobutyrate Adenosine Alanine Arginine
Asparagine Aspartate Choline Citrulline
Ethanolamine Fructose Galactose Glucose
Glutamate Glutamine Glycine Histidine
Isoleucine Lactate Leucine Lysine
Malate Maltose Myoinositol Ornithine
Phenylalanine Proline Putrescine Serine
Succinate Sucrose Threonine Valine
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Bank (BMRB, [24]) and fit to mixtures of complex Lorentzian functions
using ACD/1D NMR Processor (Advanced Chemistry Development).
Peak amplitudes (A), shifts (ω0), and widths (λ) were loaded into Oc-
tave to generate simulated spectra having 64 k real data points and a
spectral width of 11 ppm, centered at 4.7 ppm, based on the following
model function:

s ω j

� �
¼

XN

k¼1

Akλk

λk þ i ω j−ω0;k

� � ð6Þ

where s(ωj) is the j-th data point of the spectrum, N equals the number
of peaks, and i equals the imaginary unit. Spectra were referenced and
normalized to the DSS peak, and peaks corresponding to HOD and DSS
were subsequently removed, resulting in a basis set of 32 perfectly-
phased, noise-freemetabolite spectra. Finally, the basismetabolite spec-
tra were stored row-wise in a matrix S for later use in Monte Carlo
calculations.

2.3. Monte Carlo experiments

Using the basis metabolite spectra, a dataset of 48 simulated meta-
bolomics spectra (X) was generated according to the following equa-
tion:

X ¼ A CSþ Rð Þ þ E ð7Þ

whereA is a diagonalmatrix of dilution factorsαi, C is amatrix ofmetab-
olite concentrations, S is the previously createdmetabolite basis set, R is
a matrix of identical DSS reference peaks, and E is a matrix of Gaussian
white noise. Dilution factors were generated from a log-normal distri-
bution having zero mean and σ = 0.25. Concentrations in C were gen-
erated from normal distributions with parameters chosen to mimic
those in Torgrip et al. (Table 2) [18]. The resultant data inX is a simulat-
ed set of 48metabolite extracts, spikedwith 100 μMDSS, where six dis-
tinct classes arise from differences in the concentrations of alanine,
asparagine, glutamine,malate, proline, sucrose and valine. All otherme-
tabolites were assigned concentrations from a normal distribution hav-
ing μ = 5 μM and σ = 0.5 μM.

Monte Carlo simulations were run to assess the performance of all
discussed normalization methods over various amounts of phase error
added to X. Forty-six phase error points were calculated, in which the
standard deviation of φ0 was linearly increased from 0° to 5°. The stan-
dard deviation ofφ1 at each pointwas equal to one tenth that ofφ0. Both
φ0 and φ1 were assigned zero mean. For each phase error point, 100
Table 2
Metabolite concentrations used in Monte Carlo simulations.

Metabolite CA (μM) CB (μM) CC (μM)

Alanine 9.2 ± 1.4 19.6 ± 1.6 16.9 ± 1
Asparagine 6.8 ± 0.86 11.7 ± 1.8 19.0 ± 1
Glutamate 13.3 ± 1.7 9.2 ± 1.5 18.8 ± 1
Malate 14.2 ± 1.2 11.9 ± 1.4 22.0 ± 5
Proline 11.4 ± 1.5 18.4 ± 3.1 14.7 ± 2
Sucrose 7.1 ± 0.90 17.2 ± 2.1 19.3 ± 2
Valine 9.0 ± 0.85 26.3 ± 2.3 13.4 ± 1
Monte Carlo iterationswere performedwith different sets of randomdi-
lution factors. Spectra in the de-phased X matrix were automatically
phase corrected using simplex entropy minimization and normalized
each time using CS, PQ, HM, SNV, MSC and PSCmethods. Normalization
to unit DSS integral was also performed for reference. An identical set of
normalization calculations was performed on the unphased data. Esti-
mated dilution factors were compared to the true value to produce a
root-mean-square dilution error, RMSE(α), for each method. Fig. 2
shows the RMSE(α) result of Monte Carlo simulation at 0.2° phase
error. To assess the normalization effects onmultivariatemodel quality,
spectra from each method were uniformly binned with 0.04 ppm bin
widths, each bin scaled to unit variance, and subjected to PCA. Values
of J2 for each of the six classes were then calculated, and the median of
the values was reported for eachMonte Carlo iteration. The θ values be-
tween automatically phased and unphased PCA model loadings were
also calculated at each iteration to assess each normalization method's
ability to produce consistent models in the presence of phase errors.
Fig. 3 summarizes the results of Monte Carlo simulation over all phase
errors based on RMSE(α), J2 and θ.

