
MVAPACK
An NMR Chemometrics Toolbox for GNU Octave

Bradley Worley

1

This manual is for the MVAPACK toolbox for GNU Octave.

Copyright c© 2014, 2015 University of Nebraska Board of Regents.

MATLAB R© is a registered trademark of The MathWorks, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “The MVAPACK Manual”, and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

(a) The manual’s Back-Cover Text is: “You have the freedom to copy and
modify this manual.”

i

Table of Contents

1 Overview of MVAPACK . 2
1.1 What is MVAPACK? . 2
1.2 Why GNU Octave? . 2
1.3 Why open source? . 3
1.4 What am I waiting for? . 3

2 General concepts . 4
2.1 Preliminary . 4

2.1.1 Required Octave Packages . 4
2.1.1.1 Installing Octave . 4
2.1.1.2 Installing Packages . 4

2.1.2 Downloading MVAPACK . 5
2.1.3 Installing MVAPACK . 5
2.1.4 Using MVAPACK . 5

2.2 Definitions . 5
2.2.1 Observations . 5
2.2.2 Variables . 5
2.2.3 Data vectors . 6
2.2.4 Data matrices . 6
2.2.5 Multiblock data matrices . 6
2.2.6 Response matrices . 6
2.2.7 Scores and loadings . 6
2.2.8 Internal cross-validation . 7
2.2.9 Permutation testing . 7
2.2.10 CV-ANOVA testing . 8
2.2.11 More information . 8

2.3 Organization . 8
2.3.1 Data vector organization . 8
2.3.2 Data matrix organization . 9
2.3.3 Multiblock organization . 10
2.3.4 Structure organization . 10

3 MVAPACK patterns . 11
3.1 Loading NMR data . 11

3.1.1 Loading Bruker DMX data without zero-filling 11
3.1.2 Loading Bruker DMX data with zero-filling 11
3.1.3 Loading more modern Bruker or Agilent data 11
3.1.4 Loading classes and labels . 12

3.2 Processing in the time domain . 12
3.2.1 General apodization . 12
3.2.2 General zero-filling . 13
3.2.3 General Fourier transformation . 13

ii

3.3 Processing in the frequency domain . 13
3.3.1 Removal of undesirable observations . 13
3.3.2 Automatic phasing and normalization . 13
3.3.3 Extraction of real spectral data . 13
3.3.4 Chemical shift referencing . 14
3.3.5 Spectral alignment . 14
3.3.6 Removal of undesirable variables . 14
3.3.7 Adaptive intelligent binning . 14

3.4 Handling multivariate models . 14
3.4.1 Building unsupervised models . 14
3.4.2 Building supervised models . 15
3.4.3 Validating supervised models . 15
3.4.4 Building models with different scaling . 15
3.4.5 Building multiblock structures . 15
3.4.6 Handling multiblock models . 15

3.5 Plotting model results . 16
3.5.1 Model quality plots . 16
3.5.2 Scores scatter plots . 16
3.5.3 Loadings scatter plots . 16
3.5.4 Loadings line plots . 17
3.5.5 S-plots . 17

3.6 Plotting data matrices . 17
3.6.1 Plotting data matrices overlaid . 17
3.6.2 Plotting data matrices stacked . 18
3.6.3 Plotting to aid phase correction . 18
3.6.4 Plotting multiblock data matrices . 18

3.7 Saving MVAPACK data . 18
3.7.1 Saving session data for later . 18
3.7.2 Loading saved session data . 18
3.7.3 Saving data matrices to text . 18
3.7.4 Loading data matrices from text . 19
3.7.5 Saving plots to postscript files . 19

4 NMR file loading . 20
4.1 Loading Bruker or Agilent FID data . 20
4.2 Bruker-format data . 21

5 Data pre-processing . 22
5.1 NUS reconstruction . 22
5.2 Apodization . 22
5.3 Zero-filling . 24
5.4 Fourier transformation . 24
5.5 Phasing . 24

5.5.1 Simple phasing . 25
5.5.2 Advanced phasing . 25

5.6 Referencing . 26
5.7 Regions of Interest . 26

5.7.1 Generating regions . 26

iii

5.7.2 Visualizing regions . 27
5.7.3 Removing regions . 27
5.7.4 Binning by regions . 27
5.7.5 Vectorizing regions . 27

5.8 Integration . 27
5.9 Alignment . 28
5.10 Binning . 28

6 Data pre-treatment . 30
6.1 Removing data . 30

6.1.1 Removing observations . 30
6.1.2 Removing variables . 30

6.2 Normalization . 31
6.2.1 CS normalization . 31
6.2.2 PQ normalization . 31
6.2.3 HM normalization . 31
6.2.4 SNV normalization . 31
6.2.5 MSC normalization . 31
6.2.6 PSC normalization . 32
6.2.7 ROI normalization . 32

6.3 Scaling . 32
6.3.1 No scaling . 33
6.3.2 Unit variance scaling . 33
6.3.3 Pareto scaling . 33
6.3.4 Range scaling . 34
6.3.5 Level scaling . 34
6.3.6 VAST scaling . 34

6.4 Denoising . 35
6.4.1 Direct orthogonal signal correction . 35
6.4.2 Per-class treatment of data . 35

7 Multivariate modeling . 36
7.1 Model training . 36

7.1.1 PCA . 36
7.1.2 PLS . 37
7.1.3 OPLS . 38
7.1.4 LDA . 39
7.1.5 MB-PCA . 40
7.1.6 MB-PLS . 40
7.1.7 MB-OPLS . 41

7.2 Model prediction . 43
7.3 Model visualization . 43

7.3.1 Plotting . 43
7.3.2 Coloring . 45

7.4 Model validation . 45
7.5 Model manipulation . 46

7.5.1 Adding data . 47
7.5.2 Extracting data . 47

iv

7.6 Classes and labels . 48
7.7 Separations . 48

Appendix A Function index . 50
A.1 A . 50
A.2 B . 51
A.3 C . 53
A.4 D . 56
A.5 E . 57
A.6 F . 58
A.7 G . 58
A.8 H . 59
A.9 I . 59
A.10 J . 59
A.11 L . 60
A.12 M . 61
A.13 N . 62
A.14 O . 64
A.15 P . 65
A.16 R . 67
A.17 S . 71
A.18 T . 75
A.19 U . 75
A.20 V . 75
A.21 W . 75
A.22 Z . 76

Appendix B Example usage . 77

Chapter 1: Overview of MVAPACK 2

1 Overview of MVAPACK

This manual is written to be a comprehensive set of documentation that covers all important
and commonly used functions in the Multivariate Analysis Package, or MVAPACK.

Chapter 1 [Overview], page 2 introduces MVAPACK and describes what it is written
for, as well as quickly provides rationale for why certain design decisions were made during
the creation of MVAPACK.

Chapter 2 [General concepts], page 4 introduces the most important concepts the user
needs to be aware of while using MVAPACK, including how data is organized into structures,
what different forms of data are called, etc.

Chapter 3 [MVAPACK patterns], page 11 presents the most commonly used functions
in MVAPACK as programming patterns (code examples). The examples exhibit a recom-
mended style for using MVAPACK that will greatly facilitate documentation and repro-
ducibility of processing protocols.

Chapter 4 [NMR file loading], page 20 documents the functions used to load NMR data
into the GNU Octave programming environment for further processing.

Chapter 5 [Data pre-processing], page 22 documents all functions that pertain to NMR
data processing and manipulation. These functions are distinct from the functions in
Chapter 6 [Data pre-treatment], page 30, which are mostly instrumentation-agnostic and
serve a common goal of preparing data matrices for multivariate analysis.

Chapter 7 [Multivariate modeling], page 36 documents the functions used to build, vi-
sualize, validate and manipulate multivariate models, namely PCA, PLS, OPLS and LDA
models.

Appendix A [Function index], page 50 lists all functions implemented in MVAPACK for
reference purposes.

Appendix B [Example usage], page 77 contains a complete “FIDs-to-models” example
MVAPACK script. The script is written in accordance with the recommended MVAPACK
programming style shown in Chapter 3 [MVAPACK patterns], page 11.

1.1 What is MVAPACK?

MVAPACK is a free and open source package for GNU Octave that implements a powerful
and flexible set of functions for 1D and 2D NMR chemometrics.

Most other chemometrics toolchains require multiple file format conversions, hopping
between (possibly expensive) interactive software packages, and manual data manipulation
in improper environments (e.g. Microsoft Excel). MVAPACK allows the data analyst to pull
raw data files from the spectrometer all the way to validated and visualizable multivariate
models, all within the GNU Octave programming environment.

1.2 Why GNU Octave?

GNU Octave is one of many domain-specific programming languages available for numerical
computation. However, it boasts three main advantages that help it to stand apart in the
context of NMR chemometrics and metabolomics.

• First, Octave is released under the GNU General Public License, an open source license.

Chapter 1: Overview of MVAPACK 3

• Second, Octave code is almost completely portable with MATLAB R© code, giving it
an advantage over other languages that share no syntactic commonalities with such a
widely used and supported language.

• Finally, the Octave interpreter can execute natively on GNU/Linux, where many other
NMR processing toolkits are also installed (e.g. NMRPipe, RNMRTK).

1.3 Why open source?

Providing MVAPACK to the community under an open source license was an important
design decision early on. The GNU General Public License (GPL) protects the user’s right
to modify any part of the released software, so long as proper attribution and availability
conditions are met. A package like MVAPACK should be completely available and open
to the NMR chemometrics community for use, tinkering, extension, and so on. Releasing
under the GPL ensures that this is so.

We want users who extend MVAPACK with new functions or amend the MVAPACK
source code to feel free to send their contributions in as a patch. That way, additions and
changes from all over the community can be released as part of the official MVAPACK
package, available for all to use.

1.4 What am I waiting for?

We don’t know! Get out there, start using MVAPACK and send us your new algorithms
for inclusion into the next version release.

If you do have a new function, please provide a way for us to acknowledge your contri-
bution in the function header (see any of the *.m files in MVAPACK for an example of how
to do this). It’s especially handy if you can also include a citation to the work that the code
is based on. Also, remember that the code has to be released under the GNU GPL.

We hope you enjoy MVAPACK and find it useful.

Chapter 2: General concepts 4

2 General concepts

The functions in MVAPACK follow a set of conventions for data structures that are im-
portant to be aware of during data handling. This chapter introduces and explains those
conventions in detail.

2.1 Preliminary

This section describes how to download and install MVAPACK for the first time.

MVAPACK has been tested and verified to work properly on Debian 6 (“Squeeze”),
Debian 7 (“Wheezy”), Gentoo 2010, and Mac OS X. GNU Octave version 3.6.0 or later is
required to install MVAPACK.

NOTE: The [loadnmr], page 20 function in MVAPACK requires NMRPipe to be installed,
so make sure you have NMRPipe installed and configured before installing MVAPACK.

2.1.1 Required Octave Packages

2.1.1.1 Installing Octave

Installing GNU Octave is truthfully outside the scope of this documentation. Every system
has a different means of installing Octave, but none makes it too terribly difficult. The best
place to start reading about how to install Octave is the Octave download page.

2.1.1.2 Installing Packages

However, once Octave is installed, there are packages you must install before all MVAPACK
functions will work properly. It is recommended that these packages are installed by the
root user, so every user on the machine can use them. Open a terminal and su into the
root account, then install the following packages: image, optim, signal, and io.

For example:

$ su -

octave

octave:1> pkg install -auto -forge image

octave:2> pkg install -auto -forge optim

octave:3> pkg install -auto -forge signal

octave:4> pkg install -auto -forge io

octave:4> pkg install -auto -forge econometrics

octave:5> exit

exit

The above example shows how to install Octave packages directly from octave-forge, but
that’s only one way to do it. Many distributions (Debian, as a concrete example) provide
stable versions of Octave packages inside their package repositories. So, in the case of a
Debian system, the following commands are recommended instead of the above:

$ sudo apt-get install octave-image octave-optim octave-signal octave-io octave-econometrics

See the Octave manual for more detailed instructions on installing packages.

https://www.gnu.org/software/octave/download.html

Chapter 2: General concepts 5

2.1.2 Downloading MVAPACK

The latest version of MVAPACK is available (along with the latest version of this manual)
at bionmr.unl.edu. It is available as a tar.gz file that may be installed via the Octave
package management system.

Save the tar.gz file to a location you can easily navigate to from a terminal, /tmp for
example.

2.1.3 Installing MVAPACK

It is recommended that MVAPACK is installed by the root user, so every user on the
machine can use the package. Open a terminal and su into the root account, then move to
the directory in which the tar.gz file was saved.

Once in the proper directory, start an Octave interactive session and install the MVA-
PACK package.

As an example:

$ su -

cd /tmp

octave

octave:1> pkg install -auto mvapack-YYYYMMDD.tar.gz

octave:2> exit

exit

For more information, see the Octave manual for more detailed instructions on installing
packages.

2.1.4 Using MVAPACK

Once MVAPACK is installed, any Octave session opened will automatically load in the
MVAPACK functions on startup. So using MVAPACK is as easy as running Octave, from
any directory:

$ octave

octave:1> ... MVAPACK is ready to use! ...

2.2 Definitions

Certain terms in multivariate analysis are utilized in this manual, as shown below.

2.2.1 Observations

Observations are defined as individual measurements in either a univariate or multivariate
space. Observations in MVAPACK are most typically 1D NMR spectra or binned spectra.

Operations that manipulate the magnitudes of observations are most often referred to
as Section 6.2 [Normalization], page 31 operations.

2.2.2 Variables

Variables are defined as individual components of a measurement that may be taken. In
MVAPACK, variables are typically either single data points in full-resolution 1D NMR data
or bins in binned data.

http://bionmr.unl.edu/mvapack.php

Chapter 2: General concepts 6

Operations that manipulate the magnitudes of variables are most often referred to as
Section 6.3 [Scaling], page 32 operations.

2.2.3 Data vectors

Data vectors in MVAPACK are column vectors and either store an abscissa (t, ppm, idx,
etc.) or a single observation. Data vectors may be real (as is the case of abscissas) or
complex.

For example, a single (uniformly sampled) free induction decay in MVAPACK is fully
represented by two data vectors: the abscissa t and the observation f.

2.2.4 Data matrices

Data matrices in MVAPACK store multiple observations as stacked row vectors and are
typically paired with an abscissa vector. Data matrices may be real (real spectra or bins)
or complex (free induction decays or complex spectra).

For example, a set of free induction decays in MVAPACK are represented by the abscissa
data vector t and the data matrix F.

2.2.5 Multiblock data matrices

Multiblock data in MVAPACK is a collection of multiple data matrices, which may have
different numbers of variables but must have the same number of observations. A common
example of multiblock data is when spectral data from two different instrumental sources
(e.g. NMR and MS) need to be modeled jointly. The [mbpca], page 40, [mbpls], page 40
and [mbopls], page 41 algorithms are all designed to handle multiblock data matrices.

2.2.6 Response matrices

Response matrices are a special type of data matrix that hold ‘outputs’, and are represented
by the symbol Y . Response matrices fall into two categories: continuous values and class
labels. Response matrices composed of continuous values (e.g. activities, absorbances, or
other measureables) are used in the context of regression (i.e. PLS-R, OPLS-R, etc.). Class
matrices (in MVAPACK) are composed only of ones and zeros, where a one in row i and
column m indicates that the i-th observation in X belongs to the m-th class. For more
information on using class matrices, see [classes], page 48 and [loadlabels], page 48.

2.2.7 Scores and loadings

For every component of a PCA, PLS or OPLS model built by MVAPACK, at least one
‘score’ vector and one ‘loading’ vector are produced. Conventionally, score vectors are
column vectors designated by ta and loading vectors are column vectors designated by pa,
where a is the component to which the scores and loadings belong. Scores and loadings
come in pairs and their outer product results in a rank-one matrix that holds fitted data
of a single component. The sum of all score-loading outer products results in a low-rank
approximation of the input data.

As an example, a three-component (A = 3) PCA model may be written as follows:

X = TP ′ + E = [t1 t2 t3][p1 p2 p3]
′ + E = t1p

′
1 + t2p

′
2 + t3p

′
3 + E

If the input matrix X has N observations and K variables, each score vector will contain
N elements and each loading vector will contain K. The residuals matrix E holds data in
X not fitted by the model TP ′.

Chapter 2: General concepts 7

The data contained in scores and loadings will differ based on the objective of the algo-
rithm. Regardless, scores are considered low-dimensionality representations of observations
and loadings are considered low-dimensionality representations of variables. Thus, scatter
plots of scores will show how observations are related based on data trends, and scatter
plots of loadings will show how/which variables contribute to those trends.

2.2.8 Internal cross-validation

All models in MVAPACK undergo ‘leave n out’ internal cross validation while they are
being calculated. This procedure randomly divides the input matrices into a training set
and a validation set. A cross-validation model is built to match the current actual model,
and the degree of fit and quality of prediction (of the training set) are both evaluated to
yield the R2 and Q2 statistics, respectively.

The R2 statistic ranges from 0 to 1 and quantifies the fraction of variation is explained
by the model. High R2 values indicate that the model captures a large amount of variation
present in the input data.

The R2 statistic is calculated (for X, in this example) as follows:

R2
X =

∑N
i=1

∑K
k=1(TP

′)2ik∑N
i=1

∑K
k=1 x

2
ik

In short, R2 is the ratio of the summed row sums of squares of TP ′ and X.

The Q2 statistic ranges from −∞ to 1 and quantifies the capability of a model to predict
it’s own data. For PCA models, Q2 indicates how well the model predicts X. For PLS and
OPLS models, Q2 indicates how well the model predicts Y .

The Q2 statistic is calculated as follows:

Q2 = 1−
∑N

i=1

∑M
m=1 (Y − YCV)

2

im∑N
i=1

∑M
m=1 Y

2
im

In short, Q2 is the ratio of the summed row sums of squares of the cross-validation predicted
Y -residual (Y − YCV) and Y .

The number of components a given model will have for any input dataset is largely
dependent on the above cross-validation statistics above. All methods in MVAPACK require
per-component R2 statistics greater than 0.01 and cumulative per-component Q2 statistics
that are strictly increasing. (i.e. no individual component may have a negative Q2). Aside
from that, the number of model components is limited to half the observation count or half
the variable count, whichever is less.

See [rq], page 45, [rqdiff], page 46 and [rqplot], page 45 for more information on internal
cross-validation statistics in MVAPACK.

2.2.9 Permutation testing

While internal cross-validation metrics are a good first insight into model quality, supervised
models from PLS or OPLS require more rigorous validation before they can be considered
useful. Response permutation testing, or simply permutation testing, is one such validation
technique that provides evidence of a model’s reliability.

Chapter 2: General concepts 8

Response permutation testing randomly shuffles the rows of the response matrix Y and
rebuilds a new (O)PLS model with the same number of components as the model under
test. This procedure is repeated over 100 – 1000 iterations, resulting in a distribution of R2

and Q2 statistics that represent the null hypothesis: an invalid or overfit model. The R2

and Q2 statistics from the model under test may then be compared to this distribution to
determine model significance.

See [permtest], page 46, [permscatter], page 45 and [permdensity], page 45 for more
information on response permutation testing in MVAPACK.

2.2.10 CV-ANOVA testing

The CV-ANOVA validation technique relies on the residuals from internal model cross-
validation to determine model significance. By comparing the cross-validated fit sum of
squares to the cross-validated total sum of squares using an F -test, model validity can be
measured.

See [cvanova], page 46 for more information on CV-ANOVA testing in MVAPACK.

2.2.11 More information

Every command in MVAPACK is provided with documentation on its use. You can see
the documentation of a function (e.g. fn_name) by running help fn_name inside an Octave
interactive session.

Learning how to harness the maximum potential of MVAPACK honestly requires learn-
ing how to use GNU Octave. Complete documentation of the GNU Octave programming
language is available at the Octave website.

2.3 Organization

2.3.1 Data vector organization

Data vectors are organized as column vectors. In Octave, vector indices begin at 1 and end
at the number of vector elements. Take the example of a single free induction decay (t, f):

% just loading in a single spectrum, for example.

[f, parms, t] = loadnmr(‘my-spectra-01/1’);

% total number of data points (real+imag).

parms.td

⇒ 16384

% size of the abscissa that pairs with f.

size(t)

⇒ 8192 1

% the abscissa is real.

iscomplex(t)

⇒ 0

% size of the free induction decay data vector.