3. Calculation

Phase-scatter correction (PSC) is effectively an extension ofmultipli-
cative scatter correction (MSC) to handle phase errors during normali-
zation. In MSC, each spectrum is scaled around its mean intensity and
shifted tomatch a reference spectrum, typically themean of the dataset
[19]. Optimal values of scale (b) are determined by linearly regressing
the mean-centered reference onto the mean-centered data matrix:

X−X
� �Tb ¼ r−rð ÞT ð8Þ

where spectra are arranged as rows inX and r. The solution of the above
equation for b has a closed-form expression, and thus MSC is rather
computationally efficient. PSC additionally corrects zero- and first-
order phase errors during normalization, requiring a nonlinear optimi-
zation of the form:

b̂; φ̂0; φ̂1

n o
¼ argmin

b;φ0 ;φ1

XN

j¼1

b � s ω j

� �
ei φ0þφ1ω jð Þ−r ω j

� ����
���2 ð9Þ

where s(ωj) is the j-th point of a given mean-centered row in X and
r(ωj) is the corresponding point in a suitably chosenmean-centered ref-
erence spectrum. Minimization is carried out for every spectrum in the
dataset using Levenberg–Marquardt nonlinear least squares [25] as im-
plemented by the leasqr function in Octave, a function similar to
MATLAB's nlinfit. The corrected spectrum is then returned fromminimi-
zation as follows:

s� ω j

� �
¼ b̂ � s ω j

� �
ei φ̂0þφ̂1ω jð Þ þ r: ð10Þ

Phase-scatter correction of 50 spectra having 32 k real points each
requires approximately 30 s (Supplementary Fig. S-2) on a single-core
3.2 GHz Intel workstation running GNU Octave 3.6.
CD (μM) CE (μM) CF (μM)

.2 6.5 ± 0.66 26.2 ± 3.6 13.5 ± 1.1

.9 14.7 ± 1.2 24.8 ± 2.6 17.4 ± 1.0

.9 16.9 ± 2.1 25.0 ± 3.5 6.9 ± 1.0

.1 6.7 ± 0.68 9.4 ± 0.72 18.0 ± 2.4

.4 6.9 ± 0.62 9.8 ± 1.5 23.7 ± 2.9

.0 13.2 ± 1.9 9.3 ± 0.56 23.3 ± 2.7

.2 20.4 ± 1.7 6.7 ± 0.90 17.0 ± 1.5



Fig. 2. Results of 100Monte Carlo iterations at 0.2° zero-order phase error, indicating the ability of all compared normalization methods to recover the true dilution factor of a nearly per-
fectly phased dataset. Red points reflect the dilution factors calculated by integrating the DSS peak and blue points reflect the dilution factor estimates from normalization. Upper panels
show the dilution factors recovered from automatically phased data after normalization, and lower panels show dilution factors recovered from unphased data after normalization.
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4. Results

On the real metabolomics spectra, PSC normalization resulted in the
highest quality clusters (Fig. 4) according to the lower bound of the J2
statistic shown in Fig. 1. Given the fact that the spectra were each auto-
matically phase corrected before any normalization was applied, this
observed increase in J2must be due to the correction of subtle phase dif-
ferences between spectra not detectable by correcting each spectrum in-
dividually. It is important to note that, while PQ andHMproduce higher
median J2 values, this is an artifact of large distortions of their respective
PCA loadings, and not always reflective of higher quality clusters (see
Supplementary Figs. S-1, S-2 and S-3). Because J2 is a per-cluster statis-
tic, it is only an ideal measure of overall scores-space model quality
when all clusters are nearly identically distributed. Models containing
highly distorted components may contain several high-quality clusters
and a few extremely low-quality clusters, resulting in a high mean
or median J2 value. For that reason, the lower bound of J2 for each
method – effectively the worst cluster quality – was chosen as a better
Fig. 3. Results of the Monte Carlo simulation over all phase error points. (a) As phase error incr
PSC competewithMSC, but suffer in comparisonwithHM. (b)However, J2 values indicate that P
phase error. (c) Finally, values of θ calculated from PCA loadings indicate that PSCmaintains the
refers to zero-order error; it should be noted that each point also contains first-order phase er
figures calculated from normalization of unphased data, and Figures S-5, S-7 and S-9 for versio
indicator of overallmodel quality than themedian. In fact, PSC produced
the most consistent model loadings between automatically and manu-
ally phase corrected data, with a θ value of 14.5°. This can be compared
to θ values of 89.6° and 20.2° for PQ and HM, respectively.