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/doc/interpreter/index.html

Chapter 2: General concepts 9

size(f)

⇒ 8192 1

% the free induction decay is complex.

iscomplex(f)

⇒ 1

Single or multiple vector elements may be accessed using the vector indices. See the
GNU Octave documentation for more information on how to use indices.

Here are a few quick examples of vector indices:

f(1) *= 0.5; % scale down the first point.

f(1:10) -= mean(f(1:10)); % mean-center the first ten points.

f(end / 2:end) *= 0; % zero the second half of the vector.

2.3.2 Data matrix organization

Data matrices are organized as sets of observation row vectors. The row (first) index of a
data matrix is the observation index and the column (second) index of a data matrix is the
variable index, so X(i,k) corresponds to the i-th observation and k-th variable of the data
matrix X. Take the example of a set of free induction decays (t, F):

% just loading in a set of spectra, for example.

[F, parms, t] = loadnmr(glob(‘my-spectra-??/1’));

% size of the free induction decay data matrix.

size(F)

⇒ 50 8192

% the data matrix is complex, of course.

iscomplex(F)

⇒ 1

Accessing elements of data matrices can take any number of different shapes and sizes.
The GNU Octave documentation fully details how to index matrices.

Here are a few quick examples of matrix indices:

% extract the first decay into a data vector.

f = F(1,:)’;

% scale down the first point of every decay.

F(:,1) *= 0.5;

% mean-center all points of the first three decays.

F(1:3,:) -= ones(3,1) * mean(F(1:3,:));

% zero the second half of the first, third and fifth decays.

F([1,3,5],end / 2:end) *= 0;

Chapter 2: General concepts 10

2.3.3 Multiblock organization

Multiblock data matrices are organized as cell arrays which contain at least two data ma-
trices. For example, if two data matrices X1 and X2 have been created, and both matrices
have ten observations, the multiblock data matrix may be constructed using [multiblock],
page 62, like so:

X = multiblock(X1, X2);

Now, X is a cell array that contains the matrices X1 and X2, and is ready for further
processing, e.g. by [mbpca], page 40.

2.3.4 Structure organization

MVAPACK makes extensive use of structures to organize outputs of functions that would
be completely unwieldy without doing so. Multivariate models, acquisition parameters,
cross-validation results, and other forms of data are all packed into structures, to name a
few.

Data inside structures is accessed by structure fields. For example, if a model mdl
contains a field A, it is accessible as mdl.A.

Here is an example of accessing fields inside a model structure:

% build a model.

mdl = pca(X);

% number of model components.

mdl.A

⇒ 3

% total model fit sum of squares.

mdl.Rsq.X.cum

⇒ 0.92

% total cross-validated fit sum of squares.

mdl.Qsq.cum

⇒ 0.90

Chapter 3: MVAPACK patterns 11

3 MVAPACK patterns

MVAPACK is designed to be flexible, but common patterns exist in its use. The following
code segments detail recommended ways to accomplish the most common tasks performed
within the MVAPACK software.

The discerning reader will notice a liberal use of structures in the following code exam-
ples. Organizing data into structures simplifies the task of saving all relevant Octave session
data for re-use later. Use of structures also serves as a means of documenting one’s data
processing for reproduction later.

3.1 Loading NMR data

3.1.1 Loading Bruker DMX data without zero-filling

This code is an example of how to load free induction decay data from files generated by
older versions of Topspin or XWIN-NMR. The command will read the directories that match
the filename glob my-data-???/1 in the current directory and read the fid and acqus data
from each matching directory. The decays will then be automatically group delay corrected.

F.dirs = glob(‘my-data-???/1’);

[F.data, F.parms, F.t] = loaddmx(F.dirs);

3.1.2 Loading Bruker DMX data with zero-filling

This code is similar to the above example, but the DMX free induction decays are not group
delay corrected during loading. Instead, two zero fills are performed and then the group
delay correction is done. The filename glob my-data-*/1 also differs from the previous
example: the splat (*) acts as a multiple-character wildcard, while the question mark (?)
acts as a single-character wildcard.

F.nzf = 2;

F.dirs = glob(‘my-data-*/1’);

[F.data, F.parms, F.t] = loaddmx(F.dirs, false);

F.data = zerofill(F.data, F.parms, F.nzf);

F.data = dmxcorr(F.data, F.parms);

If apodization is also desired, it must be done prior to both zero-filling and group delay
correction:

F.nzf = 1;

F.dirs = glob(‘my-data-*/1’);

[F.data, F.parms, F.t] = loaddmx(F.dirs, false);

F.data = apodize(F.data, F.parms, @expwindow);

F.data = zerofill(F.data, F.parms, F.nzf);

F.data = dmxcorr(F.data, F.parms);

3.1.3 Loading more modern Bruker or Agilent data

Free induction decay data collected on more recent spectrometers may be loaded using
[loadnmr], page 20. Group delay correction is automatic.

F.dirs = glob(‘my-data-???/1’);

[F.data, F.parms, F.t] = loadnmr(F.dirs);

Chapter 3: MVAPACK patterns 12

If the loaded free induction decay just looks like intense noise, you may need to byte-swap
the data:

[F.data, F.parms, F.t] = loadnmr(F.dirs, true);

For more information, see [loadnmr], page 20.

3.1.4 Loading classes and labels

Samples collected under automation may not be grouped by class identity during data
collection, resulting in the members of each class being randomly distributed within the
rows of a dataset.

Before such data matrices are used in MVAPACK, they must be reordered to group
the observations by class. The simplest way to do this is to make a text file (e.g. my-

class-labels.txt) that defines the textual class name of each observation on each line,
like so:

WT

WT

K2A

A6P

WT

K2A

A6P

K2A

...

In MVAPACK, the class labels, indices and identity matrix may be loaded using
[loadlabels], page 48. Once these are loaded, the data matrix F can be reordered to group
observations by class. This is an essential step if the input data is ‘out of order’.

cls.filename = ‘my-class-labels.txt’;

[cls.labels, cls.indices, cls.Y] = loadlabels(cls.filename);

F.data = F.data(cls.indices, :);

3.2 Processing in the time domain

3.2.1 General apodization

Apodization of free induction decays is performed by passing a line-broadening factor (lb,
default is 0.3 Hz) to [expwindow], page 23. Like the case of zero-filling, DMX data loaded
with [loaddmx], page 21 must be corrected by [dmxcorr], page 21 after apodization.

F.lb = 0.3; % hz.

F.apod = @expwindow;

F.data = apodize(F.data, F.parms, F.apod, F.lb);

Or, if a 0.3 Hz Gaussian apodization is desired:

F.lb = 0.3; % hz.

F.apod = @gausswindow;

F.data = apodize(F.data, F.parms, F.apod, F.lb);

Chapter 3: MVAPACK patterns 13

3.2.2 General zero-filling

The following code is an example of how to zero-fill free induction decay data. In this
example, two zero-fills are performed (nzf = 2).

F.nzf = 2;

F.data = zerofill(F.data, F.parms, F.nzf);

3.2.3 General Fourier transformation

Fourier transformation is performed with [nmrft], page 24. An accompanying chemical shift
axis S.ppm will also be generated.

[S.data, S.ppm] = nmrft(F.data, F.parms);

A centered Hertz axis may also be returned, if you want to deal with that type of
frequency unit:

[S.data, S.ppm, S.hz] = nmrft(F.data, F.parms);

3.3 Processing in the frequency domain

3.3.1 Removal of undesirable observations

Observations may be removed by their index in a data matrix, using the function [rmobs],
page 30. The example below removes the first five and the twenty-third observations from
the data matrix F.

F.rm.obs = [1 : 5, 23];

F.data = rmobs(F.data, F.rm.obs);

The same pattern may be performed on any data matrix, such as a set of spectra:

S.rm.obs = [1 : 5, 23];

S.data = rmobs(S.data, S.rm.obs);

3.3.2 Automatic phasing and normalization

Phase correction and normalization are interrelated, and their correction is ideally per-
formed using an algorithm that simultaneously handles both. The following code is an ex-
ample of the recommended way to automatically phase and normalize NMR spectra. First,
automatic phasing of each spectrum is performed with [autophase], page 25. Then, [pscorr],
page 32 phases and normalizes the dataset to bring it into the best possible agreement with
its mean:

[S.data, S.phc0, S.phc1] = autophase(S.data, F.parms);

[S.data, S.normfactor] = pscorr(S.data);

3.3.3 Extraction of real spectral data

Once phase correction is finished, a purely real data matrix can be made. Most algorithms
following phase correction expect the data matrix to not contain complex numbers, which
is why this step is done.

X.data = realnmr(S.data, F.parms);

X.ppm = S.ppm;

Chapter 3: MVAPACK patterns 14

3.3.4 Chemical shift referencing

The simplest form of spectral referencing is to modify only the chemical shift axis using
[refadj], page 26. The following example shows how to shift the abscissa from -0.15 ppm to
0.00 ppm to produce referenced spectra.

X.ref.old = -0.15;

X.ref.new = 0.00;

X.ppm = refadj(X.ppm, X.ref.old, X.ref.new);

3.3.5 Spectral alignment

Following chemical shift referencing, variations in peak chemical shifts not caused by global
reference offsets may be corrected with [icoshift], page 28.

X.data = icoshift(X.data, X.ppm);

3.3.6 Removal of undesirable variables

Removing variables is done in a similar manner to removing observations, but now the
chemical shift axis must also be modified. The following example removes the most upfield
and downfield portions of the spectra as well as the residual water signal (See [rmvar],
page 30).

k0 = findnearest(X.ppm, min(X.ppm));

k1 = findnearest(X.ppm, 0.2);

k2 = findnearest(X.ppm, 4.6);

k3 = findnearest(X.ppm, 4.8);

k4 = findnearest(X.ppm, 8.5);

k5 = findnearest(X.ppm, max(X.ppm));

X.rm.var = [k5 : k4, k3 : k2, k1 : k0];

[X.data, X.ppm] = rmvar(X.data, X.ppm, X.rm.var);

3.3.7 Adaptive intelligent binning

Binning is an optional step, provided spectral alignment was performed. If binning is to be
done, use [binadapt], page 29.

[B.data, B.ppm, B.widths] = binadapt(X.data, X.ppm, F.parms);

3.4 Handling multivariate models

3.4.1 Building unsupervised models

PCA models are built using [pca], page 36. Depending on the number of data matrix rows
and columns, calculation times can range from less than a second (N=50, K=200) to an
hour (N=150, K=32768). Once the model is successfully built, the class identity matrix
and class labels may be added using [addclasses], page 47 and [addlabels], page 47.

pcaMdl = pca(X.data);

pcaMdl = addclasses(pcaMdl, cls.Y);

pcaMdl = addlabels(pcaMdl, cls.labels);

Chapter 3: MVAPACK patterns 15

3.4.2 Building supervised models

While unsupervised models require only a data matrix, supervised models also need a re-
sponse matrix. The response matrix Y may be a second set of continuous values (regression)
or a class identity matrix (discriminant analysis). The following example builds a model
with [opls], page 38. Class labels are then also added.

oplsMdl = opls(X.data, cls.Y);

oplsMdl = addlabels(oplsMdl, cls.labels);

3.4.3 Validating supervised models

Supervised models (e.g. PLS, OPLS) require rigorous validation to ensure the reliability of
any conclusions drawn from the modeled data. The simplest means of validation is done
with [rqplot], page 45:

rqplot(mdl);

Still more complicated is to run response permutation testing (See [permtest], page 46):

mdl.cv.perm = permtest(mdl);

permscatter(mdl.cv.perm);

Finally, the CV-ANOVA test (See [cvanova], page 46) may be performed to analyze the
fitted residuals from internal cross-validation:

mdl.cv.anova = cvanova(mdl);

mdl.cv.anova

The lack of a semicolon in the second line of the above example is not a typographical
error! If you want to see the results of the CV-ANOVA test, you have to leave it off.

3.4.4 Building models with different scaling

The default scaling function during PCA, LDA and PLS model building is [suv], page 33,
and the default function for OPLS is [spareto], page 33. If you want to change the scaling
function used, pass another argument to the pca, lda, pls or opls function that holds the
function handle of the scaling method you wish to use. For example:

pcaMdlWithLevelScaling = pca(X.data, @slevel);

All available scaling methods are discussed in Section 6.3 [Scaling], page 32.

3.4.5 Building multiblock structures

Multiblock PCA (See [mbpca], page 40), multiblock PLS (See [mbpls], page 40), and multi-
block OPLS (See [mbopls], page 41) all require a multiblock array as input, instead of a
matrix. Given two data matrices A and B, creation of a multiblock array is simple:

X = multiblock(A, B);

Provided all matrices have the same number of observations (rows), as many data ma-
trices may be included in the multiblock array as desired:

X = multiblock(Xhnmr, Xlcms, Xftir, Xclinical, ...);

3.4.6 Handling multiblock models

Multiblock models contain nested “block models” which individually approximate their
respective data matrix in the multiblock array, but also relate to the other block models via

Chapter 3: MVAPACK patterns 16

the constraints of the algorithm. For example, if an MB-PLS model is built on a three-block
array:

X = multiblock(X1, X2, X3);

mdl = mbpls(X, Y);

It will contain super-scores and loadings, as well as three block models. Therefore, many
commands (which normally operate on the model as a whole) will function on the blocks
as well:

rqplot(mdl);

scoresplot(mdl.blocks{1});

backscaleplot([], mdl.blocks{2});

T3 = scores(mdl.blocks{3}, 2);

3.5 Plotting model results

3.5.1 Model quality plots

The PCA, PLS and OPLS modeling functions in MVAPACK automatically produce R2 and
Q2 metrics during fitting. These values can be plotted to quickly determine how well the
model fits the data (R2) and how well the model predicts the data (Q2):

rqplot(mdl);

For models having at least two components, the blue bars indicate cumulative R2 values
and the green bars indicate cumulative Q2 values.

3.5.2 Scores scatter plots

Scores scatter plots may be generated in the following way:

scoresplot(mdl);

However, the scoresplot function may not be able to decide whether to build a 2D or
3D plot, in which case the number of plot dimensions must be passed as a second argument,
e.g.:

scoresplot(mdl, 2);

If observation numbers are desired instead of points in the scores plot, they may be
enabled by passing numbers as true to scoresplot:

scoresplot(mdl, [], [], true);

See [scores], page 47 and [scoresplot], page 43 for more information on plotting scores.

3.5.3 Loadings scatter plots

Two-dimensional loadings scatter plots may be generated in the following way:

loadingsplot(mdl);

If variable numbers are desired instead of points in the scores plot, they may be enabled
by passing numbers as true to loadingsplot:

loadingsplot(mdl, [], true);

See [loadings], page 47 and [loadingsplot], page 43 for more information on plotting
loadings.

Chapter 3: MVAPACK patterns 17

3.5.4 Loadings line plots

Loadings line plots are generated using [backscaleplot], page 44 in the following way:

backscaleplot(X.ppm, mdl);

If the line plots need to be colored according to model weighting, a second argument is
passed to the function:

backscaleplot(X.ppm, mdl, true);

The abscissa vector passed to backscaleplot must match the data passed to the model
building function (i.e. mdl above was generated based on X.data).

Finally, the backscaled loadings may be stored into a matrix for plotting in a more
efficient environment, like gnuplot:

G = backscaleplot(X.ppm, mdl, true);

save -ascii ‘G.txt’ G

The columns of G will be X.ppm, p1, p2, ... pA, w. Here, w is the Z-factor by which the
data was scaled prior to multivariate modeling. A gnuplot script to plot a single-component
OPLS loading would contain the following statements:

unset key

set cbrange [0 : 1]

set palette rgbformula 30, 13, 10

plot ‘G.txt’ with lines linecolor palette

3.5.5 S-plots

S-plots are generated for OPLS models using [splot], page 44 in the following way:

splot(mdl);

If variable numbers are desired instead of points in the S-plot, they may be enabled by
passing numbers as true to splot:

splot(mdl, [], true);

3.6 Plotting data matrices

3.6.1 Plotting data matrices overlaid

Plotting all observations in a data matrix is a commonly performed task during interactive
data processing. The following example shows how to plot the rows of a time-domain data
matrix, overlaid.

plot(F.t, realnmr(F.data’, F.parms));

Spectral data matrices may be plotted in the same manner:

plot(S.ppm, realnmr(S.data’, F.parms));

Real data matrices are also plotted in the same way, but without need for the realnmr

function:

plot(X.ppm, X.data’);

Chapter 3: MVAPACK patterns 18

3.6.2 Plotting data matrices stacked

Stack plots of data matrices are also possible through the following example. Unlike the
overlaid command, stack plots require no realnmr invocation or matrix transposition.

stackplot(F.data);

More information on stacked plots is available in [stackplot], page 43.

3.6.3 Plotting to aid phase correction

Manual phase correction is performed using [phase], page 25. This function simply accepts
zero-order and first-order phase correction values and returns the corrected spectral data.

Because manual phase correction is an iterative process, a quick way of guess-and-check
must be used by plugging in values for phc0 and phc1 below:

plot(S.ppm, phase(S.data, F.parms, phc0, phc1)’);

Once a suitable result is found, the values of phc0 and phc1 can be used to actually
correct the spectral data matrix:

S.phc0 += phc0;

S.phc1 += phc1;

S.data = phase(S.data, F.parms, phc0, phc1);

3.6.4 Plotting multiblock data matrices

The individual blocks of multiblock data matrices may be accessed from their multiblock
array, like so:

plot(ab, X{1});

3.7 Saving MVAPACK data

3.7.1 Saving session data for later

The following code is an example of how to save relevant data from an open Octave session
to a file for use later. Data matrices and models are stored as fields of a main structure,
which may be saved to a file.

savedate = date();

save(‘-binary’, ‘-z’, ‘my-session.dat.gz’);

3.7.2 Loading saved session data

Loading a session back from a file is as simple as the following example:

load(‘my-session.dat.gz’);

3.7.3 Saving data matrices to text

It is sometimes necessary to output data matrices from Octave for plotting or analysis in
other programs. An easy way to save a data matrix and it’s associated abscissa is as follows:

data = [t, real(F’)];

save -ascii ‘data.txt’ data

Saving data to comma-separated values format (“CSV”) is even easier:

data = [ppm, real(S’)];

csvwrite(‘data.csv’, data);

Chapter 3: MVAPACK patterns 19

3.7.4 Loading data matrices from text

Loading data matrices back from text files is also sometimes required. The recommended
way to do so follows:

data = load(‘data.txt’);

t = data(:,1);

Fr = data(:,2:end)’;

Notice in the above command that the data matrix Fr is no longer complex.

Loading data from comma-separated values format (“CSV”) is accomplished through
the csvread command:

data = csvread(‘data.csv’);

ppm = data(:,1);

Sr = data(:,2:end);

Again, the reloaded data in Sr is no longer complex. Saving complex data to text requires
a bit more conjuring:

data = [ppm, real(S’), imag(S’)];

save -ascii ‘data.txt’ data

...

data = load(‘data.txt’);

ppm = data(:,1);

S = complex(data(:,2:(end-1)/2+1), data(:,(end-1)/2+2:end));

In general, it’s easier and faster to save the whole session (See Section 3.7.1 [Saving
session data for later], page 18) than to go through the above hassle.

3.7.5 Saving plots to postscript files

Saving plots into the Enhanced PostScript file format (*.eps) may be accomplished using
the print command. First, plot the data you wish to save to file. Then run the following
command:

print -deps -color ‘myplot.eps’

The function may give some warnings, but if it returns without errors your figure should
be saved into the file.

Saving three-dimensional plots to files has an additional twist, however, because 3D
plots are rotatable. Once a suitable orientation has been found, record the numbers in the
bottom left corner of the plot window, which will look something like:

view: 35, 310

Before running the print function to save the plot, run this:

view(310, 90 - 35);

The proper orientation will now be saved such that the print function will save the plot
correctly. Remember, don’t literally use 35 and 310 ; use the values shown in the corner of
the plot window.

Plots may also be saved using the saveas function if the plot package is installed into
Octave:

saveas(gca(), ‘myplot.eps’, ‘eps’);

Chapter 4: NMR file loading 20

4 NMR file loading

The first step in any data processing procedure is to load the actual data. The functions
documented in this chapter do exactly that.

4.1 Loading Bruker or Agilent FID data

Data collected from Agilent and modern Bruker spectrometers is best loaded with the
[loadnmr], page 20 function, which will automatically detect as many spectral parameters
as possible to ensure seamless loading into MVAPACK.

[Function File]f = loadnmr (dirname)
[Function File][f, parms] = loadnmr (dirname)
[Function File][f, parms, t] = loadnmr (dirname)
[Function File][f, parms, t] = loadnmr (dirname, doswap)
[Function File]F = loadbruker (dirnames)
[Function File][F, parms] = loadnmr (dirnames)
[Function File][F, parms, t] = loadnmr (dirnames)
[Function File][F, parms, t] = loadnmr (dirnames, doswap)

Loads one or more Bruker or Agilent fid/ser files, automatically extracting parameters
and automatically determining whether to parse Bruker or Agilent data.

Some older data needs to be byte-swapped when it is loaded in. To do this, pass
doswap as true to this function. The default behavior is to skip the byte swap.

The parameters can be optionally returned if a second return value is requested. If a
third optional return value is requested, the time abscissa (t) will be returned.

NOTE: Extreme care must be taken to ensure that the acquisition parameters of all
experimental data specified in dirnames are totally identical! Only one parameter
structure (parms) will be returned, so it is assumed that the first experiment holds
parameters that are representative of the entire dataset.

[Function File]p = acquparms (dirname)
Reads values from the key-value pairs found in Bruker ‘acqus’ files and Varian/Agilent
‘procpar’ files. The type of acquisition parameters to parse is determined automati-
cally.

The output p is a cell array that contains a structure for each dimension present
in the spectral data. Each element (dimension) in p contains information relevant
to reconstructing time- and frequency-domain axes (along that dimension) for the
spectral intensities:

Universal:
p.td: number of complex points.
p.obs: transmitter base frequency.
p.car: carrier offset frequency.
p.sw: spectral width. p.dim: dimension.

Bruker only:
p.decim: decimation ratio.
p.grpdly: estimated group delay.
p.dspfvs: dsp firmware version.

Chapter 4: NMR file loading 21

4.2 Bruker-format data

The [loaddmx], page 21 function is best for older Bruker data that has no group delay
correction information contained in its acqus file.

[Function File]f = loaddmx (dirname)
[Function File][f, parms] = loaddmx (dirname)
[Function File][f, parms, t] = loaddmx (dirname)
[Function File][f, parms, t] = loaddmx (dirname, correct)
[Function File]F = loaddmx (dirnames)
[Function File][F, parms] = loaddmx (dirnames)
[Function File][F, parms, t] = loaddmx (dirnames)
[Function File][F, parms, t] = loaddmx (dirnames, correct)

Loads one or more 1D Bruker DMX-format fid files, automatically extracting param-
eters. The parameters can be optionally returned if a second return value (parms)
is requested. A third optional return value, t, can be requested that will contain the
time-domain abscissa.

An optional second input argument correct may be supplied to enable or disable
group delay correction. The default behavior is to correct for group delay, but if you
plan on zero-filling or apodizing, you need to postpone the correction until after the
filling operation. F may then be corrected explicitly for group delay (See [dmxcorr],
page 21).

[Function File]Fcorr = dmxcorr (F, parms)
Corrects Bruker DMX-format for group delay issues. This function is usually called
automatically (by [loaddmx], page 21) without the user having to, but may have to
be used if zero filling or apodizing must be applied before correction.

Chapter 5: Data pre-processing 22

5 Data pre-processing

Pre-processing encompasses all operations that are needed to take the raw instrumental data
to properly ‘sanitized’ final instrumental data. In other words, pre-processing is specific to
the type of instrumentation, NMR in this case.

The following sections document the important pre-processing functions that are avail-
able for use in MVAPACK.

5.1 NUS reconstruction

Two-dimensional spectra that have been nonuniformly sampled may be easily reconstructed
in MVAPACK using iterative soft thresholding (IST). The IST routine must be performed
prior to any other time-domain processing using the [nmrist], page 22 function.

[Function File][recfid] = nmrist (fid, parms)
[Function File][recfid] = nmrist (fid, parms, phc)

Performs Iterative Soft Thresholding (IST) reconstruction of a nonuniformly sampled
2D NMR time domain matrix or a 2D NMR time domain cell array. Two-dimensional
data must be arranged with slices of the direct-dimension along the rows.

The product of this operation is a uniformly sampled data structure that may be
processed in the same way as any other 2D data.

An optional third argument, phc, may be passed as a two-element vector that supplies
manual phase correction values for the direct dimension. If phc is not provided or is
empty, automatic phase correction will be applied during reconstruction.

5.2 Apodization

Time-domain multiplication of any given window function with a set of free induction
decays will result in the spectra having been convolved with that window function’s impulse
response function. Use of different window functions results in different peak shapes in the
output spectra.

[Function File]wfid = apodize (fid, parms)
[Function File]wfid = apodize (fid, parms, fn)
[Function File]wfid = apodize (fid, parms, fn, opts)

Performs apodization of a time-domain NMR free-induction decay in order to alleviate
truncation artifacts that can arise from Fourier transformation.

In the one-dimensional case, data in fid may either be a column vector or a data
matrix where each free induction decay is arranged as a row in the matrix.

In the two-dimensional case, data in fid may either be a data matrix where each direct-
dimension slice is along the rows, or a cell array that contains multiple matrices, each
having direct-dimension slices along its rows.

A parameter structure (or array) must be passed as a second argument. The third
argument, fn, is used to specify the type of apodization to use ([expwindow], page 23,
[gausswindow], page 23, [sinewindow], page 23). The default is an exponential win-
dow function. An optional fourth argument (opts) may be passed that holds the
parameters needed by the apodization function fn.

Chapter 5: Data pre-processing 23

Apodization is most commonly of the exponential kind in 1D NMR, which effects a
Lorentzian lineshape and is used to ensure the FID has decayed to zero by the end of the
acquisition.

Window functions available to [apodize], page 22 are as follows:

[Function File]w = expwindow (t, lb)
Calculate window coefficients for exponential windowing of a signal. The parameter
lb is the line-broadening factor (in Hz) to apply to the signal having time points in t.

The default line-broadening factor is 0.3 Hz.

The equation applied to the free induction decay is as follows:

wfid(t) = fid(t) · e−lb·t

Instead of using this function directly, it is recommended that you use [apodize],
page 22.

[Function File]w = gausswindow (t, lb)
Calculate window coefficients for gaussian windowing of a signal. The parameter lb
is the line-broadening factor (in Hz) to apply to the signal having time points in t.

The default line-broadening factor is 0.3 Hz.

The equation applied to the free induction decay is as follows:

wfid(t) = fid(t) · e−(lb·t)
2

Instead of using this function directly, it is recommended that you use [apodize],
page 22.

[Function File]wfid = sinewindow (t, opts)
Calculate window coefficients for sinusoidal windowing of a signal.

The parameters of the window are specified as fields in the opts structure. The
parameter offset is the relative offset of the sine bell. The parameter ending is the
relative ending of the sine bell. Both offset and ending span ([0, 1]). The final
parameter exponent specifies the order of the sinusoid.

The default parameter values are 0.5, 0 and 2, resulting in a squared cosine window.

The equation applied to the free induction decay is as follows:

wfid(t) = fid(t) · sin
[
π(offset) + π(ending − offset)

(
t

tmax

)]

Instead of using this function directly, it is recommended that you use [apodize],
page 22.

Chapter 5: Data pre-processing 24

5.3 Zero-filling

MVAPACK defines one zero-filling operation as a doubling of the number of time-domain
data points, two operations as a quadrupling, and so on. The zero-filling operation provides
a means to increase digital resolution of the sampled data, but adds no further information
to the data.

[Function File]zfid = zerofill (fid, parms)
[Function File]zfid = zerofill (fid, parms, k)

Appends zeros at the end of a free induction decay (FID) vector, matrix or cell array
by doubling the total length k times. If k is not supplied, a default number of one
zero fill is performed.

For one-dimensional data, k must be a scalar value. In the case of two-dimensional
data, k may be a scalar or a vector.

5.4 Fourier transformation

Fourier transformation converts time-domain free induction decay data into frequency-
domain spectral data, a required operation for almost all 1D NMR processing protocols.

[Function File]s = nmrft (fid, parms)
[Function File][s, ppm] = nmrft (fid, parms)
[Function File][s, ppm, hz] = nmrft (fid, parms)
[Function File]... = nmrft (fid, parms, doshift)

Performs Fourier transformation and shifting to produce an NMR spectrum.

In the one-dimensional case, data in fid may either be a column vector or a data
matrix where each free induction decay is arranged as a row in the matrix.

In the two-dimensional case, data in fid may either be a data matrix where each direct-
dimension slice is along the rows, or a cell array that contains multiple matrices, each
having direct-dimension slices along its rows.

A parameter structure (or array) must be passed as a second argument. Optionally,
a second output value may be produced which contains the chemical shift abscissa
vector(s) associated with s (ppm. Also, a third output value may be produced which
contains the centered abscissa vector in hertz units, without the carrier offset applied
(hz).

A final optional argument, doshift, may be passed to enable or disable the default
behavior of shifting the Fourier-transformed data by half the number of data points.
The default behavior is to shift the data, and you should really never have a reason
not to.

5.5 Phasing

Offsets in the signal phase relative to the receiver phase must be corrected through the
process of phasing, either manually or automatically as discussed below.

Chapter 5: Data pre-processing 25

5.5.1 Simple phasing

[Function File]sp = phase (s, parms, phc0, phc1)
Corrects the phase of a Fourier-transformed spectrum with a zero order correction
phc0 and a first order correction phc1. The first order correction is performed as a
function of chemical shift offset from the spectral center frequency. The arguments
phc0 and phc1 may be scalars or vectors, where the i-th elements of the vectors
correct the i-th row of s.

[Function File]sp = autophase (s, parms)
[Function File][sp, phc0, phc1] = autophase (s, parms)
[Function File]sp = autophase (s, parms, objective)
[Function File][sp, phc0, phc1] = autophase (s, parms, objective)

Performs automatic phase correction of a one- or two-dimensional NMR spectrum or
spectral dataset, using a simplex optimization algorithm:

M. Siegel. ‘The use of the modified simplex method for automatic
phase correction in Fourier-transform Nuclear Magnetic Resonance
spectroscopy’. Analytica Chimica Acta, 1981. 133(1981): 103-108.

For one-dimensional spectra, the algorithm uses an entropy minimization objective
during optimization (See [simplex entropy], page 25). For two-dimensional spectra,
a whitening objective is used (See [simplex whiten], page 26).

In the one-dimensional case, data in s may either be a column vector or a data matrix
where each spectrum is arranged as a row in the matrix.

In the two-dimensional case, data in s may either be a data matrix where each direct-
dimension slice is along the rows, or a cell array that contains multiple matrices, each
having direct-dimension slices along its rows.

A parameter structure (or array) must be passed as a second argument. The phase
correction values phc0 and phc1 may also be returned if desired.

5.5.2 Advanced phasing

[Function File]obj = simplex_minimum (s, phc)
Objective function for [autophase], page 25 that maximizes the lowest real spectral
point.

[Function File]obj = simplex_integral (s, phc)
Objective function for [autophase], page 25 that maximizes the integrated area of the
real component of the spectrum.

[Function File]obj = simplex_entropy (s, phc)
Objective function for [autophase], page 25 that minimizes the entropy of the first
derivative of the real spectral component:

L. Chen, Z. Weng, L. Y. Goh, M. Garland. ‘An efficient algorithm for
automatic phase correction of NMR spectra based on entropy minimiza-
tion’. J. Magn. Res., 2002. 158(2002): 164-168.

Chapter 5: Data pre-processing 26

[Function File]obj = simplex_whiten (s, phc)
Objective function for [autophase], page 25 that minimizes the number of ‘colored
pixels’ of the real spectral component:

G. Balacco, C. Cobas. ‘Automatic phase correction of 2D NMR spectra
by a whitening method’. Mag. Res. Chem., 2009. 47: 322-327.

5.6 Referencing

Referencing globally aligns the entire dataset based on an internal reference compound
with a standardized chemical shift (e.g. DSS). In MVAPACK, referencing only changes the
chemical shift axis values, not the data matrix values.

[Function File]ppmadj = refadj (ppm, oldcs, newcs)
Shifts the values in the chemical shift vector to move a reference position to zero
chemical shift. This operates only on the abscissa vector, not on the data matrix.

If you need to reference individual spectra within a data matrix to a common chemical
shift axis, use [coshift], page 28.

5.7 Regions of Interest

Selecting regions of interest (ROIs) in a dataset is a requisite for any number of functions
in MVAPACK that take spectral regions as inputs. Regions of interest take the form of an
R× 2 matrix, where each of the R rows contains two values defining a start and an end for
that region.

5.7.1 Generating regions

While regions of interest may be constructed manually, MVAPACK provides some auto-
matic routines for generating them as well.

[Function File]roi = roibin (s, ab, parms, wmin)
Generate regions of interest (ROIs) from a spectrum or set of spectra in s with
corresponding abscissa in ab. The minimum viable ROI width is specified in wmin.

This function generates ROIs by first using [binadapt], page 29 to bin the variables
of a spectrum or a set of spectra, and converts the bins into ROIs.

[Function File]roi = roipeak (s, ab, parms, wmin)
Generate regions of interest (ROIs) from a spectrum or set of spectra in s with
corresponding abscissa in ab. The minimum viable ROI width is specified in wmin.

This function generates ROIs by first using [peakpick], page 65 to pick the peaks of
a spectrum or a set of spectra, creates ROIs of width wmin for each peak, and then
joins all overlapped ROIs together until no two ROIs overlap.

Regions of interest may also be generated from bin parameters output from any of the
MVAPACK binning routines:

[Function File]roi = bin2roi (abnew, widths)
Translate bin centers and widths in abnew and widths, respectively, into regions of
interest in roi. The resulting regions may then be plotted using [roiplot], page 27.

Chapter 5: Data pre-processing 27

5.7.2 Visualizing regions

Regions of interest may be overlaid onto data using the [roiplot], page 27 function.

[Function File]roiplot (X, ab, parms, roi)
Builds a line plot of one-dimensional spectral data with overlaid regions of interest
as rectangles, or builds a contour plot of two-dimensional spectral data with overlaid
regions of interest as rectangles.

5.7.3 Removing regions

Regions of interest may be removed from the ROI matrix using the [rmroi], page 27 function.

[Function File]roirm = rmroi (roi, rmzones)
Removes any regions of interest from roi that overlaps the regions of interest specified
in rmzones.

5.7.4 Binning by regions

A manual binning method is available that utilizes regions of interest as a means of dividing
data matrices (See [binmanual], page 29).

5.7.5 Vectorizing regions

Data in one-dimensional and two-dimensional spectral data structures may be vectorized
into a data matrix using the [roi2data], page 27 command. Regions that have been vector-
ized using that function may be de-vectorized using the [data2roi], page 27 function.

[Function File]Xroi = roi2data (X, ab, parms, roi)
[Function File][Xroi, abroi] = roi2data (X, ab, parms, roi)

Builds a data matrix from paired one- or two-dimensional spectral data and regions
of interest by concatenating the spectral data inside each region. For one-dimensional
data, this is effectively the logical inverse of the [rmroi], page 27 function. For two-
dimensional data, regions are vectorized prior to concatenation.

[Function File]X = data2roi (Xroi, ab, parms, roi)
Reconstructs all possible spectral data contained within a data matrix that was gen-
erated by [roi2data], page 27.

5.8 Integration

Integral curves or integral values are useful for determining relative signal proportions from
spectral data, and may be calculated and visualized using the following functions in MVA-
PACK:

[Function File]Imax = integrals (X, ab, roi)
[Function File][I, Iab] = integrals (X, ab, roi)

Calculates integrals of a spectral dataset over the specified regions of interest in roi.
If a single output is requested (Imax), it will hold the final values of the integals. If
two outputs are requested (I, Iab), they will hold the integration curves.

[Function File]integralsplot (x, ab, Ix, Iab)
Overlays integral curves generated from [integrals], page 27 on a spectral line plot.

Chapter 5: Data pre-processing 28

5.9 Alignment

In contrast to referencing, spectral alignment changes the values in a data matrix based on
a circular shift operation of each row, without changing the chemical shift axis. Alignment
may either be performed globally (See [coshift], page 28) or locally (See [icoshift], page 28),
as detailed below.

[Function File]Xc = coshift (X)
[Function File][Xc, lags] = coshift (X)

Performs whole-spectrum correlation-optimized shifting to align peaks in NMR spec-
tra to a common target, the average of the dataset. The Xc output is the set of
aligned spectra, and X is the input (real) data matrix to be shifted. Optionally, the
number of points each spectrum was shifted may be returned in lags.

If individual peaks are misaligned within spectra such that this function cannot cor-
rect them, use [icoshift], page 28. However, this function will not produce warping
artifacts.

[Function File]Xc = icoshift (X, ab)
[Function File]Xc = icoshift (X, ab, seg)
[Function File][Xc, lags] = icoshift (X, ab)
[Function File][Xc, lags] = icoshift (X, ab, seg)
[Function File][Xc, lags] = icoshift (X, ab, seg, cofirst)

Performs interval correlation-optimized shifting to align peaks in NMR spectra to a
common target, by default the average of the dataset.

The Xc output is the set of aligned spectra, and X is the input (real) data matrix to
be shifted. The second argument ab is the abscissa of the spectral data.

The optional argument seg may be used to either define a number of segments to
use (scalar) or define one or more segments based on abscissa values (matrix). Each
manually defined segment should be a two-element row in seg. The final optional
argument cofirst allows the user to perform an initial global alignment ([coshift],
page 28) prior to segmented alignment. The default value of cofirst is false.

This code is based on the algorithm documented in:

F. Savorani, G. Tomasi, S. B. Engelsen, ‘icoshift: A versatile tool for the
rapid alignment of 1D NMR spectra.’, J. Magn. Res. 2010: 190-202.

5.10 Binning

Binning is a dimensionality reduction method that groups input variables into adjacent
‘bins’ and produces a smaller set of output variables by integrating the original variables
in each bin to yield one output. Available methods of binning in MVAPACK are detailed
below.

[Function File]xnew = binunif (X, ab, parms, w)
[Function File][xnew, abnew] = binunif (X, ab, parms, w)
[Function File][xnew, abnew, widths] = binunif (X, ab, parms, w)
[Function File]xnew = binunif (X, ab, parms, w)

Manually bin a one- or two-dimensional spectrum or spectral dataset in X based
on uniform bin widths provided in w. The abnew and widths values are optionally
returnable.

Chapter 5: Data pre-processing 29

[Function File]xnew = binoptim (X, ab, w, slack)
[Function File][xnew, abnew] = binoptim (X, ab, w, slack)
[Function File][xnew, abnew, widths] = binoptim (X, ab, w, slack)
[Function File][xnew, abnew, widths, indices] = binoptim (X, ab, w,

slack)
Optimally bin a one-dimensional spectrum or spectral dataset in X such that final
bins have a width no greater than w. The optionally returnable values in abnew
correspond to the new bin centers in abscissa units. The final optional return value
(widths) provides the widths of all the output bins.

This code is based on the description of the Optimized Bucketing Algorithm (OBA)
presented in:

Sousa et. al., ‘Optimized Bucketing of NMR spectra: Three case studies’,
Chemometrics and Intelligent Lab Systems, 2013.

The w value is optional and has a default value of 0.025. Also optional is the slack
variable, which must range from 0 to 1 and has a default value of 0.45.

[Function File]xnew = binadapt (X, ab, parms, w)
[Function File][xnew, abnew] = binadapt (X, ab, parms, w)
[Function File][xnew, abnew, widths] = binadapt (X, ab, parms, w)

Adaptively bin a one- or two-dimensional spectrum or spectral dataset in X such that
final bins have a width no less than w. The optionally returnable values in abnew
correspond to the new bin centers in abscissa units. The final optional return value
(widths) provides the widths of all the output bins.

In the one-dimensional case, data in X may either be a column vector or a data matrix
where each observation is arranged as a row in the matrix.

In the two-dimensional case, data in X may either be a data matrix where each direct-
dimension slice is along the rows, or a cell array that contains multiple matrices, each
having direct-dimension slices along its rows.

This code is based on the description of ‘AI-binning’ presented in:

De Meyer et. al., ‘NMR-Based Characterization of Metabolic Alterations
in Hypertension Using an Adaptive, Intelligent Binning Algorithm’, An-
alytical Chemistry, 2008.