Moreover, Monte Carlo analyses of PSC versus contemporary nor-
malization methods show that PSC offers a unique advantage during
multivariate analysis. Results of Monte Carlo normalization after auto-
matic phase correction are summarized in Fig. 3, and scatter plots of re-
covered dilution factors are shown in Fig. 2. While PSC fails to recover
true dilution factors as accurately as DSS, CS or HM normalization, it
does remain competitive with MSC at all phase errors (Fig. 3(a)). PSC
normalization yields tighter clusters than all othermethods, as is appar-
ent from Fig. 3(b) and further supported by Supplementary Fig. S-7. Fur-
thermore, PSC results in dramatically lower values of θ than all other
methods, indicating that residual phase errors left uncorrected by auto-
matic phase correction are significant enough to distort principal com-
ponent loadings when normalized by any method other than PSC
(Fig. 3(c)).
eases, dilution factor estimates from all methods remain effectively stable. Estimates from
SC outperforms all other normalizationmethods at producing tight clusters at any realistic
highestmodel consistency in the face of imperfectly phased data. Phase error on the x-axis
ror as discussed in Methods. See Supplementary Figures S-4 and S-6 for versions of these
ns with confidence regions applied.



Fig. 4. PCA scores plots of a typicalmetabolomics dataset after automatic phasing followingwith either PQ or PSC normalization. In both plots, ellipses denote different classes of antibiotic
treatment ofMycobacterium smegmatis and differing symbols within each ellipse represent differing antibiotic subclasses. (a) PQ normalization amplifies residual phase differences left
behind after automatic phasing. (b) PSC normalization produces a more valid PCA model by correcting residual phase differences.
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5. Discussion

As evident from visual inspection of both the real metabolomics
dataset and the Monte Carlo simulated datasets, correction of minute
phase differences between spectra yields a substantial improvement
in cluster quality in multivariate analysis. In general, phase differences
contribute significantly to spectral lineshape differences in 1H NMR
data. This effect is especially pronounced in the case of PSC correction
of spectra containing significant and consistent broad background
signals, where normalization alone cannot comparably standardize
baselines.

One particularly striking result of theMonte Carlo simulations is the
difference between automatically phase corrected and unphased dilu-
tion factor estimates (Fig. 2). In fact, examination of dilution factors
estimated by DSS integration clearly shows that automatic phase cor-
rection introduces variation into the dataset throughminute differences
in φ0 and φ1 between spectra. This artificial variation is then amplified
through normalization, as is especially apparent in the case of PQ
normalization.

In their report onHMnormalization, Torgrip et al. noticed the poten-
tial unsuitability of explained sum of squares (R2) for assessing model
quality differences due to normalization methods [18]. As a percentage
measure, explained sum of squares is not suitable for comparing the
qualities of PCA models, or any preprocessing done prior to building
the models [26]. Therefore, the J2 statistic was chosen as an alternative
means of comparing cluster quality during Monte Carlo simulation. Ef-
fectively, J2measures the ratio of the area of a cluster in scores space rel-
ative to the total scores-space area, regardless of how much variation
the model captures. Even still, because J2 is a per-cluster statistic, it is
not an ideal measure of overall scores-space model quality, especially
for models containing highly distorted components. Mean or median
J2 values of a model may be high in this case, despite the fact that the
model scores are useless from the perspective of class discrimination.
Thus, theminimum J2was chosen as amore effective indicator of overall
cluster quality.

It is important to note that phase-scatter correction is generally ap-
plicable when the Discrete Fourier Transform (DFT) is used to yield
phase-sensitive spectra from time-domain data. While some newer
parametric methods of NMR time-frequency transformation render
phase correction unnecessary [11,27], they complicate chemometric
analyses in other ways and do not detract from the utility of PSC in
DFT-processed datasets. Lastly, uniform binning was utilized during
Monte Carlo simulation immediately prior to PCA modeling merely to
accelerate the tens of thousands of iterations performed. In fact, binning
is by no means a requisite operation of the algorithm and PSC is de-
signed to be applied directly to full-resolution NMR spectra.

Finally, the use of PSC requires an initially phased dataset before
performing normalization and further analysis. In other words, PSC
does not replace general phase correction routines for producing
pure-absorptive NMR spectra: it can only correct phase differences
between spectra. However, the required initial phase correction may
be performed by any of the aforementioned automatic phase correction
algorithms,making PSC an attractive normalizationmethodwhen high-
ly automated spectral processing is required.

6. Conclusions

Phase-scatter correction is a novel algorithm for simultaneously
correcting zero- and first-order phase errors and random dilution fac-
tors in 1HNMR chemometric data.While PSC only performs comparably
to MSC in dilution factor estimation, it more consistently yields high-
quality clusters and reliable models than all other methods when
given imperfectly phased data. PSC can be fully automated through
prior automatic phase correction of the dataset, has no tunable param-
eters, andmakes no assumptions regarding line shape, baselineflatness,
or intensity distributions in the data. These qualities lend PSC to use in
chemometrics as a new method of normalizing NMR data entering
into multivariate analyses such as PCA or PLS. An implementation of
the PSC algorithm is available in open-source GNU Octave code as part
of a toolbox for processing and analyzing NMR chemometric data,
downloadable at http://bionmr.unl.edu/mvapack.php.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2013.11.005.
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