[Function File]xnew = binmanual (X, ab, parms, roi)
[Function File][xnew, abnew] = binmanual (X, ab, parms, roi)
[Function File][xnew, abnew, widths] = binmanual (X, ab, parms, roi)
[Function File]xnew = binmanual (X, ab, parms, centers, widths)

Manually bin a one-dimensional spectrum or spectral dataset in X based on regions
of interest provided in roi, or centers and widths provided in centers and widths.
If regions of interest are used to bin, the abnew and widths values are optionally
returnable.

Chapter 6: Data pre-treatment 30

6 Data pre-treatment

Pre-treatment encompasses all operations that are needed to take the processed (‘sanitized’)
instrumental data to a form that is suitable for digestion by multivariate analysis algorithms
like PCA, PLS or OPLS. This chapter documents all available pre-treatment functions in
MVAPACK.

6.1 Removing data

Outlying or invalid observations due to failures in sample preparation may be removed in
MVAPACK. It is highly recommended that observations are removed in MVAPACK using
[rmobs], page 30, and not by deleting input data and rows from any class label files. The
former method is easier to document and trace back, whereas missing data can lead to
confusion later. The recommended way to remove observations is presented in Section 3.3.1
[Removal of undesirable observations], page 13.

Variables that are known to cause issues during model building (e.g. baseline, reference,
solvent, etc.) may also be removed using [rmvar], page 30. Alternatively, low-variation bin
variables may be ‘automatically’ removed using [rmnoise], page 30.

Functions for removing observations and variables from MVAPACK data are described
in the following subsections.

6.1.1 Removing observations

[Function File]Xrm = rmobs (X, idx)
Removes an observation (idx scalar) or observations (idx vector) from the dataset X.

6.1.2 Removing variables

[Function File]idx = findnearest (x, a)
Finds the nearest index in a vector x to a value a. This is similar to the find

command, but returns the nearest match if no entries are exact.

[Function File][Xrm, abrm] = rmvar (X, ab, idx)
Removes a variable (idx scalar) or variables (idx vector) from the dataset X and its
corresponding abscissa, ab. Use [findnearest], page 30 to locate the indices to supply
to idx.

[Function File][Xrm, abrm] = rmnoise (X, ab, idx)
[Function File][Xrm, abrm] = rmnoise (X, ab, idx, nstd)
[Function File][Xrm, abrm, idxrm] = rmnoise (X, ab, idx)
[Function File][Xrm, abrm, idxrm] = rmnoise (X, ab, idx, nstd)

Uses a relative standard deviation to distinguish between signal and noise in a binned
NMR spectral dataset. Bins identified as noise will be removed in the output data
matrix Xrm and abscissa abrm. The idx variable is used to defined a noise region.

An optional argument nstd may be supplied (default: 2) to set how many standard
deviations from the mean noise value the threshold will be.

IMPORTANT: This routine is not designed to be used with full-resolution data ma-
trices, especially when binning is a subsequent step. Such actions are almost surely
guaranteed to yield strange results.

Chapter 6: Data pre-treatment 31

6.2 Normalization

Normalization operations are applied to the rows of a data matrix in order to bring obser-
vations into the same domain. Normalization is commonly applied to correct for variations
in total sample concentration, spectrometer sensitivity, etc.

NOTE: All normalization routines below expect real (not complex) data, with the ex-
ception of [pscorr], page 32.

6.2.1 CS normalization

[Function File]Xn = csnorm (X)
[Function File][Xn, s] = csnorm (X)

Normalize the observations of a data matrix to constant integral. The calculated
normalization factors may be optionally returned in s.

6.2.2 PQ normalization

[Function File]Xn = pqnorm (X)
[Function File][Xn, s] = pqnorm (X)

Normalize the observations of a data matrix using the Probabilistic Quotient Nor-
malization method as described in:

F. Dieterle et. al. ‘Probabilistic Quotient Normalization as Robust
Method to Account for Dilution of Complex Biological Mixtures. Ap-
plication in 1H NMR Metabonomics.’ Analytical Chemistry, 2006.

6.2.3 HM normalization

[Function File]Xn = histmatch (X)
[Function File][Xn, s] = histmatch (X)

Normalize the observations of a data matrix using the Histogram Matching method
described in:

R. J. O. Torgrip et. al. ‘A note on normalization of biofluid 1H-NMR
data’. Metabolomics, 2008. 4(2008):114-121.

6.2.4 SNV normalization

[Function File]Xn = snv (X)
[Function File][Xn, mu] = snv (X)
[Function File][Xn, mu, s] = snv (X)

Normalize the observations of a data matrix using standard normal variate normal-
ization (SNV). Row centering is also performed in the process. The variables used to
center and scale X may optionally be returned.

6.2.5 MSC normalization

[Function File]Xn = mscorr (X)
[Function File]Xn = mscorr (X, r)

Use multiplicative scatter correction to normalize spectra into better alignment with
each other, row-wise at least. If the optional r reference observation is not provided,
the mean of the observations in X will be used.

Chapter 6: Data pre-treatment 32

6.2.6 PSC normalization

[Function File]Xn = pscorr (X)
[Function File][Xn, b] = pscorr (X)
[Function File]Xn = pscorr (X, r)
[Function File][Xn, b] = pscorr (X, r)

Use simultaneous phase-scatter correction to normalize spectra into better alignment
with each other, row-wise at least. If the optional r reference observation is not
provided, the mean of the observations in X will be used. Normalization factors may
be requested through the second optional return value b. More information here:

B. Worley, R. Powers, ‘Simultaneous Phase and Scatter Correction in
NMR Datasets’, Chemometr. Intell. Lab. Syst., 2013, submitted.

6.2.7 ROI normalization

[Function File]Xn = roinorm (X, ab, roi)
[Function File][Xn, s] = roinorm (X, ab, roi)

Normalize the observations of a data matrix to such that the integral of a spectral
region specified by roi is one. The calculated normalization factors may be optionally
returned in s. The values specified in roi must correspond to those in the abscissa ab.

6.3 Scaling

Scaling operations are applied to the columns of a data matrix in order to bring variables
into the same domain.

Without scaling, algorithms such as PCA and PLS examine the covariance eigenstruc-
ture of X and Y. It is possible – in fact, common – for large variables to dominate the
covariance eigenstructure, effectively causing PCA and PLS to dismiss smaller variables.
This unequal weighting of variables is corrected through scaling. The most common scaling
method, unit variance scaling, results in PCA and PLS examining the correlation eigen-
structure of their input matrices where all variables have equal weight.

Scaling methods other than UV have different purposes and effective weightings. A more
thorough discussion of scaling is discussed here:

R. A. van den Berg et. al., ‘Centering, scaling, and transformations: improv-
ing the biological information content of metabolomics data’, BMC Genomics,
2006(7): 142.

In the mathematical descriptions of the scaling methods below, the scaled matrix ~X is
the output of the scaling function f(X), and i and k are row and column indices of the data
matrices, respectively:

~X = [~xik] = f(X)

Furthermore, x̄k represents the sample mean of the k-th column of X, defined as:

x̄k =
1

N

N∑
i=1

xik

Chapter 6: Data pre-treatment 33

Finally, sk represents the sample standard deviation of the k-th column of X, defined
as:

sk =

√√√√ 1

N − 1

N∑
i=1

(xik − x̄k)2

6.3.1 No scaling

Performing no scaling prior to multivariate analysis results in fitting based on covariance
eigenstructure, not correlation eigenstructure. In English, large variations will be weighted
much more strongly than smaller variations in the fitted models.

[Function File]Xc = snone (X)
[Function File][Xc, mu] = snone (X)
[Function File][Xc, mu, s] = snone (X)
[Function File]... = snone (X, w)

Performs only mean-centering, but no scaling. An optional weighting vector w may be
passed during the scaling. The variables used to center and scale X may be optionally
returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wk

6.3.2 Unit variance scaling

Performing unit variance (UV) scaling prior to multivariate analysis results in fitting based
on the correlation eigenstructure of the data, meaning that every variable is equally weighted
in the fitted models.

[Function File]Xs = suv (X)
[Function File][Xs, mu] = suv (X)
[Function File][Xs, mu, s] = suv (X)
[Function File]... = suv (X, w)

Scale the variables of a data matrix to unit sample variance by dividing by their
sample standard deviation. Centering is also performed in the process. An optional
weighting vector w may be passed during the scaling. The variables used to center
and scale X may optionally be returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wksk

6.3.3 Pareto scaling

Pareto scaling is a middle-ground between applying no scaling and applying UV scaling.
Large variations are still weighted more strongly than smaller variations, but they will be
less likely to dominate the resulting models as would occur in unscaled data.

Chapter 6: Data pre-treatment 34

[Function File]Xs = spareto (X)
[Function File][Xs, mu] = spareto (X)
[Function File][Xs, mu, s] = spareto (X)
[Function File]... = spareto (X, w)

Scale the variables of a data matrix by the square root of their sample standard
deviation. Centering is also performed in the process. An optional weighting vector
w may be passed during the scaling. The variables used to center and scale X may
be optionally returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wk
√
sk

6.3.4 Range scaling

Range scaling scales all variables to a unit range, effectively comparing signals relative to
an underlying range of responses.

[Function File]Xs = srange (X)
[Function File][Xs, mu] = srange (X)
[Function File][Xs, mu, s] = srange (X)
[Function File]... = srange (X, w)

Scale the variables of a data matrix to unit range. Centering is also performed in the
process. An optional weighting vector w may be passed during the scaling.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wk(xk,max − xk,min)

6.3.5 Level scaling

Level scaling focuses multivariate analysis on fitting the relative responses of all signals.
Signals with larger relative responses will be weighted more heavily than those with smaller
relative responses.

[Function File]Xs = slevel (X)
[Function File][Xs, mu] = slevel (X)
[Function File][Xs, mu, s] = slevel (X)
[Function File]... = slevel (X, w)

Scale the variables of a data matrix by their mean value, the level scaling method.
Centering is also performed in the process. An optional weighting vector w may be
passed during the scaling. The values used to center and scale X may optionally be
returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wkx̄k

6.3.6 VAST scaling

VAriable STability (VAST) scaling focuses multivariate analysis on fitting small variations
in a data matrix.

Chapter 6: Data pre-treatment 35

[Function File]Xs = svast (X)
[Function File][Xs, mu] = svast (X)
[Function File][Xs, mu, s] = svast (X)
[Function File]... = svast (X, w)

Scale the variables of a data matrix using VAST scaling. Centering is also performed
in the process. An optional weighting vector w may be passed during the scaling.
The variables used to center and scale X may be optionally returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik − x̄k

wksk
· x̄k

sk

6.4 Denoising

Methods of denoising are intended to remove variation in a data matrix that does not
contribute to class distinction. This removal results in more parsimonious supervised models
that exhibit lower lack-of-fit sum-of-squares.

6.4.1 Direct orthogonal signal correction

[Function File][Z, W, P, T] = dosc (X, Y, A)
[Function File][Z, W, P, T] = dosc (X, Y, A, tol)

Performs Direct Orthogonal Signal Correction as described in:

Westerhuis J. A., de Jong S., Smilde A. K., ‘Direct orthogonal signal
correction’, Chemometrics and Intelligent Laboratory Systems, 56 (2001):
13-25.

The function requires a data matrix X, a response matrix Y, and a number of OSC
components to calculate A. If a fourth argument tol is provided, it will be used as
the tolerance for calculating a pseudoinverse of the data matrix. Otherwise, a default
value of 1e-3 will be used.

The function returns a corrected data matrix Z, OSC weights W, OSC loadings P
and OSC score components T.

6.4.2 Per-class treatment of data

One method of “denoising” is to apply data pre-treatment algorithms to a data matrix on
a per-class basis, instead of treating the data as a whole. The very act of applying the same
action to each class individually can increase the between-class variation in a dataset and
enhance class separations.

[Function File]Xnew = perclass (fn, X, Y)
Performs the operation defined in the function handle fn on X in a class-dependent
manner. In other words, instead of treating the entire dataset as one as would occur
when applying fn normally, fn is applied to each class individually and the results are
reassembled into the matrix Xnew.

It is important to note that the function fn must not modify either the number of
rows or columns of the data matrix X. Finally, the function handle fn must be of the
following form:

function Xnew = fn (X), ... end

Chapter 7: Multivariate modeling 36

7 Multivariate modeling

Multivariate modeling in MVAPACK is intended to be used primarily for chemical fin-
gerprinting applications where global chemical trends in spectral data are sought. For all
algorithms discussed below, scores and loadings will be produced as low-dimensional repre-
sentations of high-dimensional observations and variables, respectively.

7.1 Model training

The process of generating a model from an initial set of data is referred to as ‘training’ the
model, where the initial dataset is called the ‘training set’.

The algorithms documented below are used to form unsupervised (PCA) or supervised
(PLS, OPLS, LDA) multivariate models from input data matrices X and response matrices
Y . These algorithms search for variations in the high-dimensional input data that either
contribute most to the total variation (PCA) or contribute most to class distinction (PLS,
OPLS, LDA).

In the mathematical descriptions of the model fitting methods below, X is an N × K
data matrix and Y is an N ×M response matrix.

7.1.1 PCA

Principal Component Analysis (PCA) generates a linear model of an input data matrix X
such that the model components are orthogonal and capture a maximal amount of variation
present in X. The PCA model is structured as follows:

X = TP ′ + E =
A∑

a=1

tap
′
a + E

Where T is an N × A matrix of scores, P is a K × A matrix of loadings, E is an N ×K
matrix of residuals. The number of components A is chosen by cross-validation such that the
model’s cumulative R2 metric is greater than 0.01 and the model components’ cumulative
Q2 metrics are strictly increasing.

PCA model scores in T are low-rank approximations of observations in X, and model
loadings in P are approximations of variables in X.

[Function File]mdl = pca (X)
[Function File]mdl = pca (X, scalefn)
[Function File]mdl = pca (X, scalefn, ncv)
[Function File]mdl = pca (X, scalefn, ncv, aout)
[Function File]mdl = pca (X, scalefn, ncv, aout, w)

Performs Principal Component Analysis (PCA) on the input data matrix X using
the iterative NIPALS method. More information may be found here:

P. Geladi, B. R. Kowalski. ‘Partial Least Squares Regression: A Tutorial’,
Analytica Chimica Acta, 1986(185): 1-17.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV

Chapter 7: Multivariate modeling 37

groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The optional argument aout may be used if a specific number of model components
is desired. CAUTION: using aout will not guarantee that the resultant model com-
ponents are statistically significant!

The last optional argument w may be used to manually weight the variables during
the PCA analysis. The weights will be effectively multiplied into the scale values
obtained by scalefn.

7.1.2 PLS

Partial Least Squares Projection to Latent Structures (PLS) generates a linear model of an
input data matrix X and response matrix Y such that the model components are orthog-
onal and capture a maximal amount of correlation between X and Y . The PLS model is
structured as follows:

X = TP ′ + E =
A∑

a=1

tap
′
a + E

Y = UC ′ + F =
A∑

a=1

uac
′
a + F

Where T is an N ×A matrix of scores, P is a K ×A matrix of X-loadings, E is an N ×K
matrix of X residuals, U is an N×A matrix of Y -scores, C is anM×A matrix of Y -weights,
and F is an N ×M matrix of Y residuals.

The number of components A is chosen by cross-validation such that the model’s cumu-
lative R2

X and R2
Y metrics are greater than 0.01 and the model components’ cumulative Q2

metrics are strictly increasing.

PLS model scores in T are low-rank approximations of observations in X and are good
predictors of U . Model X-loadings in P are approximations of variables in X and Y -weights
in C are approximations of columns of Y .

[Function File]mdl = pls (X, Y)
[Function File]mdl = pls (X, Y, scalefn)
[Function File]mdl = pls (X, Y, scalefn, ncv)
[Function File]mdl = pls (X, Y, scalefn, ncv, aout)
[Function File]mdl = pls (X, Y, scalefn, ncv, aout, w)

Performs Projection to Latent Structures (PLS) on the input data matrix X and
response matrix Y using the iterative NIPALS method. More information may be
found here:

S. Wold, M. Sjostrom, L. Eriksson, ‘PLS-regression: A basic tool in
chemometrics’, Chemometr. Intell. Lab. Syst., 2001(58): 109-130.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used

Chapter 7: Multivariate modeling 38

to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The final optional argument aout may be used if a specific number of model compo-
nents is desired. CAUTION: using aout will not guarantee that the resultant model
components are statistically significant!

7.1.3 OPLS

Orthogonal Projections to Latent Structures (OPLS) generates a linear model of an input
data matrix X and response matrix Y such that the model components are orthogonal and
capture both a maximal amount of correlation and anti-correlation between X and Y . The
OPLS model is structured as follows:

X = TpP
′
p + ToP

′
o + E =

Ap∑
a=1

tp,ap
′
p,a +

Ao∑
b=1

to,bp
′
o,b + E

Y = UC ′ + F =

Ap∑
a=1

uac
′
a + F

Where Tp is an N × Ap matrix of predictive scores, To is an N × Ao matrix of orthogonal
scores, Pp is a K×Ap matrix of predictive X-loadings, Po is a K×Ao matrix of orthogonal
X-loadings, E is an N ×K matrix of X residuals, U is an N ×Ap matrix of Y -scores, C is
an M ×Ap matrix of Y -weights, and F is an N ×M matrix of Y residuals.

The number of predictive components Ap is chosen by cross-validation such that the
model’s cumulative R2

Xp
and R2

Y metrics are greater than 0.01 and the model components’
cumulative Q2 metrics are strictly increasing. At least one orthogonal component is simul-
taneously extracted with each predictive component during fitting.

OPLS scores in Tp and To are low-rank approxiations of predictive and orthogonal vari-
ation in observations in X, respectively. The OPLS loadings in Pp and Po fill similar roles
for the variables in X.

[Function File]mdl = opls (X, Y)
[Function File]mdl = opls (X, Y, scalefn)
[Function File]mdl = opls (X, Y, scalefn, ncv)
[Function File]mdl = opls (X, Y, scalefn, ncv, aout)
[Function File]mdl = opls (X, Y, scalefn, ncv, aout, w)

Performs Orthogonal Projection to Latent Structures (OPLS) on the input data ma-
trix X and response matrix Y using the iterative NIPALS method, described here:

J. Trygg, S. Wold, ‘Orthogonal Projections to Latent Structures (O-
PLS)’, J. Chemometrics, 2002(16): 119-128.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [spareto], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

Chapter 7: Multivariate modeling 39

The final optional argument aout may be used if a specific number of model compo-
nents is desired. If aout is specified as a scalar, then the model will be built with that
number of predictive components. If aout is a vector, the first element should hold
the desired number of predictive components. The remaining elements in aout should
hold the desired number of orthogonal components for each predictive component.
CAUTION: using aout will not guarantee that the resultant model components are
statistically significant!

7.1.4 LDA

Linear Discriminant Analysis (LDA) generates a linear model of an input data matrixX and
response matrix Y such that the model components capture a maximal amount of between-
class variation. The model projects the (non-singular) input data into a discrimination
space as follows:

T = XP

In other words, the model is structured as follows:

X = TP ′ + E

Where P is a matrix of the first A significant eigenvectors of the Fisher LDA matrix S:

PDP−1 = S = S−1W SB

And SW is the within-class covariance matrix and SB is the between-class covariance matrix.
New observations are classified based on which class mean they fall closest to after projection
by P .

The number of components A is chosen by cross-validation such that the model’s cumu-
lative R2

X and R2
Y metrics are greater than 0.01 and the model components’ cumulative Q2

metrics are strictly increasing.

[Function File]mdl = lda (X, Y)
[Function File]mdl = lda (X, Y, scalefn)
[Function File]mdl = lda (X, Y, scalefn, ncv)
[Function File]mdl = lda (X, Y, scalefn, ncv, aout)

Performs Linear Discriminant Analysis (LDA) on the input data matrix X and the
input response matrix Y using an eigendecomposition of the within-class and between-
class covariance matrix ratio. More information may be found here:

W. Hardle, L. Simar. ‘Applied Multivariate Statistical Analysis, 2nd ed.’,
Springer-Verlag, Berlin Heidelberg, 2007.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The final optional argument aout may be used if a specific number of model compo-
nents is desired. CAUTION: using aout will not guarantee that the resultant model
components are statistically significant!

Chapter 7: Multivariate modeling 40

7.1.5 MB-PCA

Multiblock Principal Component Analysis (MBPCA) generates a linear model of a set of
B input data matrices X = [X1X2 · · ·XB] such that the overall model components are
orthogonal and capture a maximal amount of variation present in X. The MBPCA model
is structured as follows:

X = [X1 X2 · · · XB],∀b ∈ [1, B]

Where each block (Xb) is itself a bilinear model:

Xb = TbP
′
b + Eb =

A∑
a=1

tb,ap
′
b,a + Eb

Where Tb is an N ×A matrix of block scores, Pb is a Kb×A matrix of block loadings, Eb is
an N ×Kb matrix of residuals. The number of components A is chosen by cross-validation
such that the model’s cumulative R2 metric is greater than 0.01 and the model components’
cumulative Q2 metrics are strictly increasing.

PCA model scores in T (and Tb) are low-rank approximations of observations in X (and
Xb), and model loadings in P (and Pb) are approximations of variables in X (and Xb).

[Function File]mdl = mbpca (X)
[Function File]mdl = mbpca (X, scalefn)
[Function File]mdl = mbpca (X, scalefn, ncv)
[Function File]mdl = mbpca (X, scalefn, ncv, aout)

Performs Multiblock Principal Component Analysis (MBPCA) on the set of input
data matrices X = {X1 . . . XB} using a Consensus PCA (CPCA) method with
modifications from Westerhuis. More information may be found here:

J. Westerhuis, T. Kourti, J. F. MacGregor. ‘Analysis of Multiblock and
Hierarchical PCA and PLS models’, Journal of Chemometrics, 1998(21):
301-321.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The final optional argument aout may be used if a specific number of model compo-
nents is desired. CAUTION: using aout will not guarantee that the resultant model
components are statistically significant!

7.1.6 MB-PLS

Multiblock Partial Least Squares Projection to Latent Structures (MBPLS) generates a
linear model of a set of B input data matrices X = [X1X2 · · ·XB] and a response matrix Y
such that the overall model components are orthogonal and capture a maximal amount of
correlation between X and Y . The MBPLS model is structured as follows:

X = [X1 X2 · · · XB],∀b ∈ [1, B]

Chapter 7: Multivariate modeling 41

Where each block (Xb) is itself a bilinear model:

Xb = TbP
′
b + Eb =

A∑
a=1

tb,ap
′
b,a + Eb

Y = UC ′ + F =
A∑

a=1

uac
′
a + F

Where Tb is an N ×A matrix of block scores, Pb is a Kb×A matrix of Xb-loadings, Eb is an
N ×Kb matrix of Xb residuals, U is an N × A matrix of Y -scores, C is an M × A matrix
of Y -weights, and F is an N ×M matrix of Y residuals.

The number of components A is chosen by cross-validation such that the model’s cumu-
lative R2

X and R2
Y metrics are greater than 0.01 and the model components’ cumulative Q2

metrics are strictly increasing.

PLS model scores in T (and Tb) are low-rank approximations of observations in X (and
Xb) and are good predictors of U . Model Xb-loadings in Pb are approximations of variables
in Xb and Y -weights in C are approximations of columns of Y .

[Function File]mdl = mbpls (X, Y)
[Function File]mdl = mbpls (X, Y, scalefn)
[Function File]mdl = mbpls (X, Y, scalefn, ncv)
[Function File]mdl = mbpls (X, Y, scalefn, ncv, aout)

Performs Multiblock Projection to Latent Structures (MBPLS) on the set of input
data matrices X = {X1 . . . XB} and response matrix Y using a multiblock PLS
method with modifications from Westerhuis. More information may be found here:

J. Westerhuis, T. Kourti, J. F. MacGregor. ‘Analysis of Multiblock and
Hierarchical PCA and PLS models’, Journal of Chemometrics, 1998(21):
301-321.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The final optional argument aout may be used if a specific number of model compo-
nents is desired. CAUTION: using aout will not guarantee that the resultant model
components are statistically significant!

7.1.7 MB-OPLS

Multiblock Orthogonal Projections to Latent Structures (MBOPLS) generates a linear
model of a set of B input data matrices X = [X1X2 · · ·XB] and a response matrix Y
such that the overall model components are orthogonal and capture a maximal amount of
correlation between X and Y . The MBOPLS model is structured as follows:

X = [X1 X2 · · · XB],∀b ∈ [1, B]

Chapter 7: Multivariate modeling 42

Where each block (Xb) is itself a bilinear model:

Xb = TbP
′
b + To,bP

′
o,b + Eb =

A∑
a=1

tb,ap
′
b,a +

Ao∑
ao=1

to,b,ap
′
o,b,a + Eb

Y = UC ′ + F =
A∑

a=1

uac
′
a + F

Where Tb is an N ×A matrix of block scores, Pb is a Kb×A matrix of Xb-loadings, Eb is an
N ×Kb matrix of Xb residuals, U is an N × A matrix of Y -scores, C is an M × A matrix
of Y -weights, and F is an N ×M matrix of Y residuals.

The number of components A is chosen by cross-validation such that the model’s cumu-
lative R2

X and R2
Y metrics are greater than 0.01 and the model components’ cumulative Q2

metrics are strictly increasing.

PLS model scores in T (and Tb) are low-rank approximations of observations in X (and
Xb) and are good predictors of U . ModelXb-loadings in Pb are approximations of variables in
Xb and Y -weights in C are approximations of columns of Y . Orthogonal scores and loadings
have been identified in To,b and Po,b and are essentially low-rank stores for variation that
interferes with PLS predictive components.

[Function File]mdl = mbopls (X, Y)
[Function File]mdl = mbopls (X, Y, scalefn)
[Function File]mdl = mbopls (X, Y, scalefn, ncv)
[Function File]mdl = mbopls (X, Y, scalefn, ncv, aout)

Performs Multiblock Orthogonal Projections to Latent Structures (MBOPLS) on the
set of input data matrices X = {X1 . . . XB} nd response matrix Y using a multiblock
OPLS method. More information may be found here:

B. Worley, R. Powers. ‘A Sequential Algorithm for Multiblock Orthogo-
nal Projections to Latent Structures’, Journal of Chemometrics, In prep.

The optional argument scalefn may be set to the function handle of an appropriate
scaling routine. The default scaling function is [suv], page 33.

The optional argument ncv may be used to specify the number of cross-validation
iterations and/or groups. If ncv is a scalar, it will be used to set the number of CV
groups, with 10 CV iterations. If ncv is a 2-element vector, its elements will be used
to set the number of CV groups and iterations, respectively. The default is to use 7
groups and 10 iterations.

The final optional argument aout may be used if a specific number of model compo-
nents is desired. If aout is specified as a scalar, then the model will be built with that
number of predictive components. If aout is a vector, the first element should hold
the desired number of predictive components. The remaining elements in aout should
hold the desired number of orthogonal components for each predictive component.
CAUTION: using aout will not guarantee that the resultant model components are
statistically significant!

Chapter 7: Multivariate modeling 43

7.2 Model prediction

Once a model has been trained and suitably validated, it may be used to model new obser-
vations (a ‘prediction set’) in a step unsurprisingly referred to as ‘prediction’.

Given a model trained on an N × K matrix of observations and an N ×M matrix of
classes, a new set of n K-dimensional observations may be classified by the model, resulting
in an n×M matrix of predicted class memberships for the new observations.

[Function File]Y = classify (mdl, X)
[Function File][Y, T] = classify (mdl, X)

Predicts responses Y from one or more observations X based on the discriminant
analysis model mdl. Any model that contains a class matrix of the format generated
by [classes], page 48 should support classification of new observations.

An optional second return value (T) may be requested that holds transformed scores
for the new observations.

7.3 Model visualization

Relationships of observations within a dataset may be visualized by plotting scores with
[scoresplot], page 43. Loadings analogously represent variables and may be drawn with
[loadingsplot], page 43. All forms of plotting, coloring, etc are documented in the subsections
below.

7.3.1 Plotting

[Function File]stackplot (X)
[Function File]stackplot (X, ab)

Builds a stacked line plot of time-domain FID data or frequency- domain spectral
data. If time-domain data is plotted, ab must hold the time values for the abcissa.
If frequency-domain values are to be plotted, ab must have chemical shifts. The ab
vector is optional.

[Function File]scoresplot (mdl)
[Function File]scoresplot (mdl, d)
[Function File]scoresplot (mdl, d, coloring)
[Function File]scoresplot (mdl, d, coloring, numbers)

Builds a scores plot of PCA, PLS or OPLS modeled data. The number of components
to plot may be supplied as the optional second argument d. An optional matrix
coloring may be passed to define the color scheme of the plot. An optional third
argument (numbers) may be set to true (default is false) to change the plotted points
into observation numbers.

[Function File]loadingsplot (mdl)
[Function File]loadingsplot (mdl, coloring)
[Function File]loadingsplot (mdl, coloring, numbers)
[Function File]h = loadingsplot (mdl)
[Function File]h = loadingsplot (mdl, coloring)
[Function File]h = loadingsplot (mdl, coloring, numbers)

Builds a loadings plot from PCA, PLS or OPLS modeled data. An optional second
argument coloring may be set to an appropriate function (See [nocolors], page 45,

Chapter 7: Multivariate modeling 44

[varcolors], page 45). An optional third argument (numbers) may be set to true
(default is false) to change the plotted points into variable numbers.

[Function File]backscaleplot (ab, mdl)
[Function File]backscaleplot (ab, mdl, coloring)
[Function File]pdata = backscaleplot (ab, mdl, coloring)

Builds a backscaled loadings plot from PCA, PLS or OPLS modeled data. An optional
second argument coloring may be set to enable or disable coloring of the backscaled
loadings values. The default behavior is to generate uncolored plots, because plot
coloring can take a while.

Because external plotting programs like gnuplot are considerably quicker at plotting
multicolored lines, colored backscaled data ready for plotting may be returned into
pdata.

More information on the technique of backscaling model loadings can be found in the
following two references:

O. Cloarec et. al., ‘Evaluation of the Orthogonal Projection on Latent
Structure Model Limitations Caused by Chemical Shift Variability and
Improved Visualization of Biomarker Changes in 1H NMR Spectroscopic
Metabonomic Studies’, Anal. Chem., 2005(77): 517–526.

O. Cloarec et. al., ‘Statistical Total Correlation Spectroscopy: An Ex-
ploratory Approach for Latent Biomarker Identification from Metabolic
1H NMR Data Sets’, Anal. Chem., 2005(77): 1282–1289.

[Function File]weightsplot (mdl)
[Function File]weightsplot (mdl, coloring)
[Function File]h = weightsplot (mdl)
[Function File]h = weightsplot (mdl, coloring)

Builds a loadings plot from PCA, PLS or OPLS modeled data. An optional second
argument coloring may be specified to color the points. See [nocolors], page 45,
[varcolors], page 45.

[Function File]cvscoresplot (mdl)
[Function File]cvscoresplot (mdl, d)
[Function File]cvscoresplot (mdl, d, coloring)
[Function File]cvscoresplot (mdl, d, coloring, numbers)

Builds a cross-validated scores plot of PLS or OPLS modeled data. The number of
components to plot may be supplied as the optional second argument d. An optional
matrix coloring may be passed to define the color scheme of the plot. An optional
third argument (numbers) may be set to true (default is false) to change the plotted
points into observation numbers.

[Function File]splot (mdl)
[Function File]splot (mdl, a)
[Function File]splot (mdl, a, numbers)
[Function File]pdata = splot (. . .)

Builds an S-plot from (O)PLS modeled data to facilitate identification of variables
that contribute strongly to class distinction. An optional second argument a may be

Chapter 7: Multivariate modeling 45

passed to select which predictive component is to be analyzed. The default behavior
is to plot the first predictive component. An optional third argument (numbers) may
be set to true (default is false) to change the plotted points into variable numbers.

[Function File]susplot (mdl1, mdl2)
[Function File]susplot (mdl1, mdl2, a)
[Function File]susplot (mdl1, mdl2, a, numbers)
[Function File]pdata = susplot (. . .)

Builds a Shared and Unique Structure (SUS)-plot from (O)PLS modeled data to
facilitate identification of variables that covary and contravary in two models. An
optional third argument a may be passed to select which predictive component is
to be analyzed. The default behavior is to plot the first predictive component. An
optional fourth argument (numbers) may be set to true (default is false) to change
the plotted points into variable numbers.

[Function File]rqplot (mdl)
[Function File]h = rqplot (mdl)

Builds a bar plot of R2/Q2 values from a PCA, PLS, OPLS or LDA model.

[Function File]permscatter (S)
Plots information in S that has been calculated by [permtest], page 46, in a scatter
plot format.

[Function File]permdensity (S)
Plots information in S that has been calculated by [permtest], page 46, using kernel
density estimation to reconstruct the null distributions generated by permutation.

7.3.2 Coloring

[Function File]colors = clscolors (Y)
Uses the Y matrix created by [classes], page 48 to build different colors for each class.

[Function File]colors = obscolors (XY)
Uses the XY matrix (either X or Y) to build different colors for each observation,
rainbow-style.

[Function File]colors = varcolors (X)
Uses the X matrix to build different colors for each variable, rainbow-style.

[Function File]colors = nocolors (XY)
Uses the XY matrix (either X or Y) to build a matrix of blackness for a scatter plot.

7.4 Model validation

Validation is a critical step in the process of using supervised multivariate models, such
as those produced by PLS or OPLS. Standard n-fold cross-validation is automatically per-
formed by [pca], page 36, [pls], page 37 and [opls], page 38, producing R2 and Q2 statistics
that may be extracted with [rq], page 45 or [rqdiff], page 46. Furthermore, PLS and OPLS
models must be further validated by CV-ANOVA or permutation testing.

Chapter 7: Multivariate modeling 46

[Function File]v = rq (mdl)
Returns the calculated R2/Q2 values from a PCA, PLS OPLS or LDA model.

[Function File]v = rqdiff (mdl)
Returns the calculates R2/Q2 values from a PCA, PLS or OPLS model, but gives
differential values. In other words, this function gives the R2 and Q2 values per-
component, not cumulative.

[Function File]S = cvanova (mdl)
Uses an already performed internal cross-validation of a PLS or OPLS model to
calculate a CV-ANOVA p-value. The output structure S contains the following in-
formation:

S.SS: cross-validated sum of squares.
S.MS: cross-validated mean square errors.
S.DF: degrees of freedom.
S.F: f-statistic from cross-validated mean square errors.
S.p: p-value indicating how well the model fits the data.

L. Eriksson, J. Trygg, S. Wold. ‘CV-ANOVA for significance testing of
of PLS and OPLS models.’ J. Chemometrics 2008(22): 594-600.

[Function File]S = permtest (mdl)
[Function File]S = permtest (mdl, n)

Uses response permutation testing of a PLS or OPLS model to calculate the sig-
nificance of the model parameters. The output structure S contains the following
information:

S.n: number of permutations performed.
S.r: permutation Y-correlation coefficients.
S.Rsq.orig: original R2 value.
S.Qsq.orig: original Q2 value.
S.Rsq.perm: permutation R2 values.
S.Qsq.perm: permutation Q2 values.
S.Rsq.t: R2 t-statistic.
S.Qsq.t: Q2 t-statistic.
S.Rsq.p: R2 t-test p-value.
S.Qsq.p: Q2 t-test p-value.

An optional second argument n may be passed to set the number of permutations to
execute. The default number of permutations is 100.

The structure S generated by this function may be passed to [permscatter], page 45
or [permdensity], page 45 for visualization of the permutation test results.

7.5 Model manipulation

Supplementary data such as class identity matrices and class labels may be added to models
for use by various plotting and analysis routines.

Chapter 7: Multivariate modeling 47

On the other hand, scores, loadings and other model components may be extracted for
use in other analyses.

The available functions for manipulating model structures are documented below.

7.5.1 Adding data

[Function File]mdlAdd = addclasses (mdl, Y)
[Function File]mdlAdd = addclasses (mdl, Y, overwrite)

Adds a supplementary class matrix to a PCA, PLS, etc model. This function will not
work for supervised models that already contain a class matrix unless the overwrite
argument is set to true.

The function is intended to be used like so:
mdl = addclasses(mdl, Y);

[Function File]mdlAdd = addlabels (mdl, labels)
Adds a supplementary string cell array (labels) to a PCA, PLS, etc model. The labels
will be placed on scores plots and written to saved scores files. If mdl already contains
a labels array, it will be replaced with labels without warnings.

The function is to be used as follows:
mdl = addlabels(mdl, labels);

7.5.2 Extracting data

[Function File]T = scores (mdl)
[Function File]T = scores (mdl, n)

Returns the calculated scores values from a PCA, PLS or OPLS model. When n is
provided as a second argument, only n columns will be returned in T. Otherwise, the
full matrix of scores will be returned.

[Function File]P = loadings (mdl)
[Function File]P = loadings (mdl, n)

Returns the calculated loadings values from a PCA, PLS or OPLS model. When n is
provided as a second argument, only n columns will be returned in P. Otherwise, the
full matrix of loadings will be returned.

[Function File]W = weights (mdl)
[Function File]W = weights (mdl, n)

Returns the calculated weights values from a PCA, PLS or OPLS model. When n
is provided as a second argument, only n columns will be returned in W. Otherwise,
the full matrix of weights will be returned.

[Function File]T = cvscores (mdl)
[Function File]T = cvscores (mdl, n)

Returns the cross-validated scores from a PLS model in the form of an array. Each
element of the array contains the reconstructed scores from a monte carlo leave-n-
out cross validation. The length of the array equals the number of cross-validation
iterations.

Chapter 7: Multivariate modeling 48

7.6 Classes and labels

Multivariate discriminant analysis algorithms like PLS and OPLS require a class member-
ship matrix that defines which class each data matrix observation belongs to. Moreover,
textual labels of the classes in a model are required when visualization is performed. The
following functions are useful for creating those data structures for addition to models.

[Function File]Y = classes ([n1, n2, . . . , nM])
Creates a Y-matrix suitable for discriminant analysis, where class membership is
denoted by a 1 in the corresponding class column. One vector argument is required,
where the number of elements in the vector equals the number of classes and each
element in the vector gives the number of observations in that class.

[Function File]labels = loadlabels (fname)
[Function File][labels, indices] = loadlabels (fname)
[Function File][labels, indices, Y] = loadlabels (fname)

Loads in class label assignments for a dataset from a text file, where the n’th line in
the text file contains the class label of the n’th observation.

An optional second return value (indices) can be requested that contains the row
indices that will bring the associated data matrix into sync with the class membership
matrix, like so: X = X(indices,:);

An optional third return value (Y) can be requested that contains the binary class
membership matrix used during PLS.

7.7 Separations

Methods of quantifying class separations in (validated) multivariate models are available in
MVAPACK, documented below.

[Function File]j2v = j2 (mdl)
[Function File]j2v = j2 (mdl, Y)

Computes the J2 clustering statistic (ratio of the determinants of entire dataset co-
variance to each cluster covariance) on the computed scores of a PCA, PLS or OPLS
model. PCA models need an accompanying Y-matrix to define classes. It may ei-
ther be passed as a second argument to this function or added to the model (See
[addclasses], page 47).

For more information on the J2 metric, see: K. Koutroumbas, S. Theodoridis. ‘Pat-
tern Recognition’. Elsevier Press, Amsterdam, 2006.

[Function File]D = overlaps (mdl, k)
[Function File]D = overlaps (mdl, k, Y)

Computes a p-value matrix between all class scores of a PCA, PLS or OPLS model.
PCA models need an accompanying Y-matrix to define classes (See [addclasses],
page 47).

The default number of components (k) will be set to the model component count,
unless specified in the arguments.

[Function File]D = distances (mdl)
[Function File]D = distances (mdl, k)

Chapter 7: Multivariate modeling 49

[Function File]D = distances (mdl, k, metric)
[Function File]D = distances (mdl, k, metric, Y)

Computes a distance matrix between all class scores of a PCA, PLS or OPLS model.
PCA models need an accompanying Y-matrix to define classes.

The default number of components (k) will be set to the model component count,
unless specified in the arguments. The default metric is the squared Mahalanobis
distance.

[Function File]retval = euclidean (X, y)
Return the squared Euclidean distance between the means of the multivariate samples
x and y, which must have the same number of components (columns), but may have
a different number of observations (rows).

Appendix A: Function index 50

Appendix A Function index

This appendix lists all functions implemented in the MVAPACK toolbox. If a function is
mentioned in the main body of this manual, a link will be placed to that mention. Otherwise,
the full function documentation is given in the appendix.

Please remember that not all functions below are directly useful during data handling,
as they are typically subroutines of the truly user-friendly functions in MVAPACK. As a
general rule: if it’s mentioned in the main body of this manual, it’s meant to be directly
used.

A.1 A

[Function File]p = acquparms (dirname)
See [acquparms], page 20.

[Function File]p = acquparms_agilent (dirname, fbase, dim)
Reads values from the key-value pairs found in the Agilent ’procpar’ file from a
filename provided by the [acquparms], page 20 function. It is highly recommended
that you use [acquparms], page 20 instead of this function.

[Function File]p = acquparms_bruker (dirname, fbase, dim)
Reads values from the key-value pairs found in the Bruker ’acqus’ file from a filename
provided by the [acquparms], page 20 function. It is highly recommended that you
use [acquparms], page 20 instead of this function.

[Function File]mdlAdd = addclasses (mdl, Y)
[Function File]mdlAdd = addclasses (mdl, Y, overwrite)

See [addclasses], page 47.

[Function File]mdlAdd = addlabels (mdl, labels)
See [addlabels], page 47.

[Function File]wfid = apodize (fid, parms)
[Function File]wfid = apodize (fid, parms, fn)
[Function File]wfid = apodize (fid, parms, fn, opts)

See [apodize], page 22.

[Function File]wfid = apodize1d (fid, parms, fn, opts)
Performs apodization of a one-dimensional time-domain NMR free-induction decay
in order to alleviate truncation artifacts that can arise from Fourier transformation.

Instead of using this function directly, it is recommended that you use [apodize],
page 22.

[Function File]wfid = apodize2d (fid, parms, fn, opts)
Performs apodization of a two-dimensional time-domain NMR free-induction decay
in order to alleviate truncation artifacts that can arise from Fourier transformation.

Instead of using this function directly, it is recommended that you use [apodize],
page 22.

Appendix A: Function index 51

[Function File]sp = autophase (s, parms)
[Function File][sp, phc0, phc1] = autophase (s, parms)
[Function File]sp = autophase (s, parms, objective)
[Function File][sp, phc0, phc1] = autophase (s, parms, objective)

See [autophase], page 25.

[Function File][sp, phc0, phc1] = autophase1d (s, objective)
Corrects the phase of a one-dimensional Fourier-transformed spectrum or spectral
dataset found by simplex optimization. The method uses an entropy minimization
objective during optimization (See [simplex entropy], page 25).

Instead of using this function directly, it is recommended that you use [autophase],
page 25.

[Function File][sp, phc0, phc1] = autophase2d (s, objective)
Corrects the phase of a two-dimensional Fourier-transformed spectrum or spectral
dataset found by simplex optimization. The method uses a whitening objective during
optimization (See [simplex whiten], page 26).

Instead of using this function directly, it is recommended that you use [autophase],
page 25.

A.2 B

[Function File]B = backscale (A, center, scale)
[Function File]B = backscale (mdl)
[Function File][B, m] = backscale (mdl)
[Function File][B, m, s] = backscale (mdl)

Undo a scaling operation performed while building a model of the matrix A. The
columns (variables) of A must match the lengths of the vectors center and scale. The
inputs may either be a complete set of data to perform backscaling or a PCA, PLS
or OPLS model. In the latter case, the extracted centering and scaling vectors used
during backscaling may be optionally returned as m and s as well.

[Function File]Y = backscaleclasses (mdl)
Recover the original discriminant analysis class matrix Y see [classes], page 48 from
a scaled, centered version using [backscale], page 51.

[Function File]backscaleplot (ab, mdl)
[Function File]backscaleplot (ab, mdl, coloring)
[Function File]pdata = backscaleplot (ab, mdl, coloring)

See [backscaleplot], page 44.

[Function File]roi = bin2roi (abnew, widths)
See [bin2roi], page 26.

[Function File]xnew = binadapt (X, ab, parms, w)
[Function File][xnew, abnew] = binadapt (X, ab, parms, w)
[Function File][xnew, abnew, widths] = binadapt (X, ab, parms, w)

See [binadapt], page 29.

Appendix A: Function index 52

[Function File]xnew = binadapt1d (X, ab, w)
[Function File][xnew, abnew] = binadapt1d (X, ab, w)
[Function File][xnew, abnew, widths] = binadapt1d (X, ab, w)

Adaptively bin a one-dimensional spectrum or spectral dataset.

It is highly recommended that you use [binadapt], page 29 instead of this function
directly.

[Function File]xnew = binadapt2d (X, ab, w)
[Function File][xnew, abnew] = binadapt2d (X, ab, w)
[Function File][xnew, abnew, widths] = binadapt2d (X, ab, w)

Adaptively bin a two-dimensional spectrum or spectral dataset.

It is highly recommended that you use [binadapt], page 29 instead of this function
directly.

[Function File]xnew = binmanual (X, ab, parms, roi)
[Function File][xnew, abnew] = binmanual (X, ab, parms, roi)
[Function File][xnew, abnew, widths] = binmanual (X, ab, parms, roi)
[Function File]xnew = binmanual (X, ab, parms, centers, widths)

See [binmanual], page 29.

[Function File]xnew = binmanual1d (X, ab, roi)
[Function File][xnew, abnew] = binmanual1d (X, ab, roi)
[Function File][xnew, abnew, widths] = binmanual1d (X, ab, roi)

Manually bin a one-dimensional spectrum or spectral dataset in X based on regions
of interest provided in roi, or centers and widths provided in centers and widths.
If regions of interest are used to bin, the abnew and widths values are optionally
returnable.

[Function File]xnew = binmanual2d (X, ab, roi)
[Function File][xnew, abnew] = binmanual2d (X, ab, roi)
[Function File][xnew, abnew, widths] = binmanual2d (X, ab, roi)

Manually bin a two-dimensional spectrum or spectral dataset in X based on regions
of interest provided in roi, or centers and widths provided in centers and widths.
If regions of interest are used to bin, the abnew and widths values are optionally
returnable.

[Function File]xnew = binoptim (X, ab, w, slack)
[Function File][xnew, abnew] = binoptim (X, ab, w, slack)
[Function File][xnew, abnew, widths] = binoptim (X, ab, w, slack)
[Function File][xnew, abnew, widths, indices] = binoptim (X, ab, w,

slack)
See [binoptim], page 29.

[Function File]xnew = binunif (X, ab, parms, w)
[Function File][xnew, abnew] = binunif (X, ab, parms, w)
[Function File][xnew, abnew, widths] = binunif (X, ab, parms, w)
[Function File]xnew = binunif (X, ab, parms, w)

See [binunif], page 28.

Appendix A: Function index 53

[Function File]xnew = binunif1d (X, ab)
[Function File]xnew = binunif1d (X, ab, w)
[Function File][xnew, abnew] = binunif1d (X, ab)
[Function File][xnew, abnew] = binunif1d (X, ab, w)
[Function File][xnew, abnew, widths] = binunif1d (X, ab)
[Function File][xnew, abnew, widths] = binunif1d (X, ab, w)

Uniformly bin a one-dimensional spectrum or spectral dataset in X such that final
bins have a width no greater than w. The optionally returnable values in abnew
correspond to the new bin centers in abscissa units.

The w value is optional and has a default value of 0.025.

This function is known to create bin boundaries that result in correlated output
variables. Unless uniform bins are a requirement of the task at hand, [binoptim],
page 29 is the recommended binning method.

[Function File]xnew = binunif2d (X, ab, w)
[Function File][xnew, abnew] = binunif2d (X, ab, w)
[Function File][xnew, abnew, widths] = binunif2d (X, ab, w)

Uniformly bin a two-dimensional spectrum or spectral dataset.

It is highly recommended that you use [binunif], page 28 instead of this function
directly. Better yet, stop uniformly binning your datasets and use [binadapt], page 29.

A.3 C

[Function File]Y = classes ([n1, n2, . . . , nM])
See [classes], page 48.

[Function File]idx = classidx (Y, m)
Extracts observation indices of all observations belonging to a given class m from a
discriminant analysis class matrix Y.

[Function File]Y = classify (mdl, X)
[Function File][Y, T] = classify (mdl, X)

See [classify], page 43.

[Function File]colors = clscolors (Y)
See [clscolors], page 45.

[Function File]D = confusion (mdl)
[Function File][D, hits] = confusion (mdl)
[Function File][D, hits, misses] = confusion (mdl)

Returns the results of cross-validating a PLS-DA model in the format of a confusion
matrix.

[Function File]Xc = coshift (X)
[Function File][Xc, lags] = coshift (X)

See [coshift], page 28.

[Function File]Xn = csnorm (X)
[Function File][Xn, s] = csnorm (X)

See [csnorm], page 31.

Appendix A: Function index 54

[Function File]S = cvanova (mdl)
See [cvanova], page 46.

[Function File]idx = cvindices (N, Np)
Creates a vector of group indices from 1 to Np, where each value in the vector is the
index of the training set to which the point will belong during cross-validation.

[Function File]X = cvjoin (Xt, Xv, idx)
Rejoins a one-dimensional array of datasets back into a single dataset, where the
array of indices idx was generated using the appropriate functions (See [cvindices],
page 54).

[Function File][Qsq, Qstd, CV] = cvlda (mdl, Amax)
Performs internal cross-validation of an LDA model and returns a Q2 value for infer-
ring model reliability. The CV cell array returned is a modified version of that found
in the passed model.

[Function File]CV = cvldainit (mdl)
Initializes and returns a cell array used for internal cross-validation of LDA models.

[Function File][Qsq, Qstd, CV] = cvopls (mdl, V, Ao)
Performs internal cross-validation of a PLS or OPLS model and returns a Q2 value
for inferring model reliability. The CV cell array returned is a modified version of
that found in the passed model.

[Function File]CV = cvoplsinit (mdl)
Initializes and returns a cell array used for internal cross-validation of OPLS models.

[Function File]T = cvoplsscores (mdl)
[Function File]T = cvoplsscores (mdl, n)

Returns the cross-validated scores from a PLS model in the form of an array. Each
element of the array contains the reconstructed scores from a monte carlo leave-n-
out cross validation. The length of the array equals the number of cross-validation
iterations.

[Function File][Qsq, Qstd, CV] = cvpca (mdl, t, p)
Performs internal cross-validation of a PCA model and returns a Q2 value for inferring
model reliability.

[Function File]CV = cvpcainit (mdl)
Initializes and returns a cell array used for internal cross-validation of PCA models.

[Function File][Qsq, Qstd, CV] = cvpls (mdl)
Performs internal cross-validation of a PLS or OPLS model and returns a Q2 value
for inferring model reliability. The CV cell array returned is a modified version of
that found in the passed model.

[Function File]CV = cvplsinit (mdl)
Initializes and returns a cell array used for internal cross-validation of PLS models.

Appendix A: Function index 55

[Function File]T = cvplsscores (mdl)
[Function File]T = cvplsscores (mdl, n)

Returns the cross-validated scores from a PLS model in the form of an array. Each
element of the array contains the reconstructed scores from a monte carlo leave-n-
out cross validation. The length of the array equals the number of cross-validation
iterations.

[Function File]T = cvscores (mdl)
[Function File]T = cvscores (mdl, n)

See [cvscores], page 47.

[Function File]cvscoresplot (mdl)
[Function File]cvscoresplot (mdl, d)
[Function File]cvscoresplot (mdl, d, coloring)
[Function File]cvscoresplot (mdl, d, coloring, numbers)

See [cvscoresplot], page 44.

[Function File]cvscoresplot2 (mdl, coloring, numbers)
Builds a two-dimensional scores plot of cross-validated scores from PLS or OPLS
modeled data. It is recommended that you not use this function directly. Use
[cvscoresplot], page 44 instead and specify two components.

[Function File]cvscoresplot3 (mdl, coloring, numbers)
Builds a three-dimensional scores plot of cross-validated scores from PLS or OPLS
modeled data. It is recommended that you not use this function directly. Use
[cvscoresplot], page 44 instead and specify two components.

[Function File][Xt, Xv] = cvsplit (X, idx)
Creates a one-dimensional array of datasets from a single dataset, where the array of
indices idx was generated using the appropriate functions (See [cvindices], page 54).

[Function File]C = cwt (x)
[Function File]C = cwt (x, w)
[Function File]C = cwt (x, w, voices)
[Function File]C = cwt (x, w, voices, octave)
[Function File]C = cwt (x, w, voices, octave, scale)
[Function File]C = cwt (x, w, voices, octave, scale, doifft)

Performs continuous wavelet transformation of a vector signal to produce a time-
frequency transform (CWT) matrix, C. The default wavelet is the Mexican hat (See
[wavelet sombrero], page 75), but can be set to another function by passing w with
a function handle of the form:

function psi = wavelet_function (t) ... end

The optional argument voices sets the number of voices per octave, and defaults to 8.
The optional argument octave sets the initial octave, and defaults to 4. The optional
argument scale sets the initial scale, and defaults to 8. You can tweak these numbers
to your satisfaction.

The final optional argument doifft sets whether the function should perform a final in-
verse fourier transform. This is useful if you wish to calculate derivatives in frequency
space. By default, doifft is set to true.

Appendix A: Function index 56

A.4 D

[Function File]X = data2roi (Xroi, ab, parms, roi)
See [data2roi], page 27.

[Function File]X = data2roi1d (Xroi, ab, roi)
Uses one-dimensional spectral data inside regions of interest from a data matrix to
reconstruct portions of a full spectral dataset.

[Function File]X = data2roi2d (Xroi, ab, roi)
Uses two-dimensional spectral data inside regions of interest from a data matrix to
reconstruct portions of a full spectral dataset.

[Function File]T = decompose (f, t, parms)
[Function File]T = decompose (f, t, parms, roi)
[Function File]T = decompose (f, t, parms, roi, minbw)
[Function File]T = decompose (f, t, parms, roi, minbw, fitopts)

Performs Complete Reduction to Amplitude and Frequency Table (CRAFT) analysis
of a time-domain NMR free induction decay (FID) in f, with a time abscissa in t
and parameters in parms. If multiple decays are provided in f, then a joined table
reflecting data from all decays will be returned.

In the one-dimensional case, data in f may either be a column vector or a data matrix
where each observation is arranged as a row in the matrix.

In the two-dimensional case, data in f may either be a data matrix where each direct-
dimension slice is along the rows, or a cell array that contains multiple matrices, each
having direct-dimension slices along its rows.

The optional argument roi may be passed to specify either a function handle for
automated region of interest (ROI) selection, or a matrix of manually defined re-
gions of interest. Each manually defined region should be a two-element row in roi
containing the lower and upper frequency values (in hertz, See [nmrft], page 24).
Two-dimensional data should have ROI rows with four numbers (max and min for
each dimension). In the case of a function handle, roi must be a function defined as
follows:

function roi = roi_function (s, ab, parms, wmin) ... end

The optional argument minbw may be passed to specify a minimum bandwidth (in
Hertz) of the automatically selected ROIs. The default value of minbw is one one-
hundredth of the total spectral width.

The CRAFT algorithm is implemented according to information reported in:

Krishnamurthy K., ‘CRAFT (complete reduction to amplitude frequency
table) - robust and time-efficient Bayesian approach for quantitative mix-
ture analysis by NMR’, Magnetic Resonance in Chemistry, 2013.

[Function File]T = decompose1d (f, t, parms)
[Function File]T = decompose1d (f, t, parms, roi)
[Function File]T = decompose1d (f, t, parms, roi, minbw)

Appendix A: Function index 57

[Function File]T = decompose1d (f, t, parms, roi, minbw, fitopts)
Performs Complete Reduction to Amplitude and Frequency Table (CRAFT) analysis
of a 1D time-domain NMR free induction decay (FID) in f, with a time abscissa in t
and parameters in parms.

It is highly recommended that you use [decompose], page 56 instead of calling this
function directly.

[Function File]T = decompose2d (f, t, parms)
[Function File]T = decompose2d (f, t, parms, roi)
[Function File]T = decompose2d (f, t, parms, roi, minbw)
[Function File]T = decompose2d (f, t, parms, roi, minbw, fitopts)

Performs Complete Reduction to Amplitude and Frequency Table (CRAFT) analysis
of a 2D time-domain NMR free induction decay (FID) in f, with a time abscissa in t
and parameters in parms.

It is highly recommended that you use [decompose], page 56 instead of calling this
function directly.

[Function File]D = distances (mdl)
[Function File]D = distances (mdl, k)
[Function File]D = distances (mdl, k, metric)
[Function File]D = distances (mdl, k, metric, Y)

See [distances], page 48.

[Function File]Fcorr = dmxcorr (F, parms)
See [dmxcorr], page 21.

[Function File][Z, W, P, T] = dosc (X, Y, A)
[Function File][Z, W, P, T] = dosc (X, Y, A, tol)

See [dosc], page 35.

A.5 E

[Function File][V, lambda] = eigsort (A)
[Function File][V, lambda] = eigsort (A, B)

Calculates the eigendecomposition of A such that the eigenvectors and eigenvalues
are sorted according to decreasing eigenvalue magnitude. Alternatively, a second
argument may be supplied such that the result is an eigendecomposition of B−1A.

[Function File]E = ellipse (X, correlated)
Assuming the input data rows in X are normally distributed, calculates the alpha =

0.05 confidence ellipse around the points (rows) in X. A second optional argument,
correlated, may be passed to use either a diagonal or full covariance matrix. The
default behavior is to use a full (correlated) matrix.

[Function File]nfloor = estnoise (s, parms)
[Function File][mu, sigma] = estnoise (s, parms)

Roughly estimates the mean and variance of the spectral baseline in a one-dimensional
spectrum vector or a two-dimensional spectrum matrix. If only a single return value
is requested, then the noise floor, defined as the sum of the mean and two times the
standard deviation, will be reported.

Appendix A: Function index 58

[Function File]retval = euclidean (X, y)
See [euclidean], page 49.

[Function File]w = expwindow (t, lb)
See [expwindow], page 23.

A.6 F

[Function File]k = findjumps (x)
In a vector x that is expected to contain mostly uniformly spaced data points, find
the indices where the values jump across larger than expected regions.

This function is highly accepting of sampling jitter, as it only registers a jump when
the difference between two consecutive points exceeds twice the standard uniform
spacing.

[Function File]idx = findnearest (x, a)
See [findnearest], page 30.

[Function File]f = flatness (X)
[Function File]f = flatness (X, ab, roi)

Calculate the spectral flatness, the ratio of the geometric mean to the arithmetic
mean of a signal. The optional arguments ab and roi may be used to specify regions
of interest for which to calculate flatness, instead of the entire data matrix (default).

If a single vector is provided in X, one flatness will be returned for each ROI. If a
data matrix is provided, each observation (row) in the matrix will return its own set
of flatness values.

A.7 G

[Function File]w = gausswindow (t, lb)
See [gausswindow], page 23.

[Function File]ppm = genppm (n, parms)
Uses spectral parameters for number of real data points (n), spectral width and carrier
offset in ppm to build a vector of chemical shifts for NMR spectra.

This function returns only a single dimension axis at a time. Thus, parms must be a
structure.

[Function File]t = gentime (n, parms)
Uses spectral parameters for number of real data points (n), spectral width (sw) and
carrier offset in ppm (car) to build a vector of chemical shifts for NMR spectra.

This function returns only a single dimension axis at a time. Thus, parms must be a
structure.

Appendix A: Function index 59

A.8 H

[Function File]Xn = histmatch (X)
[Function File][Xn, s] = histmatch (X)

See [histmatch], page 31.

[Function File]err = histmatch_func (alpha, Ht, Xs, Zmap)
This is the objective function for [histmatch], page 31. You’ll never call this function
directly, if you’re writing sane code.

A.9 I

[Function File]Xc = icoshift (X, ab)
[Function File]Xc = icoshift (X, ab, seg)
[Function File][Xc, lags] = icoshift (X, ab)
[Function File][Xc, lags] = icoshift (X, ab, seg)
[Function File][Xc, lags] = icoshift (X, ab, seg, cofirst)

See [icoshift], page 28.

[Function File]Imax = integrals (X, ab, roi)
[Function File][I, Iab] = integrals (X, ab, roi)

See [integrals], page 27.

[Function File]integralsplot (x, ab, Ix, Iab)
See [integralsplot], page 27.

[Function File]tf = ismultiblock (mdl)
Returns whether a model mdl is of the ‘multiblock’ variety.

[Function File]tf = isnus (x)
Returns whether a vector is non-uniformly sampled or not. An abscissa vector x
is deemed non-uniformly sampled when any absolute difference between consecutive
points is greater than or equal to twice the minimum difference between all its con-
secutive points.

[Function File]y = ist (x, sched)
[Function File]y = ist (x, sched, opts)

See 〈undefined〉 [ist], page 〈undefined〉.

[Function File]opts = ist_options ()
Returns the default options for running IST reconstruction.

A.10 J

[Function File]j2v = j2 (mdl)
[Function File]j2v = j2 (mdl, Y)

See [j2], page 48.

Appendix A: Function index 60

A.11 L

[Function File]mdl = lda (X, Y)
[Function File]mdl = lda (X, Y, scalefn)
[Function File]mdl = lda (X, Y, scalefn, ncv)
[Function File]mdl = lda (X, Y, scalefn, ncv, aout)

See [lda], page 39.

[Function File]Y = ldaclassify (mdl, X)
[Function File]Y = ldaclassify (P, U, X)
[Function File][Y, T] = ldaclassify (mdl, X)
[Function File][Y, T] = ldaclassify (P, U, X)

Predicts responses Y from one or more observations X based on the LDA either
provided in mdl or as P and U. The observations in X are transformed into the
discriminant space and classified based on Euclidean distances to the model classes.

NOTE: this function is not meant to be used directly. If you want to use an LDA
model to classify new observations, use [classify], page 43.

[Function File][P, D, U] = ldacomp (X, Y)
Extracts a multiclass LDA decomposition from a data and response matrix. This
function is not to be used directly; it is a subroutine of [lda], page 39.

[Function File]x = loadascii (filename)
[Function File][x, ab] = loadascii (filename)
[Function File]X = loadascii (filenames)
[Function File][X, ab] = loadascii (filenames)

Loads one or more ASCII files, each which contains a two-column, space-delimited
format. The first column is expected to be an abscissa and the second column is
expected to be the data.

[Function File]f = loaddmx (dirname)
[Function File][f, parms] = loaddmx (dirname)
[Function File][f, parms, t] = loaddmx (dirname)
[Function File][f, parms, t] = loaddmx (dirname, correct)
[Function File]F = loaddmx (dirnames)
[Function File][F, parms] = loaddmx (dirnames)
[Function File][F, parms, t] = loaddmx (dirnames)
[Function File][F, parms, t] = loaddmx (dirnames, correct)

See [loaddmx], page 21.

[Function File]fid = loadfid (filename, parms, doswap)
Loads a Bruker or Agilent fid file based on given parameters.

This function requires that nmrPipe be installed on the system and the environment
variables required to run nmrPipe are set up.

[Function File]P = loadings (mdl)
[Function File]P = loadings (mdl, n)

See [loadings], page 47.

Appendix A: Function index 61

[Function File]loadingsplot (mdl)
[Function File]loadingsplot (mdl, coloring)
[Function File]loadingsplot (mdl, coloring, numbers)
[Function File]h = loadingsplot (mdl)
[Function File]h = loadingsplot (mdl, coloring)
[Function File]h = loadingsplot (mdl, coloring, numbers)

See [loadingsplot], page 43.

[Function File]labels = loadlabels (fname)
[Function File][labels, indices] = loadlabels (fname)
[Function File][labels, indices, Y] = loadlabels (fname)

See [loadlabels], page 48.

[Function File]f = loadnmr (dirname)
[Function File][f, parms] = loadnmr (dirname)
[Function File][f, parms, t] = loadnmr (dirname)
[Function File][f, parms, t] = loadnmr (dirname, doswap)
[Function File]F = loadbruker (dirnames)
[Function File][F, parms] = loadnmr (dirnames)
[Function File][F, parms, t] = loadnmr (dirnames)
[Function File][F, parms, t] = loadnmr (dirnames, doswap)

See [loadnmr], page 20.

[Function File]ser = loadser (filename, parms, doswap)
Loads a Bruker or Agilent ser file based on given parameters.

This function requires that nmrPipe be installed on the system and the environment
variables required to run nmrPipe are set up.

[Function File]s = lorentz (ppm, par)
Simulates a perfectly phased complex Lorentzian peak over an abscissa ppm according
to the parameter vector par. If par is a K-by-3 matrix, then K peaks will be simulated
and summed.

The expected contents of each row of par are as follows:

par(:,1): Chemical shift, in ppm units.
par(:,2): Linewidth, in ppm units.
par(:,3): Amplitude, in absolute units.

A.12 M

[Function File]v = mad (X)
calculate the median absolute deviation of a data matrix X : MAD = med|x - med(x)|

[Function File]mdl = mbopls (X, Y)
[Function File]mdl = mbopls (X, Y, scalefn)
[Function File]mdl = mbopls (X, Y, scalefn, ncv)
[Function File]mdl = mbopls (X, Y, scalefn, ncv, aout)

See [mbopls], page 41.

Appendix A: Function index 62

[Function File]Y = mboplsclassify (mdl, X)
[Function File][Y, T] = mboplsclassify (mdl, X)

Predicts responses Y from one or more observations X based on the MBOPLS model
provided in mdl. The observations in X are transformed by the regression coefficients
(B) and classified based on sum of squares to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a PLS model
to classify new observations, use [classify], page 43.

[Function File]mdl = mbpca (X)
[Function File]mdl = mbpca (X, scalefn)
[Function File]mdl = mbpca (X, scalefn, ncv)
[Function File]mdl = mbpca (X, scalefn, ncv, aout)

See [mbpca], page 40.

[Function File]Y = mbpcaclassify (mdl, X)
[Function File][Y, T] = mbpcaclassify (mdl, X)

Predicts responses Y from one or more observations X based on the MBPCA model
provided in mdl. The observations in X are transformed into the principal component
space and classified based on Mahalanobis distances to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a PCA
model to classify new observations, use [classify], page 43.

[Function File]mdl = mbpls (X, Y)
[Function File]mdl = mbpls (X, Y, scalefn)
[Function File]mdl = mbpls (X, Y, scalefn, ncv)
[Function File]mdl = mbpls (X, Y, scalefn, ncv, aout)

See [mbpls], page 40.

[Function File]Y = mbplsclassify (mdl, X)
[Function File][Y, T] = mbplsclassify (mdl, X)

Predicts responses Y from one or more observations X based on the MBPLS model
provided in mdl. The observations in X are transformed by the regression coefficients
(B) and classified based on sum of squares to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a PLS model
to classify new observations, use [classify], page 43.

[Function File]Xn = mscorr (X)
[Function File]Xn = mscorr (X, r)

See [mscorr], page 31.

[Function File]X = multiblock (X_1, . . . , X_B)
Builds a multiblock data matrix from individual data matrices, ensuring that all
dimensions match up.

A.13 N

[Function File]y = ndft (x, t)
[Function File][y, w] = ndft (x, t)

Appendix A: Function index 63

[Function File]y = ndft (x, t, w)
Compute the non-uniform discrete Fourier transform of x using the brute-force
(O(N2)) NDFT algorithm.

The NDFT is calculated along the first non-singleton dimension of the array. Thus if
x is a matrix, ndft (x, t) computes the NDFT for each column of x.

An optional second return value w may be requested that will hold the frequency do-
main axis, in whatever units correspond to those in t. Alternatively, a third argument
(also w) may be passed to explicitly specify the frequencies at which to compute the
NDFT.

[Function File]n = nmrdims (x, parms)
Determines whether the dataset given by x and parms is one- or two-dimensional,
based on the expected data types that each dimensionality of data may assume. The
data x may be real or complex, time or frequency domain, etc.

[Function File]s = nmrft (fid, parms)
[Function File][s, ppm] = nmrft (fid, parms)
[Function File][s, ppm, hz] = nmrft (fid, parms)
[Function File]... = nmrft (fid, parms, doshift)

See [nmrft], page 24.

[Function File][s, ppm, hz] = nmrft1d (fid, parms, doshift)
Performs Fourier transformation and shifting to produce a 1D NMR spectrum or a
1D NMR spectral data matrix. One-dimensional data in fid may either be a column
vector or a data matrix where each free induction decay is arranged as a row in the
matrix.

Instead of using this function directly, it is recommended that you use [nmrft], page 24.

[Function File][s, ppm, hz] = nmrft2d (fid, parms, doshift)
Performs Fourier transformation and shifting to produce a 2D NMR spectral matrix
or a 2D NMR spectral cell array. Two-dimensional data must be arranged with slices
of the direct-dimension along the rows.

Instead of using this function directly, it is recommended that you use [nmrft], page 24.

[Function File][recfid] = nmrist (fid, parms)
[Function File][recfid] = nmrist (fid, parms, phc)

See [nmrist], page 22.

[Function File]colors = nocolors (XY)
See [nocolors], page 45.

[Function File]s = nusft (fid, t)
[Function File][s, ppm] = nusft (fid, t, parms)
[Function File][s, ppm, hz] = nusft (fid, t, parms)

Performs Fourier transformation and shifting to produce an NMR spectrum. The
data in fid may either be a column vector or a data matrix where each free induction
decay is arranged as a row in the matrix.

This function differs from standard NMR Fourier transformation (See [nmrft],
page 24) solely because it uses a non-uniform discrete Fourier transform (NDFT)

Appendix A: Function index 64

instead of the classical fast Fourier transform (FFT) to compute the spectrum, thus
allowing the input samples to be arbitrarily spaced in time. However, this method
of computing the spectrum suffers from serious drawbacks, and should not be used
in any seriousness.

If a parameter structure is passed as a second argument, a second output value will
be produced which contains the chemical shift abscissa vector that is associated with
s. Optionally, in this case, a third output value will be produced which contains the
centered abscissa vector in hertz units, without the carrier offset applied (hz).

A.14 O

[Function File]colors = obscolors (XY)
See [obscolors], page 45.

[Function File]mdl = opls (X, Y)
[Function File]mdl = opls (X, Y, scalefn)
[Function File]mdl = opls (X, Y, scalefn, ncv)
[Function File]mdl = opls (X, Y, scalefn, ncv, aout)
[Function File]mdl = opls (X, Y, scalefn, ncv, aout, w)

See [opls], page 38.

[Function File]Y = oplsclassify (mdl, X)
[Function File][Y, T] = oplsclassify (mdl, X)

Predicts responses Y from one or more observations X based on the OPLS model
provided in mdl. The observations in X are filtered based on orthogonal variation,
transformed by the regression coefficients (B) and classified based on sum of squares
to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a OPLS
model to classify new observations, use [classify], page 43.

[Function File][w, t, p, u, c, Wo, To, Po, iter] = oplscomp (X, Y, V,
aout)

Extracts a single OPLS component from a data and response matrix, as well as any
accompanying significant orthogonal components. The returned w, t, p, u and c
are vectors corresponding to the rank-one approximation of X and Y of the OPLS
component. The OPLS components may be returned in batches of more than one at
a time. The final input argument aout may be set to nonzero to specify a desired
orthogonal component count.

[Function File]V = orthspace (X, Y)
Returns a matrix containing the Y-orthonormal subspace of the data matrix X. This
is used during OPLS modeling, typically.

[Function File]D = overlaps (mdl, k)
[Function File]D = overlaps (mdl, k, Y)

See [overlaps], page 48.

Appendix A: Function index 65

A.15 P

[Function File]mdl = pca (X)
[Function File]mdl = pca (X, scalefn)
[Function File]mdl = pca (X, scalefn, ncv)
[Function File]mdl = pca (X, scalefn, ncv, aout)
[Function File]mdl = pca (X, scalefn, ncv, aout, w)

See [pca], page 36.

[Function File]Y = pcaclassify (mdl, X)
[Function File][Y, T] = pcaclassify (mdl, X)

Predicts responses Y from one or more observations X based on the PCA model
provided in mdl. The observations in X are transformed into the principal component
space and classified based on Mahalanobis distances to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a PCA
model to classify new observations, use [classify], page 43.

[Function File][t, p, iter] = pcacomp (X)
[Function File][t, p, iter] = pcacomp (X, t0)

Extracts a single PCA component from a data matrix. The optional second argument
t0 can be passed to specify an initial value for t prior to iteration.

[Function File]P = peakpick (s, ab)
Picks peaks in a 1D spectrum vector or 2D spectrum matrix. The input spectrum s
and abscissa ab are both required.

The one-dimensional peak-picking algorithm is an implementation of:

Du et. al., ‘Improved peak detection in mass spectrum by incorporating
continuous wavelet transform-based pattern matching’, Bioinformatics,
2006.

The two-dimensional peak-picking algorithm is not yet implemented.

[Function File]Xnew = perclass (fn, X, Y)
See [perclass], page 35.

[Function File]permdensity (S)
See [permdensity], page 45.

[Function File]permscatter (S)
See [permscatter], page 45.

[Function File]S = permtest (mdl)
[Function File]S = permtest (mdl, n)

See [permtest], page 46.

[Function File]sp = phase (s, parms, phc0, phc1)
See [phase], page 25.

[Function File]sp = phase1d (s, phc0, phc1)
Corrects the phase of a one-dimensional Fourier-transformed spectrum or spectral
dataset with a zero order correction phc0 and a first order correction phc1.

Instead of using this function directly, it is recommended that you use [phase], page 25.

Appendix A: Function index 66

[Function File]sp = phase2d (s, phc0, phc1)
Corrects the phase of a two-dimensional Fourier-transformed spectral matrix or cell
array with a zero order correction phc0 and a first order correction phc1.

Instead of using this function directly, it is recommended that you use [phase], page 25.

[Function File]mdl = pls (X, Y)
[Function File]mdl = pls (X, Y, scalefn)
[Function File]mdl = pls (X, Y, scalefn, ncv)
[Function File]mdl = pls (X, Y, scalefn, ncv, aout)
[Function File]mdl = pls (X, Y, scalefn, ncv, aout, w)

See [pls], page 37.

[Function File]Y = plsclassify (mdl, X)
[Function File][Y, T] = plsclassify (mdl, X)

Predicts responses Y from one or more observations X based on the PLS model
provided in mdl. The observations in X are transformed by the regression coefficients
(B) and classified based on sum of squares to the model classes.

NOTE: this function is not meant to be used directly. If you want to use a PLS model
to classify new observations, use [classify], page 43.

[Function File][w, t, p, u, c, iter] = plscomp (X, Y)
Extracts a single PLS component from a data and response matrix.

[Function File][x, y] = plsroc (mdl)
[Function File][x, y, auc] = plsroc (mdl)

Returns the results of cross-validating a two-class PLS-DA model in the format of a
receiver operating characteristic (ROC) curve.

[Function File]Xn = pqnorm (X)
[Function File][Xn, s] = pqnorm (X)

See [pqnorm], page 31.

[Function File]prevpow2 (x)
If x is a scalar, return the last integer N such that 2^n <= abs(x).

If x is a vector, return prevpow2(length(x)).

[Function File]Xn = pscorr (X)
[Function File][Xn, b] = pscorr (X)
[Function File]Xn = pscorr (X, r)
[Function File][Xn, b] = pscorr (X, r)

See [pscorr], page 32.

[Function File]y = pscorr_build (x, p)
Rebuilding function used by [pscorr], page 32 to calculate optimal phasing and scatter
correction of a set of NMR spectra. You will never have to call this function on its
own.

[Function File]y = pscorr_func (x, p)
Objective function used by [pscorr], page 32 to calculate optimal phasing and scatter
correction of a set of NMR spectra. This is probably useless on its own.

Appendix A: Function index 67

A.16 R

[Function File]R = ransy1d (X, k)
Use the Ratio Analysis SpectroscopY method (RANSY) to extract single compound
spectra from spectra of complex mixtures, defined here:

S. Wei, et. al. ‘Ratio Analysis Nuclear Magnetic Resonance Spectroscopy
for Selective Metabolite Identification in Complex Samples’. Analytical
Chemistry 2011(83): 7616-7623.

[Function File]x = realnmr (s, parms)
Discards imaginaries from all dimensions of an NMR dataset in s and returns only
the real spectrum in x. A parameter structure (or array) must be passed as a second
argument.

[Function File]s = reconstruct (T, ab)
[Function File][s, f] = reconstruct (T, ab, t)

Reconstructs a spectrum s and (optionally) a FID f matrix from a CRAFT decompo-
sition T (See [decompose], page 56). Reconstruction of the spectrum from T permits
the automatic removal of phase errors from all signals, resulting in a spectrum that
requires no phase correction. However, reconstructed time-domain data will contain
the phasing.

The signal table T need not be generated by [decompose], page 56. Any real, three-
column matrix T will do. Every row of T is expected to be a complex exponentially
decaying sinusoid. The columns of T are expected to be the amplitudes, frequencies,
widths and phases of the signals. More specifically:

T(:,1): Amplitude, in absolute units.
T(:,2): Frequency, in Hertz.
T(:,3): Linewidth, in Hertz.
T(:,4): Phase, in [−1, 1].
Alternatively, T may be an M-by-1 cell array, with each value equal to a signal table
(matrix). In this case, a data matrix having M rows will be generated, with each
observation a reconstruction based on the m-th signal table in the cell array.

[Function File]ppmadj = refadj (ppm, oldcs, newcs)
See [refadj], page 26.

[Function File]Xn = refnorm (X, ab, refcs)
[Function File][Xn, s] = refnorm (X, ab, refcs)

Normalize the observations of a data matrix to such that the maximum intensity of
a spectral region centered around refcs is one. The calculated normalization factors
may be optionally returned in s. The values specified in roi must correspond to those
in the abscissa ab.

[Function File][Y, Yfit, Yhat] = responses (mdl)
Returns the univariate backscale response values from a PLS or OPLS model. The
outputs Y, Yfit and Yhat contain the input response values, output fitted responses
and output re-estimated responses.

Appendix A: Function index 68

[Function File]responsesplot (mdl)
[Function File]responsesplot (mdl, coloring)

Builds a responses plot from PLS or OPLS modeled data. An optional second argu-
ment coloring may be specified to color the points. See [nocolors], page 45, [obscolors],
page 45.

[Function File]P = rjmcmc1d (y, t)
[Function File]P = rjmcmc1d (y, t, opts)

Execute a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) simulation in
order to obtain estimates of the number of signals in a time-domain free induction
decay y, and the corresponding parameters of those signals. A time axis t is required
to be paired with y.

A third (optional) argument may be passed to specify options for the fitting algo-
rithm. The argument, opts, must be a structure and is expected to contain any of
the following option fields:

The option field iters may be passed as a two-element vector, whose first element is
the number of desired burn-in iterations, and whose second element is the number of
desired simulation iterations. iters may also contain a third element that indicates
the modulus for which iteration to save during the simulation (i.e. only save every
hundredth iteration).

The option field lambda may be passed to indicate the expected number of signals
the model will contain. The default value is 20. The option field delta may be passed
to indicate the expected signal to noise ratio of the data. The default value is 10.
Further option fields omega0 and rho0 may be provided to initialize the simulation
at more sane parameter values (frequency and decay rate, respectively).

The RJ-MCMC algorithm is implemented according to information reported in:

Andrieu C., ‘Joint Bayesian Model Selection and Estimation of Noisy
Sinusoids via Reversible Jump MCMC’, IEEE Transactions on Signal
Processing, 1999.

Rubtsov D., Griffin J., ‘Time-domain Bayesian detection and estimation
of noisy damped sinusoidal signals applied to NMR spectroscopy’, Journal
of Magnetic Resonance, 2007.

Roodaki A., ‘Note on the computation of the Metropolis-Hastings ra-
tio for Birth-or-Death moves in trans-dimensional MCMC algorithms for
signal decomposition problems’, arXiv:1111.6245v2, 2012.

[Function File]D = rjmcmc1d_reconstruct (t, omega, rho)
[Function File]yhat = rjmcmc1d_reconstruct (t, omega, rho, a)
[Function File]yhat = rjmcmc1d_reconstruct (t, P)

Reconstructs a one-dimensional time-domain free induction decay from parameters
estimated by [rjmcmc1d], page 68. If only frequencies (omega) and decay rates (rho)
are provided, a basis of signals (D) is returned. If amplitudes are also provided in a,
a final signal estimate will be returned.

Appendix A: Function index 69

[Function File]P = rjmcmc2d (y, t)
[Function File]P = rjmcmc2d (y, t, opts)

Execute a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) simulation in
order to obtain estimates of the number of signals in a 2D time-domain free induction
decay y, and the corresponding parameters of those signals. A two-element time cell
array t is required to be paired with y, the input time-domain matrix.

A third (optional) argument may be passed to specify options for the fitting algo-
rithm. The argument, opts, must be a structure and is expected to contain any of
the following option fields:

The option field iters may be passed as a two-element vector, whose first element is
the number of desired burn-in iterations, and whose second element is the number of
desired simulation iterations. iters may also contain a third element that indicates
the modulus for which iteration to save during the simulation (i.e. only save every
hundredth iteration).

The option field lambda may be passed to indicate the expected number of signals
the model will contain. The default value is 5. The option field delta may be passed
to indicate the expected signal to noise ratio of the data. The default value is 10.
Further option fields omega0 and rho0 may be provided to initialize the simulation
at more sane parameter values (frequency and decay rate, respectively).

The RJ-MCMC algorithm is an extension of [rjmcmc1d], page 68 to two-dimensional
time-domain data matrices. See [rjmcmc1d], page 68 for more information and liter-
ature references.

[Function File]D = rjmcmc2d_reconstruct (t, omega, rho)
[Function File]yhat = rjmcmc2d_reconstruct (t, omega, rho, a)
[Function File]yhat = rjmcmc2d_reconstruct (t, P)

Reconstructs a two-dimensional time-domain free induction decay from parameters
estimated by [rjmcmc2d], page 69. If only frequencies (omega) and decay rates (rho)
are provided, a basis of signals (D) is returned. If amplitudes are also provided in a,
a final signal estimate will be returned.

[Function File][Xrm, abrm] = rmnoise (X, ab, idx)
[Function File][Xrm, abrm] = rmnoise (X, ab, idx, nstd)
[Function File][Xrm, abrm, idxrm] = rmnoise (X, ab, idx)
[Function File][Xrm, abrm, idxrm] = rmnoise (X, ab, idx, nstd)

See [rmnoise], page 30.

[Function File]Xrm = rmobs (X, idx)
See [rmobs], page 30.

[Function File]roirm = rmroi (roi, rmzones)
See [rmroi], page 27.

[Function File][Xrm, abrm] = rmvar (X, ab, idx)
See [rmvar], page 30.

[Function File]Xroi = roi2data (X, ab, parms, roi)
[Function File][Xroi, abroi] = roi2data (X, ab, parms, roi)

See [roi2data], page 27.

Appendix A: Function index 70

[Function File][Xroi, abroi] = roi2data1d (X, ab, roi)
Concatenates one-dimensional spectral data inside regions of interest into a data
matrix.

[Function File][Xroi, abroi] = roi2data2d (X, ab, roi)
Concatenates vectorized two-dimensional spectral data inside regions of interest into
a data matrix.

[Function File]roi = roibin (s, ab, parms, wmin)
See [roibin], page 26.

[Function File]Y = roifun (X, ab, parms, roi, func)
Executes a function handle func within each region of interest in a one- or two-
dimensional spectral dataset and returns the resulting values in Y. The value produced
by func must be scalar, or this function will not execute it.

[Function File]Y = roifun1d (X, ab, roi, func)
Performs a function on one-dimensional spectral data inside regions of interest.

[Function File]Y = roifun2d (X, ab, roi, func)
Performs a function on two-dimensional spectral data inside regions of interest.

[Function File]Xn = roinorm (X, ab, roi)
[Function File][Xn, s] = roinorm (X, ab, roi)

See [roinorm], page 32.

[Function File]roi = roipeak (s, ab, parms, wmin)
See [roipeak], page 26.

[Function File]roiplot (X, ab, parms, roi)
See [roiplot], page 27.

[Function File]roiplot1d (roi)
[Function File]roiplot1d (X, ab, roi)

Overlays regions of interest (as lines) on an existing line plot of frequency-domain
spectral data, or builds a line plot of data with overlaid regions of interest as rectan-
gles.

[Function File]roiplot2d (roi)
[Function File]roiplot2d (X, ab, roi)

Overlays regions of interest (as rectangles) on an existing contour plot of frequency-
domain spectral data, or builds a contour plot of data with overlaid regions of interest
as rectangles.

[Function File]v = rq (mdl)
See [rq], page 45.

[Function File]v = rqdiff (mdl)
See [rqdiff], page 46.

[Function File]rqinfo (mdl)
Prints R2/Q2 values from a PCA, PLS, OPLS or LDA model.

Appendix A: Function index 71

[Function File]rqplot (mdl)
[Function File]h = rqplot (mdl)

See [rqplot], page 45.

A.17 S

[Function File]savescores (mdl, filename)
[Function File]savescores (mdl, filename, A)
[Function File]savescores (mdl, filename, A, Y)
[Function File]savescores (mdl, filename, A, Y, labels)

Exports scores from a PCA, PLS or OPLS model to SIMCA-P+ format text.

[Function File]T = scores (mdl)
[Function File]T = scores (mdl, n)

See [scores], page 47.

[Function File]scoresplot (mdl)
[Function File]scoresplot (mdl, d)
[Function File]scoresplot (mdl, d, coloring)
[Function File]scoresplot (mdl, d, coloring, numbers)

See [scoresplot], page 43.

[Function File]scoresplot2 (mdl, coloring, numbers)
Builds a two-dimensional scores plot of PCA, PLS or OPLS modeled data. It is
recommended that you not use this function directly. Use [scoresplot], page 43 instead
and specify two components.

[Function File]scoresplot3 (mdl, coloring, numbers)
Builds a three-dimensional scores plot of PCA, PLS or OPLS modeled data. It
is recommended that you not use this function directly. Use [scoresplot], page 43
instead and specify three components.

[Function File]B = shuffle (A)
Randomly shuffles the rows of a matrix A.

[Function File]obj = simplex_entropy (s, phc)
See [simplex entropy], page 25.

[Function File]obj = simplex_integral (s, phc)
See [simplex integral], page 25.

[Function File]obj = simplex_minimum (s, phc)
See [simplex minimum], page 25.

[Function File]obj = simplex_whiten (s, phc)
See [simplex whiten], page 26.

[Function File]wfid = sinewindow (t, opts)
See [sinewindow], page 23.

Appendix A: Function index 72

[Function File]Xs = slevel (X)
[Function File][Xs, mu] = slevel (X)
[Function File][Xs, mu, s] = slevel (X)
[Function File]... = slevel (X, w)

See [slevel], page 34.

[Function File][Xcos, Xsin] = slices (X)
[Function File]Xcos = slices (X)

De-interlaces States/Haberkorn/Ruben cosine- and sine-modulated rows of a complex
matrix X into the complex matrices Xcos and Xsin. See [states], page 73 for more
information.

[Function File]Xc = snone (X)
[Function File][Xc, mu] = snone (X)
[Function File][Xc, mu, s] = snone (X)
[Function File]... = snone (X, w)

See [snone], page 33.

[Function File]Xn = snv (X)
[Function File][Xn, mu] = snv (X)
[Function File][Xn, mu, s] = snv (X)

See [snv], page 31.

[Function File]Xs = spareto (X)
[Function File][Xs, mu] = spareto (X)
[Function File][Xs, mu, s] = spareto (X)
[Function File]... = spareto (X, w)

See [spareto], page 33.

Performing no scaling prior to multivariate analysis results in fitting based on covariance
eigenstructure, not correlation eigenstructure. In English, large variations will be weighted
much more strongly than smaller variations in the fitted models.

[Function File]Xc = spassthru (X)
[Function File][Xc, mu] = spassthru (X)
[Function File][Xc, mu, s] = spassthru (X)
[Function File]... = spassthru (X, w)

Performs no mean-centering and no scaling. An optional weighting vector w may be
passed during the scaling. The variables used to center and scale X may be optionally
returned.

The resulting scaled elements of ~X are calculated as follows:

~xik =
xik

wk

[Function File]splot (mdl)
[Function File]splot (mdl, a)
[Function File]splot (mdl, a, numbers)
[Function File]pdata = splot (. . .)

See [splot], page 44.

Appendix A: Function index 73

[Function File]Xs = srange (X)
[Function File][Xs, mu] = srange (X)
[Function File][Xs, mu, s] = srange (X)
[Function File]... = srange (X, w)

See [srange], page 34.

[Function File]r = ssratio (a, b)
Calculates the ratio of the row sum of squares of a and b.

[Function File]stackplot (X)
[Function File]stackplot (X, ab)

See [stackplot], page 43.

[Function File][A, B] = states (X)
[Function File]A = states (X)
[Function File]X = states (A, B)

De-interlaces States/Haberkorn/Ruben cosine- and sine-modulated rows of a complex
matrix X into the complex matrices A and B.

The de-interlacing procedure is as follows:

Xcos ← X2:2:N,·

Xsin ← X1:2:N−1,·

A← Re{Xcos}+ i ·Re{Xsin}

B ← Im{Xcos}+ i · Im{Xsin}

Alternatively, this function can re-interlace the matrices A and B to yield a new
original matrix X.

The re-interlacing procedure is as follows:

Xcos ← Re{A}+ i ·Re{B}

Xsin ← Im{A}+ i · Im{B}

X2:2:N,· ← Xcos

X1:2:N−1,· ← Xsin

[Function File]C = stocsy (X, ab)
Use the Statistical Total Correlation SpectroscopY (STOCSY) method to generate a
contour map of correlations between spectral variables in a 1D NMR dataset, defined
here:

O. Cloarec, et. al. ‘Statistical Total Correlation Spectroscopy: An Ex-
ploratory Approach for Latent Biomarker Identification from Metabolic
1H NMR Data Sets’. Analytical Chemistry 2005(77): 1282-1289.

Appendix A: Function index 74

[Function File][fsub, tsub, dfbw, D] = subfid (f, t, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from f into fsub. This function can
operate on multiple free induction decays at once if f is supplied as a data matrix.
The function also accepts two-dimensional time-domain data in the form of matrices
or cell arrays.

For one-dimensional data, Fmin and Fmax must be scalar values. For
two-dimensional data, they must be two-vectors containing frequencies for each
dimension.

Procedurally, the extraction is as follows: modulate f such that the desired frequency
band lies at zero frequency, FIR filter f to avoid aliasing, and decimate the filtered
form of f. The extracted band will be returned in (fsub,tsub), and the decimation
ratio will be returned in D.

[Function File][fsub, tsub, dfbw, D] = subfid1d (f, t, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from f into fsub.

It is highly recommended that you use [subfid], page 74 instead of calling this function
directly.

[Function File][fsub, tsub, dfbw, D] = subfid2d (f, t, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from f into fsub.

It is highly recommended that you use [subfid], page 74 instead of calling this function
directly.

[Function File][ssub, absub] = subspect (s, ab, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from s into ssub. This function can
operate on multiple spectra at once if s is supplied as a data matrix. The function
also accepts two-dimensional spectral data in the form of matrices or cell arrays.

The values in Fmin and Fmax should correspond to those in ab. For one-dimensional
data, Fmin and Fmax must be scalar values. For two-dimensional data, they must
be two-vectors containing frequencies for each dimension.

Unlike [subfid], page 74, which performs its extraction in the time domain, this func-
tion has it easy: it just crops out the subspectrum of interest from the input spectral
data.

[Function File][ssub, absub] = subspect1d (s, ab, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from s into ssub.

It is highly recommended that you use [subspect], page 74 instead of calling this
function directly.

[Function File][ssub, absub] = subspect2d (s, ab, parms, Fmin, Fmax)
Extracts a band of frequencies ([Fmin, Fmax]) from s into ssub.

It is highly recommended that you use [subspect], page 74 instead of calling this
function directly.

[Function File]susplot (mdl1, mdl2)
[Function File]susplot (mdl1, mdl2, a)
[Function File]susplot (mdl1, mdl2, a, numbers)
[Function File]pdata = susplot (. . .)

See [susplot], page 45.

Appendix A: Function index 75

[Function File]Xs = suv (X)
[Function File][Xs, mu] = suv (X)
[Function File][Xs, mu, s] = suv (X)
[Function File]... = suv (X, w)

See [suv], page 33.

[Function File]Xs = svast (X)
[Function File][Xs, mu] = svast (X)
[Function File][Xs, mu, s] = svast (X)
[Function File]... = svast (X, w)

See [svast], page 34.

A.18 T

[Function File][y, xth] = th_soft (x, tau)
Compute the soft thresholded vector y of an input vector x.

If tau is not provided, a default value of 0.02 will be assumed.

A.19 U

[Function File]R = ussr (F, P, ppm)
[Function File]R = ussr (F, P, ppm, alpha)

Perform Uncomplicated Statistical Spectral Remodeling (USSR) on two matrices F
and P, where spectra are paired in the two matrices, arranged row-wise. The P matrix
is remodeled to yield R according to the procedure in:

B. Worley et. al., ’Uncomplicated Statistical Spectral Remodeling’, J. Biomol. NMR.,
in preparation.

The chemical shift values on the abscissas of all spectra are assumed to be identical to
within the digital resolution of the experiment, so only a single abscissa vector ppm.

An optional fourth input variable alpha may be set to define the level of confidence
required to keep a signal in the reconstructed spectrum.

A.20 V

[Function File]colors = varcolors (X)
See [varcolors], page 45.

A.21 W

[Function File]y = wavelet_haar (t)
Calculates the Haar mother wavelet.

[Function File]y = wavelet_sombrero (t)
Calculates the Mexican hat, or ‘sombrero’, mother wavelet.

[Function File]W = weights (mdl)
[Function File]W = weights (mdl, n)

See [weights], page 47.

Appendix A: Function index 76

[Function File]weightsplot (mdl)
[Function File]weightsplot (mdl, coloring)
[Function File]h = weightsplot (mdl)
[Function File]h = weightsplot (mdl, coloring)

See [weightsplot], page 44.

A.22 Z

[Function File]zfid = zerofill (fid, parms)
[Function File]zfid = zerofill (fid, parms, k)

See [zerofill], page 24.

[Function File]zfid = zerofill1d (fid, k)
Appends zeros at the end of a one-dimensional free induction decay (FID) vector or
matrix by doubling the total length k times.

Instead of using this function directly, it is recommended that you use [zerofill],
page 24.

[Function File]zfid = zerofill2d (fid, k)
Appends zeros at the end of a two-dimensional free induction decay (FID) matrix or
cell array by doubling the total length k times along each dimension.

Instead of using this function directly, it is recommended that you use [zerofill],
page 24.

Appendix B: Example usage 77

Appendix B Example usage

The following script is a complete example of how to use MVAPACK to handle NMR
chemometrics data.

This procedure applied to a dataset having 32 observations and 8192 real data points
results in a run-time of 30 minutes, most of which is due to the color-enabled backscaleplot

command.

It goes without saying that your mileage may vary. This script is a working example,
and the exact series of processing commands will differ for every dataset.

% load in the raw time-domain data.

F.dirs = glob(‘my-data-???/1’);

[F.data, F.parms, F.t] = loadnmr(F.dirs);

% zero-fill three times.

F.nzf = 3;

F.data = zerofill(F.data, F.parms, F.nzf);

% fourier transform the data.

[S.data, S.ppm] = nmrft(F.data, F.parms);

% autophase the spectra.

[S.data, S.phc0, S.phc1] = autophase(S.data, F.parms);

% extract the real spectral components.

X.data = realnmr(S.data, F.parms);

X.ppm = S.ppm;

% remove two failed observations.

X.rm.obs = [1, 31];

X.data = rmobs(X.data, X.rm.obs);

% identify indices of chemical regions to cut.

i0 = findnearest(X.ppm, min(X.ppm));

i1 = findnearest(X.ppm, 0.554);

i2 = findnearest(X.ppm, 4.488);

i3 = findnearest(X.ppm, max(X.ppm));

% remove the uninformative chemical shift regions.

X.rm.var = [i3 : i2, i1 : i0];

[X.data, X.ppm] = rmvar(X.data, X.ppm, X.rm.var);

% perform adaptive intelligent binning with default settings.

[B.data, B.ppm] = binadapt(X.data, X.ppm, F.parms);

% perform segmented spectral alignment with default settings.

X.data = icoshift(X.data, X.ppm);

Appendix B: Example usage 78

% create pca class information.

cls.pca.Y = classes([7, 8, 7, 7]);

cls.pca.labels = {‘A’, ‘B’, ‘C’, ‘D’};

% create opls-da class information.

cls.opls.Y = classes([7 + 8 + 7, 7]);

cls.opls.labels = {‘ABC’, ‘D’};

% build a full-resolution pca model.

mdl.pca = pca(B.data);

mdl.pca = addclasses(mdl.pca, cls.pca.Y);

mdl.pca = addlabels(mdl.pca, cls.pca.labels);

% build a full-resolution opls-da model.

mdl.opls = opls(X.data, cls.opls.Y);

mdl.opls = addlabels(mdl.opls, cls.opls.labels);

% add cv-anova validation information to the opls-da model.

mdl.opls.cv.anova = cvanova(mdl.opls);

% add permutation test information to the opls-da model.

mdl.opls.cv.nperm = 500;

mdl.opls.cv.perm = permtest(mdl.opls, mdl.opls.cv.nperm);

% plot pca model information.

rqplot(mdl.pca);

scoresplot(mdl.pca, 3);

backscaleplot(X.ppm, mdl.pca);

% plot opls model information.

rqplot(mdl.opls);

permscatter(mdl.opls.cv.perm);

scoresplot(mdl.opls, 2);

backscaleplot(X.ppm, mdl.opls, true);

% save the session data.

savedate = date();

save(‘-binary’, ‘-z’, ‘my-data.dat.gz’);

	Overview of MVAPACK
	What is MVAPACK?
	Why GNU Octave?
	Why open source?
	What am I waiting for?

	General concepts
	Preliminary
	Required Octave Packages
	Installing Octave
	Installing Packages

	Downloading MVAPACK
	Installing MVAPACK
	Using MVAPACK

	Definitions
	Observations
	Variables
	Data vectors
	Data matrices
	Multiblock data matrices
	Response matrices
	Scores and loadings
	Internal cross-validation
	Permutation testing
	CV-ANOVA testing
	More information

	Organization
	Data vector organization
	Data matrix organization
	Multiblock organization
	Structure organization

	MVAPACK patterns
	Loading NMR data
	Loading Bruker DMX data without zero-filling
	Loading Bruker DMX data with zero-filling
	Loading more modern Bruker or Agilent data
	Loading classes and labels

	Processing in the time domain
	General apodization
	General zero-filling
	General Fourier transformation

	Processing in the frequency domain
	Removal of undesirable observations
	Automatic phasing and normalization
	Extraction of real spectral data
	Chemical shift referencing
	Spectral alignment
	Removal of undesirable variables
	Adaptive intelligent binning

	Handling multivariate models
	Building unsupervised models
	Building supervised models
	Validating supervised models
	Building models with different scaling
	Building multiblock structures
	Handling multiblock models

	Plotting model results
	Model quality plots
	Scores scatter plots
	Loadings scatter plots
	Loadings line plots
	S-plots

	Plotting data matrices
	Plotting data matrices overlaid
	Plotting data matrices stacked
	Plotting to aid phase correction
	Plotting multiblock data matrices

	Saving MVAPACK data
	Saving session data for later
	Loading saved session data
	Saving data matrices to text
	Loading data matrices from text
	Saving plots to postscript files

	NMR file loading
	Loading Bruker or Agilent FID data
	Bruker-format data

	Data pre-processing
	NUS reconstruction
	Apodization
	Zero-filling
	Fourier transformation
	Phasing
	Simple phasing
	Advanced phasing

	Referencing
	Regions of Interest
	Generating regions
	Visualizing regions
	Removing regions
	Binning by regions
	Vectorizing regions

	Integration
	Alignment
	Binning

	Data pre-treatment
	Removing data
	Removing observations
	Removing variables

	Normalization
	CS normalization
	PQ normalization
	HM normalization
	SNV normalization
	MSC normalization
	PSC normalization
	ROI normalization

	Scaling
	No scaling
	Unit variance scaling
	Pareto scaling
	Range scaling
	Level scaling
	VAST scaling

	Denoising
	Direct orthogonal signal correction
	Per-class treatment of data

	Multivariate modeling
	Model training
	PCA
	PLS
	OPLS
	LDA
	MB-PCA
	MB-PLS
	MB-OPLS

	Model prediction
	Model visualization
	Plotting
	Coloring

	Model validation
	Model manipulation
	Adding data
	Extracting data

	Classes and labels
	Separations

	Function index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Example usage

